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Abstract: Freezing and thawing can cause dynamic fluctuations of the groundwater level, resulting
in the migration and retention of LNAPLs. However, this process is difficult to observe visually, and
a suitable simulation method for its quantitative calculation is lacking. In this study, a numerical
simulation is established by coupling the HYDRUS-1D software and the TOUGH program to realize
dynamic simulation of the entire process of soil temperature changes, water migration, water level
fluctuation, and redistribution of LNAPLs during the freeze–thaw process. The results of the study
show that the process of soil freezing and thawing causes water migration, which in turn causes
groundwater level fluctuation, leading to the migration and redistribution of LNAPLs within the
water level fluctuation zone. In this process, the soil particle size and porosity control the response
degree and speed of the water level under freezing and thawing and the spatiotemporal distribution
of LNAPLs by affecting the soil temperature, capillary force, and water migration. The migration
ability of free LNAPLs is determined by their own density and viscosity; the retention of residual
LNAPLs is affected by soil porosity and permeability as well as LNAPL viscosity. The results of
this study can not only be used to develop a simulation method for the migration and retention
mechanism of LNAPLs in cold regions but also serve as a scientific and theoretical basis for LNAPL
pollution control in seasonal frozen soil regions.

Keywords: freeze–thaw process; LNAPLs; fluctuation zone of groundwater level; numerical simulation

1. Introduction

The exploration, development, transportation, and utilization of petroleum are often
accompanied by serious groundwater and soil pollution problems. The main pollutants are
petroleum hydrocarbons in the form of light nonaqueous phase liquids (LNAPLs), which
are carcinogenic and teratogenic to the human body and pose a continuous threat to the
ecological environment [1]. After the pollution of LNAPLs leaks on the surface, under the
action of gravity and capillary force it will gradually diffuse and migrate to the deep layer
of the vadose zone and its surroundings, eventually making it difficult to use groundwater
resources and soil [2,3].

Seasonal frozen soil is a type of soil in which the surface layer is frozen in winter and
thawed in summer. Approximately 30% of the total land area of the northern hemisphere
consists of this type of soil, and there are a large amount of oil and oil fields located in
these seasonal frozen soil areas which are contributing to the pollution of LNAPLs in the
freeze–thaw environment [4,5]. Compared with non-frozen soil areas, seasonal frozen
soil areas experience more than 100 days of surface freezing and thawing processes each
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year. The soil temperature during this process will transmit downward, thereby causing a
large amount of moisture migration in the range above the groundwater level, which is
mainly carried out in the vertical direction [6–10]. The drastic changes in water content
and heat will become involved in the process of temperature-dependent redistribution of
LNAPLs in the groundwater level fluctuation zone, and will result in more complicated
migration and retention of LNAPLs [11–15]. Ignoring the important effects of freezing and
thawing on the dynamics and distribution of LNAPLs will result in significant deviations
in the assessment results of the damage, diffusion range, and remediation efficiency of
the LNAPL pollution in the groundwater and soil [15,16]. This will severely restrict the
rationality of LNAPL pollution prevention and control planning, control objectives, and
remediation plans in seasonal frozen soil areas. Therefore, it is necessary to focus on the
freeze–thaw environment and study the migration law of LNAPLs in the groundwater
level fluctuation zone.

Monitoring LNAPLs in the underground environment in cold regions is difficult;
for this reason, numerical simulation has become a relatively effective method [17–19].
Currently, scholars have established advanced research on the simulation of water and
heat transfer in the freeze–thaw process, but the existing research does not consider both
the freeze–thaw process and the migration and retention law of LNAPLs in the water
level fluctuation zone [17–34]. There is no single piece of software that can simulate the
entire process of soil temperature changes, water migration, water level fluctuation, and
redistribution of LNAPLs during the freeze–thaw process [20–22]. And in order to solve
more complicated simulation problems than the water and heat transfer under freezing
and thawing, it is essential to establish a coupling model [23–26]. To study the migration of
LNAPL with the change of water levels under freezing and thawing, the established model
needs to couple the water and heat transfer under freezing and thawing and the dynamics
of LNAPL with the water level.

In existing research, the water and heat transfer in the freezing and thawing process of
the coupled model is mainly simulated by HYDRUS [23–26]. Compared with other finite
element numerical codes for simulating freezing and thawing processes such as FEFlow
and OpenGeoSys [27–35], HYDRUS is more suitable for freeze-thaw simulation in coupled
models. This is because the HYDRUS model can be used for both direct problems and
inverse problems when certain parameters are calibrated from observation data, which
is very important for the fitting of coupled models [30]. And for soil hydrodynamics and
heat conduction, HYDURS-1D is also the most satisfactory [31,32]. Ce et al. [23] developed
a fully coupled numerical module and incorporated it into the Hydrus-1D software to
simulate the simultaneous movement of water, steam and heat during freezing and thawing,
and the simulation result restores the moisture and temperature data of the frozen site
well. However, for LNAPLs in the fluctuation zone of water levels in seasonal frozen soil
regions, relying solely on the HYDRUS model can only reflect the changes in the water
level and temperature with freezing and thawing and does not elucidate on the migration
and retention of LNAPLs during water level fluctuations.

