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Abstract: Water scarcity is a growing threat to humankind. At university campuses, there is a
need for shared shower room managers to forecast the demand for bath water accurately. Accurate
bath water demand forecasts can decrease the costs of water heating and pumping, reduce overall
energy consumption, and improve student satisfaction (due to stability of bath water supply and
bathwater temperature). We present a case study conducted at Capital Normal University (Beijing,
China), which provides shared shower rooms separately for female and male students. Bath water
consumption data are collected in real-time through shower tap controllers to forecast short-term
bath water consumption in the shower buildings. We forecasted and compared daily and hourly
bath water demand using the autoregressive integrated moving average, random forests, long short-
term memory, and neural basis expansion analysis time series-forecasting models, and assessed the
models’ performance using the mean absolute error, mean absolute percentage error, root-mean-
square error, and coefficient of determination equations. Subsequently, covariates such as weather
information, student behavior, and calendars were used to improve the models’ performance. These
models achieved highly accurate forecasting for all the shower room areas. The results imply that
machine learning methods outperform statistical methods (particularly for larger datasets) and can
be employed to make accurate bath water demand forecasts.

Keywords: bath water demand forecasting; machine learning; time-series prediction; smart campus;
shared shower room

1. Introduction

Water demand forecasting is an important issue in the field of water management
worldwide [1]. Water scarcity is a growing threat to humankind and researchers have made
many efforts, proposing solutions such as water treatment [2,3], water desalination [4], and
optimization of water management systems [5] to compensate for the scarcity. Showers are
common water consumption behaviors. In China, university students often take showers
in shared shower rooms and pay water fees using their campus cards. It is necessary for
shared shower room managers to forecast the bath water demand (BWD) using parameters
such as the day of the week, hours of opening, weather, and holidays. Therefore, short-term
BWD forecasting is key for efficient campus water management systems. Good operational
and strategic decisions can help improve water distribution performance [3,6]; however,
traditional time-series forecasting methods highlight the role of time without considering
the effects of external factors, including meteorological factors, such as temperature, wind,
and precipitation, and socioeconomic factors, such as population characteristics. Using
machine learning (ML) to extract useful information from data provided by smart campuses,
smart cities, retail, and industrial industries has recently gained popularity [7–9]. Businesses

Water 2022, 14, 1291. https://doi.org/10.3390/w14081291 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14081291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-2452-3466
https://orcid.org/0000-0003-2671-3394
https://orcid.org/0000-0003-4397-1969
https://doi.org/10.3390/w14081291
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14081291?type=check_update&version=2


Water 2022, 14, 1291 2 of 20

use ML to simplify mundane tasks, gain a competitive edge in the market, and increase
earnings. The smart campus is a developed and competitive campus environment that
integrates work, study, and living. It is built on the Internet of Things (IoT) [10]. Smart
campuses have embraced the IoT to automate numerous scenarios, and the data created
by these devices is uploaded (reported) to a cloud server for flow management and data
analysis over the Internet [11,12].

In this study, our analysis was based on data collected from the shared shower rooms
of Capital Normal University (CNU), Beijing, China. Similarly to many campuses in North
China, the use of shared shower rooms open to students is more frequent in the afternoons
and evenings (especially 3:00–10:00 p.m.) at CNU. Therefore, we selected autoregressive
integrated moving average (ARIMA), ARIMA with exogenous input (ARIMAX), random
forests (RF), long short-term memory (LSTM), and neural basis expansion analysis for inter-
pretable time series forecasting (N-BEATS) to build short-term BWD forecasting models and
applied these to shower buildings at CNU. Furthermore, we investigated the performance
of demand forecasting in female and male shower areas. To the best of our knowledge,
this is the first empirical study to use a forecasting technique to develop and evaluate the
performance of machine learning techniques for the forecasting of BWD in shared shower
rooms, considering the majority of articles [13–15] that conduct similar analyses often refer
to total water demand. In addition, our findings in this study imply that there is a potential
for energy savings and the decision making for bath water management may be used to
promote energy savings in the future based on accurate BWD forecasts.

2. Literature Review

Accurate water demand forecasting helps ensure the security, stability, and economic
operation of smart campuses. It is also advantageous in planning reasonable maintenance
arrangements. Many factors can directly or indirectly influence BWD, including the vari-
ables of weather such as rainfall, temperature, and air quality, as well as other factors such
as class schedules, weekends, and national holidays. Climate variables, in particular, have
been frequently used as inputs to multivariate statistical models and machine learning
approaches for modeling and predicting urban water time series [16–19].

According to Koo et al. [20], there are no universal methods for water demand fore-
casting, and forecasting time periods can be categorized as short term (minutes, hourly,
daily, or weekly) [20,21], medium term (yearly, up to 24 months) [22], or long term (2-years,
10-years) [23,24]. Short-term BWD forecasting is beneficial for operational and managerial
decision making, which can decrease overall energy consumption and increase the bath
water quality (especially temperature). ML techniques such as LSTM [25], support vector
machine [26] and random forest [21] have been widely employed to forecast short-term
urban water demand. Accurate and dependable BWD forecasting is critical for bath water
management systems and will aid in numerous elements of short-term planning and deci-
sion making (e.g., the planning of water boiling and pumping). This requires an accurate
and dependable mechanism for BWD forecasting.

Forecasting water demand is a burgeoning subject of research. Numerous researchers
have used both traditional statistical models and machine learning approaches to forecast
water demand. In recent years, increasingly advanced ML techniques and toolkits have
been created to address forecasting issues [27]. In the 2000s, shared showers in universities
in North China began to automate their bath water supply using bath water management
systems. The control logic of the early bath water management systems was rather simple:
they recorded the time of shower room attendance but did not limit bath water consump-
tion, resulting in inefficient energy and water resource consumption. However, the recent
approaches employed by universities, such as IoT devices and smart campus cards [11], are
more accurate and smarter in controlling shower behaviors. Thus, with the accumulation
of bath water consumption data, the operation of the system can be optimized using fore-
casting techniques. Usually, the operators of shared shower rooms make BWD forecasts for
the next day based on their experience and plan bath water boiling and flow control actions
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accordingly, which has always failed to make accurate forecasts. Accurate short-term
BWD forecasting can help to minimize heating and pumping costs while also increasing
consumer satisfaction. Numerous studies have suggested forecasting short-term water
demand using classic statistics, machine learning, and deep neural network (DNN) models.

Linear models were among the first to be widely employed in forecasting water
demand. According to Do et al. [28], an online demand multiplier particle filter can be used
to forecast real-time water demand. The ARIMA model was used by Kofinas et al. [29] to
forecast water demand in cities, with good performance forecasting the monthly average
urban water demand. Wong et al. [30] forecasted Hong Kong’s daily water consumption
using a correlation analysis of meteorological data and calendar impacts. For water demand
forecasting, Hutton and Kapelan [31] found that using the repeated Bayesian likelihood
model improved forecasting accuracy. Quevedo et al. [32] assessed the effects of seasonal
ARIMA (SARIMA) and exponential smoothing models that took calendar effects into
account and showed that they were superior in forecasting water demand when temporal
and daily periods were considered. Furthermore, Patcha et al. [33] demonstrated that
the ARIMAX model with dew point depression and average temperature input plays an
important role in forecasting long-term water consumption rates in Las Vegas.

Candelieri et al. [34] applied a support vector machine (SVM) to forecast water demand
and achieved high generalization ability and efficiency. Brentan et al. [35] forecasted water
demand using a mix of SVM and adaptive Fourier series and obtained better results
than SVM alone. Moreover, ML models, RF models [36], and extreme learning machine
models [37] were seen to be more beneficial than statistical models.

However, studies demonstrate that linear regression methods, when compared to
nonlinear regression models, have certain shortcomings in water demand forecasting due
to the complexity and nonlinear realities of water demand [32,37,38]. Recent research has
showed a strong interest in using neural network models to solve time series forecasting
challenges. Neural networks are composed of many layers of computing units (neurons)
that are connected by connections between the neurons in a layer [39]. A neuron in a
network transforms data by performing the following computations: multiplying an initial
value by a weight, adding the result to additional input values, adjusting the resulting
number for the neuron’s bias, and lastly normalizing the output using an activation func-
tion [40]. After all connections are examined, the bias is a neuron-specific number that has
an impact on the neuron’s value, and the activation function ensures that values are passed
on within a configurable, predicted range. This procedure is repeated until the final output
layer is capable of providing regression scores or predictions. All neurons in a particular
layer provide an output; their weights are not identical to those in the following neuron
layer. This implies that if a neuron on a layer detects a certain pattern, the whole image
may suffer and the neuron may be partially or fully muted. A large weight indicates that
the input is significant, whereas a lower weight indicates that it should be ignored. As a
result, neural networks should be treated as complex systems that reveal complex behavior;
rather than the neurons themselves, it is the interactions between the neurons that enable
the network to learn.

To develop short-term forecasts of water consumption, Vijai et al. [41] evaluated DNN
models with machine-learning techniques. Xenochristou et al. [42] compared forecasts
of daily water consumption using a stacked model and a DNN model. Koo et al. [20]
analyzed the performance evaluations of LSTM and ARIMA with those of ML models
for distinguishing water usage in Korea, and found that the former performed better. In
their study, Kuehnert et al. [25] explored the usefulness of LSTM models for water demand
forecasting and showed that LSTM models outperformed the system in operation by a large
margin. The cutting-edge N-BEATS model has demonstrated outstanding performance
on large-scale time-series challenges. Boris et al. [22], for example, utilized N-BEATS to
forecast mid-term electrical usage and showed that it outperformed statistical and machine
learning approaches.
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Previous studies [15,29,43–48] on water demand forecasting have mainly focused
on total water consumption in urban or residential areas, given that a high proportion
of bath water is hot water, and conservation of bath water has energy and greenhouse
gas conservation benefits [49]. While several researchers have addressed and built water
demand forecasting models, there is a dearth of study on the performance evaluation of
short-term BWD forecasting in shared shower rooms.

3. Materials and Methods

At CNU, during the summer vacation of 2017, the shared shower rooms were equipped
with smart shower taps controllable by IoT devices.

3.1. Study Process

Three steps have been used in evaluating a short-term BWD-forecasting model:
(a) model inputs were derived from pre-processed data obtained from CNU shower rooms;
(b) to suit the real-world management requirements, daily and hourly scale forecasts of
BWD were conducted. Because the data were collected via students’ shower bill history,
bath water usage data were pre-processed by resampling on the target scale; and (c) fore-
casts were made using ARIMA, ARIMAX, RF, LSTM, and N-BEATS. The procedure is
illustrated in Figure 1.
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Figure 1. Diagram illustration of BWD forecasting and performance assessment.

To model and evaluate BWD, the bath water consumption dataset was subdivided
into training, validation, and test subsets. Generally, for the daily BWD forecast purpose,
the test dataset contained points of the last 30 days, the training dataset contained points of
852 days (80% of the dataset) and validation datasets contained points of 213 days (20%
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of the dataset); for the purpose of hourly BWD forecasting, the test dataset contained the
35 points of the last 5 days (shared shower rooms serve 7 h per day), the training dataset
contained 4352 points (80% of the dataset) and validation datasets contained 1088 points
(20% of the dataset). In addition, for the LSTM and N-BEATS models, the data were
scaled to minimize the forecasting bias introduced by Equation (1). The parameters of each
forecasting model were estimated using the training and validation datasets. When the
estimated parameters met the simulation constraints, the validation dataset was used to
forecast the BWD for the following time step. To evaluate performance, we generated the
mean absolute percentage error (MAPE), mean absolute error (MAE), root-mean-square
error (RMSE), and coefficient of determination (R2) values for each model and compared
them to observed consumption data. These operations were performed in all female and
male areas.

x′ =
x−min(x)

max(x)−min(x)
(1)

3.2. Methodology

ML algorithms can discover patterns and solve complicated problems simply by being
fed large datasets. We compared the performances of ARIMA, ARIMAX, RF, LSTM, and
N-BEATS models.

3.2.1. ARIMA

ARIMA is a statistical model, first introduced by Box and Jenkins in the 1970s [50], that
has been employed for solving various types of time-series forecast problems.
ARIMA (p, d, q) is a combination of an autoregressive model (AR), moving average
model (MA) and difference method (I), where p is the order of autoregressive, d is the
differentiation degree and q is the order of the moving average involved.

Because the ARIMA model is concentrated on BWD data, it cannot account for connec-
tions with covariates. The ARIMAX model is created by including exogenous or explanatory
variables in an ARIMA model [51]. Additionally, ARIMAX is used to examine the effect of
external variables on forecasting accuracy.

3.2.2. LSTM

LSTM (long-short term memory neural network) is evolved from the recurrent neural
network. As LSTM can reflect past information, it has been employed to solve various time
series-related problems owing to its excellent performance. Each gate of the LSTM can be
expressed by Equations (2)–(7) [52]; LSTM updates the feature information learned from
the input sequence through forgetting gate ft, input gate it, and output gate ot to retain
useful information from the previous time.

ft = σ
(

W f [ht−1, xt] + b f

)
, (2)

it = σ(Wi[ht−1, xt] + bi), (3)

ot = σ(Wo[ht−1, xt] + bo), (4)

C̃t = tanh(WC[ht−1, xt] + bC), (5)

Ct = ft � Ct−1 + it � C̃t, (6)

ht = ot � tanh(Ct), (7)

where σ is the sigmoid function; for moment t, ht, xt denote the output result and input
vector, respectively; Ct denotes the memory cell; W f , Wi, WC, Wo denotes the weight
matrices corresponding to different control gates; bi, b f , bo, bC denote the bias vectors; tanh
is the activation function.
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3.2.3. Random Forests (RF)

RF refers to a classifier that uses multiple trees to train and forecast samples [53,54]. RF
can be used to perform classification when it bases classification trees, and regression when
it bases regression trees. RF has proven to be an advantageous forecasting model with a
reasonably fast training speed. The RF regression task can be expressed by Equation (8):

f (t) =
1
K ∑K

k=1 Tk(t), (8)

where f (t) is the forecasted value at time t; K is the number of base trees; and Tk is the tree
construct of RF.

3.2.4. N-BEATS

N-BEATS (neural basis expansion analysis for interpretable time series forecasting) is
a deep neural network with several favorable characteristics: it is subject to interpretation,
adaptable to diverse time series scenarios without change, and efficient to train [55]. N-
BEATS is built on backward and forward residual links, as well as a deep stack of fully
connected layers. N-BEATS does not respond to time series feature engineering or input
scaling, and it treats forecasting as a nonlinear multivariate regression task rather than a
sequence-to-sequence problem. As indicated in Equation (9), N-BEATS is composed of
fully connected layers with a ReLU regressor:

hr,l−1 = ReLU(Wr,l xr,l−1 + br,l), (9)

where Wr,l and br,l denote weights and bias, respectively, and x is the input with residual
blocks (r) and layers (l).

N-BEATS also uses the residual concept to stack several layers but improves archi-
tectural interpretability by eliminating backcast output from the next block’s inputs [55].
In comparison to previous DNN models for time series issues, N-BEATS provides an
advantage in terms of interpretability by specifying mapping functions that account for a
variety of factors, such as trend and seasonality.

3.3. Case Study and Data Exploration

In this section, the available data are investigated to obtain a clear picture of the
modeling task at hand. CNU is a comprehensive university in northern China administered
by the Beijing Municipal Education Commission. Education, psychology, linguistics, and
art are key fields of study at this university [56]. There are approximately 30,000 students
divided into six campuses, each with a shower building near their dormitory. Almost all
CNU students reside in school dormitories; therefore, BWD is a crucial component of the
school’s water usage. As shown in Figure 2, every shower building includes separate areas
for men and women. Since CNU’s male-to-female ratio is about 2:6, the female shower
areas are busier and use more hot water than the male sections. Students swipe their
campus ID cards prior to using the shower facility and water consumption is metered by a
flow control device with an LED display next to the shower tap. At the time of study, the
fee for water consumption was set at CNY 0.012/L. After being pumped and kept on top
of the shower buildings, the bathwater is heated and then delivered. Shower rooms are
open from 3:00 pm until 10:00 pm. Like most water demand time series data, bathwater
consumption data are collected from the shower tap controller meter and the data are
reported in real-time transaction-style to the bathwater management system through the
IoT network for data storage and further analysis. For these reasons, short-term BWD
forecasts are critical for the system’s efficient operation.
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In this study, the bath water management system data for four shower buildings at
CNU (Shower building ID: S1, S2, S3, S4) between 1 January 2017 and 31 December 2019
were obtained. A 10 min resample on the target scale was performed to pre-process the
data for the analysis. Table 1 summarizes the daily statistical information for each shower
area retrieved from the data server. Evidently, the part of the campus with shower building
S1 had the highest bath water consumption.

Table 1. Daily statistical information of the BWD data for shower areas.

# Shower Area Mean (L/Day) Min (L/Day) Max (L/Day) Std. (L/Day)

S1
Female 162,191.30 59,559.98 267,326.00 35,371.21
Male 58,067.52 83.60 85,420.80 11,269.02

S2
Female 103,048.70 20,454.41 189,537.10 35,092.80
Male 24,412.12 4520.25 55,264.61 8456.39

S3
Female 74,287.67 139.70 144,388.90 21,161.10
Male 29,347.84 46.25 51,045.32 8405.37

S4
Female 83,279.91 459.80 216,792.40 39,887.07
Male 25,213.56 83.60 53,037.51 12,561.81

Early studies on urban water consumption have revealed that meteorological factors
influence water demand [45,57]. Rathnayaka et al. [44] concluded that shower water use
varies considerably between the seasons of summer and winter. Xenochristou et al. [57]
showed that when weather factors are used as predictors during the summer months, the
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accuracy of water demand forecasting for homes with moderate occupancy and affluent
occupants may be enhanced. In this study, to better forecast BWD, daily meteorological
variables of Beijing, including daily average temperature (DAT), wind velocity (WV), pre-
cipitation (PCT), air quality index (AQI), and particulate matter 10 (PM10), were collected
as covariates. Additionally, because shower rooms are accessible after lunch, we gathered
the daily number of students (LSN) who have lunch at school in this study.

All these covariates are illustrated with the total BWD in Figure 3. In Figure 3a, the
daily total BWD in spring terms (approximately from early March to late June) and autumn
terms (approximately from early September to the next year’s mid-January) are highlighted
with light green and light red backgrounds, respectively, while the unhighlighted portions
indicate school vacations. During teaching days, BWD revealed a seasonal cycle of seven
periods and a term cycle of around 18 weeks. Sharp increases and decreases in BWD
are associated with the start and end of new terms, respectively. BWD showed higher
stationarity during teaching days than during holidays (especially summer vacations and
winter vacations). BWD also varied by day of the week, being lower on Fridays and higher
on Sundays. To determine the significance of the covariates for the BWD, the Pearson
correlation coefficient (PCC) [58] is examined. Results show that the PCC between the LSN
and BWD was approximately 0.74 (Figure 3a,b), implying a strong correlation, while the
PCCs between the BWD and DAT, WV, PCT, AQI, and PM10 are 0.09, −0.13, −0.23, −0.12
and −0.15, respectively, which means that the DAT has a positive relation with the BWD
even though the relationship is weak; while the rest of the weather factors show a negative
relationship with BWD, PCT shows a more negative relationship than the others (WV, AQI
and PM10).

In addition, the hourly BWD of three shower buildings (S1, S2, and S3) was studied
to obtain more information. As seen in Figure 4a–c, the average BWD on Tuesdays was
higher than on other weekdays, while the lowest amount of bath water was consumed on
Saturdays. This reveals that when all other factors are averaged, historical consumption
and weekday appear to be one of the key driving elements, as discovered in [57]. Figure 4e,f
show similar trends for all shower building areas. All subplots shown in Figure 4 imply that
while some students take showers close to the opening time, many students take showers
later in the evening.

3.4. Model Parameterizations

All modeling was performed in Python 3.8 using several Python packages. Pandas [59]
(Version 1.4) was used to pre-process the raw data and Darts [60] (Version 0.16) was used to
build the models for BWD forecasting. The inputs to the models were chosen based on the
examination of the BWD data and covariates, as outlined in Section 3.3, and a grid search
(GS) was conducted on all models to obtain the best performance. The selected inputs are
described in Table 2. As shown in this table, to forecast the value of BWD at time t (Dt), the
inputs of the BWD of the previous n consecutive (Dt−n) points were used. In particular,
for the ARIMA and ARIMAX models, all previous points were used. Together with the
BWD data, for the daily forecast purpose, the ARIMAX, RF, LSTM and N-BEATS models
take the covariates (denoted with Xt−n as inputs) aligned by time index to train the models,
while for the hourly forecast purpose, the covariates were resampled to match the hourly
dimension to train the models.

Originally, the GS is an exhaustive search across a chosen portion of the hyper param-
eter space [61]. The GS method evaluates all possible hyperparameter combinations and
identifies the one that produces the greatest averaged validation score. It is simple and
robust, as it considers all conceivable combinations. GS determined the best parameter set
according to the mean absolute error. To calibrate the LSTM and N-BEATS models, a grid
search was conducted to determine the hyperparameters, including the epoch, number of
layers, learning rate, and batch size, Table 3 shows the parameter space and best parameter
used in this study.
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Table 2. Inputs of modes for daily and hourly time scale.

Models Time Scale Inputs and Outputs 1

ARIMA and ARMIAX
t = daily Dt = model(Dt−1, Dt−2, . . . , Dt−200)

t = 1 h Dt = model(Dt−1, Dt−2, . . . , Dt−200, Xt−1, Xt−2, . . . , Xt−200)

RF
t = daily Dt = model(Dt−1, Dt−2, . . . , Dt−20, Xt−1, Xt−2, . . . , Xt−20)

t = 1 h Dt = model(Dt−1, Dt−2, . . . , Dt−20, Xt−1, Xt−2, . . . , Xt−20)

LSTM
t = daily Dt = model(Dt−1, Dt−2, . . . , Dt−20, Xt−1, Xt−2, . . . , Xt−20)

t = 1 h Dt = model(Dt−1, Dt−2, . . . , Dt−20, Xt−1, Xt−2, . . . , Xt−20)

N-BEATS
t = daily Dt = model(Dt−1, Dt−2, . . . , Dt−20, Xt−1, Xt−2, . . . , Xt−20)

t = 1 h Dt = model(Dt−1, Dt−2, . . . , Dt−20, Xt−1, Xt−2, . . . , Xt−20)

1 X contains all the selected covariates {LSN, DAT, PCT, PM10, WV, AQI, day o f week, is_holiday}.
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Table 3. Search range and optimized hyperparameters for the neural network models (LSTM, N-BEATS).

Model Hyperparameters Value Range Best Hyperparameters

LSTM

Number of layers {1, 2, 3, 4} 2
dropout {0, 0.2, 0.5} 0.2
Learning rate {0.001, 0.01, 0.1} 0.001
Batch size {32, 64, 96, 128} 32
Number of iterations {50, 100, 150, . . . , 500} 100

N-BEATS

Number of stacks {1, 2, 3, 4} 2
Number of blocks making up
every stack {2, 6, 10, 12} 10

Number of layers {1, 2, 3, 4} 2
Learning rate {0.001, 0.01, 0.1} 0.001
Batch size {32, 64, 96, 128} 32
Number of iterations {50, 100, 150, . . . , 500} 100

The method described by Tyralis et al. [62] was used to determine the maximum
number of decision trees. The optimum hyperparameters for DL models were found using
the grid search approach; a mini-batch size of 32; 0.001 (learning rate) and 100 (epochs)
were found to be suitable, and MAE was utilized to measure loss during the model training.
All candidate models were recalibrated for each shower room, since behavior varies among
students in different campuses.

3.5. The Performance Evaluation Statistics

We chose four commonly used criteria to enable statistical analysis of model perfor-
mance to estimate the forecast accuracy of our candidate models: MAPE, MAE, RMSE, and
R2. MAPE and root-mean-square error (RMSE) are two of the most often used statistics
for measuring prediction error. Another kind of statistical indicator is the MAE statistic,
which is used to measure the absolute error between observed and expected values. The
coefficient R2 indicates the degree to which predicted and actual data are linearly connected.
Lower MAPE, MAE, and RMSE values indicate better model fits and larger R2 values (from
−∞ to 1) represent better model performance. The MAPE is defined as in Equation (10):

MAPE =
1
N ∑N

i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣× 100%, (10)

where N is the forecasted number of data points; Yi is the ith observed value; and Ŷi is the
ith prediction value of the model. MAE is defined as:

MAE =
1
N ∑N

i=1

∣∣Yi − Ŷi
∣∣, (11)

and R2 is defined as:

R2 =

(
∑N

i=1

(
Yi − Ỹ

)(
Yi −Y

))2

∑N
i=1

(
Yi − Ỹ

)2
∑N

i=1
(
Yi −Y

)2
, (12)

where Y is the mean of the observations and Ỹ is the mean of the prediction. The RMSE is
defined as:

RMSE =

√
∑N

i=1
(
Yi − Ŷi

)
N

, (13)

The target variable’s MAE and RMSE are stated in the same units.

4. Results and Discussion

Five models (ARIMA, ARIMAX, RF, LSTM, and N-BEATS) are compared based on
four metrics: MAPE, RMSE, MAE, and R2 in this section. For comparison, the results
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of daily and hourly BWD forecasts for each area are presented in Figures 5 and 6 and
Tables 4–8. Daily total BWD forecasts are also presented in terms of the stable supply of
bath water in Figure 7 and Table 9.
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ARIMAX, LSTM, RF, and N-BEATS models, (a,c,e,g) for female rooms, (b,d,f,h) for male rooms.

Table 4. MAPE-based performance evaluation of ARIMA, ARIMAX, LSTM, N-BEATS, and RF models
(bold denotes correct findings for the corresponding shower room).

# Shower 1
MAPE (%)

Area ARIMA ARIMAX LSTM N-BEATS RF

S1
Female 8.29 8.37 5.79 8.23 7.43
Male 7.67 7.52 7.45 8.99 6.44

S2
Female 21.94 13.97 10.16 13.01 9.34
Male 12.31 12.16 27.6 14.65 18.05

S3
Female 13.22 11.96 7.42 8.34 10.38
Male 11.82 10.87 9.36 8.63 10.52

S4
Female 34.19 22.27 7.14 9.90 7.63
Male 19.64 12.73 18.30 7.99 8.79

1 # Shower means the number of shower rooms.
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male areas.

Table 5. RMSE of models (bold indicates the best result for the corresponding shower room and gender).

# Shower
RMSE (L)

Area ARIMA ARIMAX LSTM N-BEATS RF

S1
Female 20,569.21 19,830.92 12,977.03 19,181.15 16,616.80
Male 5608.95 6282.20 5793.31 6962.38 5199.88

S2
Female 29,163.63 17,157.82 14,632.48 18,039.73 13,717.48
Male 2854.41 2577.66 5307.23 3387.84 3757.56

S3
Female 11,805.93 10,773.26 7163.36 8315.55 10,920.38
Male 4148.97 3585.16 3232.50 3460.65 4048.87

S4
Female 28,951.02 18,730.00 6704.90 8543.52 9508.24
Male 5990.95 4210.11 6310.59 3098.15 4088.29
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Table 6. MAE of models (bold indicates the best result for corresponding shower room and gender).

# Shower
MAE (L)

Area ARIMA ARIMAX LSTM N-BEATS RF

S1
Female 15,032.80 15,729.62 10,875.18 14,646.27 13,663.45
Male 4795.09 4605.77 4387.64 5391.32 3973.36

S2
Female 24,890.83 14,267.29 10,316.97 14,189.08 10,020.96
Male 2320.85 2108.56 4826.66 2732.08 2805.59

S3
Female 10,090.04 8686.16 5557.70 6359.35 8409.56
Male 2886.88 2843.58 2441.68 2441.96 2688.29

S4
Female 26,066.49 14,915.52 5500.95 7042.06 5598.26
Male 4400.25 3525.62 5424.42 2317.34 2442.95

Table 7. R2 of models (bold indicates the best result for the corresponding shower room and gender).

# Shower
R2

Area ARIMA ARIMAX LSTM N-BEATS RF

S1
Female 0.13 0.19 0.65 0.25 0.43
Male 0.34 0.17 0.30 −0.02 0.43

S2
Female −0.13 0.61 0.72 0.57 0.75
Male 0.57 0.65 −0.49 0.39 0.25

S3
Female 0.36 0.47 0.77 0.68 0.46
Male 0.56 0.67 0.73 0.70 0.58

S4
Female −0.09 0.54 0.94 0.91 0.88
Male 0.62 0.81 0.58 0.90 0.82

Table 8. Performance assessment with the models in terms of R2 (bold indicates the best result for
the corresponding shower room and gender).

# Shower
R2

Area ARIMA ARIMAX LSTM N-BEATS RF

S1
Female 0.52 0.88 0.75 0.73 0.88
Male 0.20 0.78 0.79 0.70 0.62

S2
Female −0.37 0.57 0.59 0.55 0.04
Male 0.14 0.28 0.21 0.20 −0.59

S3
Female −0.28 0.74 0.85 0.83 0.79
Male 0.49 0.61 0.79 0.77 0.55

S4
Female −0.25 0.68 0.85 0.82 0.21
Male −1.41 0.72 0.85 0.81 0.67

Table 9. Performance assessment for daily total BWD (bold indicates the best result for the corre-
sponding shower room and gender).

Model MAPE (%) RMSE (L) MAE (L) R2

ARIMA 9.72 79,198.60 59,267.82 0.57
ARIMAX 10.99 88,816.73 69,310.27 0.45

LSTM 5.10 47,489.68 32,759.01 0.84
RF 6.27 60,036.64 38,912.98 0.75

N-BEATS 12.08 102,075.70 78,834.88 0.28



Water 2022, 14, 1291 15 of 20
Water 2022, 14, x FOR PEER REVIEW 14 of 21 
 

 

 

Figure 7. Daily total BWD forecast results using ARIMA, ARIMAX, LSTM, RF, and N-BEATS models. 

Table 4. MAPE-based performance evaluation of ARIMA, ARIMAX, LSTM, N-BEATS, and RF mod-

els (bold denotes correct findings for the corresponding shower room). 

# Shower 1 
MAPE (%) 

Area ARIMA ARIMAX LSTM N-BEATS RF 

S1 
Female 8.29 8.37 5.79 8.23 7.43 

Male 7.67 7.52 7.45 8.99 6.44 

S2 
Female 21.94 13.97 10.16 13.01 9.34 

Male 12.31 12.16 27.6 14.65 18.05 

S3 
Female 13.22 11.96 7.42 8.34 10.38 

Male 11.82 10.87 9.36 8.63 10.52 

S4 
Female 34.19 22.27 7.14 9.90 7.63 

Male 19.64 12.73 18.30 7.99 8.79 
1 # Shower means the number of shower rooms. 

  

Figure 7. Daily total BWD forecast results using ARIMA, ARIMAX, LSTM, RF, and N-BEATS models.

4.1. Daily BWD Forecasting

For four shower buildings (S1, S2, S3, S4), eight shower areas (female and male areas),
and the actual and forecast results of daily ahead BWD using the ARIMA, ARIMAX, RF,
LSTM, and N-BEATS models are illustrated in Figure 5a–h. BWD levels in different areas
reflect different pattern characteristics. In terms of bath water consumption patterns, visual
forecasting behavior differs between areas, even when the population, calendar, and climate
factors are considered. The forecasted values were visually similar to the observed values
(except for those with the ARIMA model). The ARIMA model achieved extremely poor
forecast results as seen in Figure 5c,e,g, even with straight lines. Figure 5d shows that
LSTM overestimated BWD. All subplots show that ARIMAX outperformed ARIMA for
daily BWD forecast, which means that external factors affect BWD.

Table 4 summarizes the results of the daily BWD forecasting model. Evidently, the
model with the best performance (MAPE = 5.79%) was LSTM, achieved for the S1 female
area. The model performances of the female areas were better than those of the male areas,
which means that the errors expressed as MAPE were smaller for shower rooms with higher
water consumption. As Lin and Pai [63] proposed, the average MAPE values for industrial
and commercial data may be interpreted as follows: 0% (very accurate forecasting), 10–20%
(acceptable forecasting), 20–50% (decent forecasting), and >50% (inaccurate forecasting).
The results showed that two ARIMA models, two ARIMAX models, five LSTM models, six
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N-BEATS models, and six RF models achieved highly accurate forecasting for all the shower
room areas. The LSTM and N-BEATS models achieved the highest number of accurate
forecasting results, whereas ARIMA and ARIMAX achieved only two accurate forecasts,
both for shower room S1. The MAPE values imply that ML methods outperform statistical
methods (particularly for larger datasets) and can be easily trained to fit more scenarios.

Tables 5 and 6 summarize the RMSE and MAE results for the models. Lower RMSE and
MAE values indicate that the modeled results were closer to the observed values. Table 4
showed the five models achieved highly accurate forecasts for shower room S1; however,
when considering the RMSE and MAE indices, the LSTM model (RMSE = 12,977.03 L,
MAE = 10,875.18 L) achieved the best results for female areas whereas the RF model
(RMSE = 5199.88 L, MAE = 3973.36 L) achieved the best results for the male areas. For
the male area of shower room S3, the N-BEATS model (MAPE = 8.63%) achieved better
performance than the LSTM model (MAPE = 9.36%), as seen in Table 4. Comparing the
RMSE and MAE in Tables 5 and 6, the LSTM model (RMSE = 3232.50 L, MAE = 2441.68 L)
achieved smaller deviation than the N-BEATS (RMSE = 3460.65 L, MAE = 2441.96 L) model.

R2 values varied dramatically amongst shower rooms (Table 7). ARIMA obtained
the lowest values (an average of 0.30 and even two negative values), indicating that BWD
had a large number of random variables and so cannot be anticipated effectively for
smaller regions.

Tables 4 and 7 show that the LSTM (MAPE = 7.42%) and N-BEATS (MAPE = 8.34%)
models of the female area with shower room S3 did not achieve highly accurate results, as
opposed to the ARIMA, ARIMAX, and RF models (an MAPE > 10%). Evidently, results
with high accuracy may be achieved by simply stacking the models with liner regression.

One of the study’s key findings is that machine learning technologies may significantly
increase the management efficiency of CNU’s shared shower rooms. In a machine learning
context, the no free lunch (NFL) theorem [64] implies that if a particular model is isolated
for observation, it will definitely have less error addressing some issues and more error
solving other issues; the results in this study also show that there is no single model that can
be used for all sorts of shower rooms. As a result, it is critical to account for the computing
resources, time, and knowledge necessary to find different ML-models to suit the BWD
forecast for different shower areas.

4.2. Hourly BWD Forecasting

The results of the hourly BWD forecasting for each area are illustrated in Figure 6 and
Table 8 summarizes the R2 metric.

Models based on DNN (LSTM and N-BEATS) forecasted the observed values better
than statistical models (ARIMA and ARIMAX). The mean R2 values in Table 8 indicate
that the LSTM model (avg. R2 = 0.71) achieved the best performance for hourly BWD
forecasts. The ARIMA model achieved the worst performance (avg. R2 < 0), which shows
the weakness of statistical models for forecasting high-resolution time series forecast tasks
by simply using historically observed BWD data; however, the ARIMAX model with
covariates achieved a relatively high average R2 value (avg. R2 = 0.66).

4.3. Daily Total BWD Forecasting

The daily total BWD is important for bath water management. Figure 7 shows the
forecast results for the five models. The forecast results were visually similar to the observed
values for all models, which means that using total BWD may mitigate the impact of the
varying BWD from different areas. Table 9 summarizes the metrics of daily total BWD,
which shows that the LSTM model (MAPE = 5.10%, R2 = 0.84) outperforms the other
models, followed by RF (MAPE = 6.27%, R2 = 0.75). The N-BEATS model (MAPE = 12.08%,
R2 = 0.28) achieved the worst performance. In addition, the ARIMA (MAPE = 9.72%,
R2 = 0.57) model achieved better results than those of the N-BEATS (MAPE = 12.08%,
R2 = 0.28) model, demonstrating that daily total BWD is more stationary for forecasting.
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The choice of the model based on data availability and forecasting goals may signif-
icantly alter the results of the fine forecast (by area and hour). The models in this study
were built using only 3 years of BWD data. Hence, our findings and results are ideal for
situations with limited amounts of data; in contrasting situations, the models may leak
some special events (e.g., rooms maintenance), rendering them incapable of accurate fine
BWD forecasting. However, in terms of the high-accuracy (MAPELSTM = 5.10%) results
summarized in Table 9, daily total BWD forecasting models can be employed to make bath
water budget plans.

In summary, ML-based quantitative BWD forecast models with reasonable accuracy
can be deployed instead of the managers’ empirical BWD estimate to improve bath water
management efficiency; this would allow shower room managers to make better informed
decisions about hot water heating and water pumping schedules, therefore saving energy.
Bathwater heating and pumping can be planned in advance so that there is less water and
energy wasted due to faulty empirical estimates.

Additionally, BWD trends may fluctuate over time, and student preferences may shift
according to the seasons, course schedules or other reasons. Rather than deploying a model
once, the models must be retrained if the data distributions differ considerably from those
of the study’s initial training set.

5. Conclusions

This study explored the potential of the ARIMA, ARIMAX, RF, LSTM, and N-BEATS
models for producing improved BWD forecasts in shared shower rooms for improving
management efficiency, reducing energy and operating costs, and increasing student satis-
faction. Calendar information, meteorological variables, and the number of students who
took lunch were utilized as covariates to enhance the models’ accuracy. The following are
the conclusions of BWD forecasting with machine learning models:

(1) All models achieved good forecasting performance on daily total BWD in terms of
accuracy. The management level of shared shower rooms is improved with accurate
BWD forecasting results. Hence, the cost of heating and pumping bath water can be
reduced. Furthermore, there is a large potential for energy savings as a consequence
of accurate BWD forecasting in advance.

(2) DNN models outperformed statistical models for daily and hourly BWD forecasting,
whereas the LSTM models outperformed other models for high-resolution forecast-
ing tasks.

(3) In the event of a malfunction or sensor failure, missing data can be created using
machine learning models with little resources and time utilizing historical data.

(4) ML techniques can make campuses smarter, such as by forecasting canteen attendance
and network flow consumption.

In summary, ML models can be applied to develop forecasting systems for smart
campuses. In the future, we will work to fetch more external factors that affect BWD and
obtain more BWD data to obtain improved forecasting performance.
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