Meanwhile, TOUGH is the most suitable numerical simulation method for studying
the migration process of LNAPLs [36–38]. Tao et al. [39] used the T2VOC module in the
TOUGH2 program and constructed a numerical model to simulate the migration and
redistribution of LNAPLs after they leak from the surface. The results showed that water
level fluctuation will affect the continuous migration of LNAPLs; further, the pollution level
will expand in the vertical and horizontal directions until it reaches the entire water level
fluctuation zone, and the structural complexity of the polluted area will increase. Yang [40]
used the TMVOC module in the TOUGH program to discover that water level fluctuations
lead to the mutual displacement of the water, gas, and NAPL phases in the porous medium,
and the saturation of the three phases shows a complementary relationship between growth
and decline. Dafny [41] used the TMVOC module to quantify the distribution, partitioning,
and fate of NAPL in the vadose zone. However, because the TOUGH model has limitations
in the simulation of multiphase flow in sub-zero temperature environments, this type
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of research can only focus on the migration of LNAPLs in the water level fluctuation
zone under normal temperature environments and is not suitable for seasonal frozen soil
regions [42–45].

Based on the foundation and deficiencies of related research, in this study, HYDRUS-
1D, which can simulate the water and heat transfer in the freeze–thaw process [46], is
coupled with the TOUGH program, which can simulate the distribution of LNAPLs with
water level fluctuation. Through this coupled simulation method, under the conditions of
different media and different types of LNAPLs, the migration and retention law of LNAPLs
with the water level fluctuation during freeze–thaw periods is comprehensively analyzed,
and the factors affecting it are evaluated. This research is expected to provide the theoretical
methods and promotional basis for the numerical simulation of LNAPL migration in the
water level fluctuation zone of seasonal frozen soil regions as well as serve as a reference
for pollution evaluation, management, and the restoration of LNAPLs.

2. Materials and Methods
2.1. Soil Column Experiment of Water and Heat Transport

The equipment used in the experiment consists of a freeze–thaw cycle box, a refriger-
ation system, moisture content and temperature probes, a pressure measuring tube, and
a water supply system with a constant water head. The experimental setup is shown in
Figure 1.
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Figure 1. Schematic diagram of the experimental setup.

The test soil column is a plexiglass container with a height of 30 cm, and medium
sand (average particle size 0.5–0.2 mm) was selected as the representative test medium. A
water supply pipe and a Markov bottle were used to supply water at a fixed head to the
soil column, and the initial water level was set to 16 cm from the top of the soil.

A total of five monitoring holes were set on the wall of the column at an interval
of 4 cm to monitor the soil temperature and moisture content in the soil column in real
time. Each monitoring hole is equipped with a CR300 soil temperature and humidity
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sensor. The piezometer reading was periodically taken to obtain the dynamic data of the
water level. After the start of the experiment, the piezometer is read every 10 min, and the
temperature and water content are automatically monitored and outputted every 2 min
through the sensor.

The experimental soil column was placed in the freeze–thaw cycle box, which adjusts
the temperature around the soil column to be constant at 2 ◦C. The temperature control
cover on the top of the soil is used to control the freezing and thawing of the soil from the
top to the bottom in stages. The minimum temperature in the freezing period is −35 ◦C,
and the temperature in the thawing period is 5 ◦C. The temperature control process is
shown in Figure 2.
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Figure 2. Freeze–thaw temperature control process.

The resulting data from the soil column experiment will be used to adjust and fit
the parameters in the subsequent HYDRUS-1D model. Taking the empirical value of the
hydrothermal parameters in HYDRUS-1D as the initial value [46], the hydraulic parameters
related to the soil hydraulic conductivity in the medium sand obtained by adjusting and
fitting are shown in Table 1, and the parameters related to the soil heat conductivity are
shown in Table 2. And for the data of the soil column experiment, please refer to Table S1
in the Supplementary Materials.

Table 1. Soil hydraulic parameters.

Parameter θr (cm3/cm3) θs (cm3/cm3) α (cm−1) n K (cm/s) l

medium sand 0.040 0.300 0.094 2.05 9.72 × 10−3 0.5

Table 2. Soil thermodynamic parameters.

Parameter Solid Org. DL (cm2·s−1) b1 b2 b3

medium sand 0.59 0.00 5.00 1.06376 × 1012 −1.12254 × 1010 2.48832 × 1011

2.2. Model Method

HYDRUS-1D and TOUGH are coupled to establish a model to simulate the effect of
the freeze–thaw cycle on temperature, moisture migration, water level fluctuation, and
LNAPL migration and retention. The coupling process mainly considers the consistency
of temperature and water level between the two codes. The simulation range of the
HYDRUS-1D model is from the top of the soil column (0 cm) to 20 cm below, and the
initial groundwater level is located 16 cm below the column surface. The upper and lower
boundaries of the water flow are zero flux boundaries, and the upper and lower boundaries
of heat transfer are temperature boundaries that change with time. Since TOUGH is not
suitable for simulation at a temperature below 0 ◦C, the TOUGH simulation range is the
area within −10 cm to −30 cm in the soil column experiment, and the soil temperature
change within this depth range is consistently above 0 ◦C. And order to comply with the
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aforementioned soil column experiment and the HYDRUS-1D numerical model, the top
is set as the Dirichlet boundary, with constant atmospheric pressure, no water infiltration,
and zero water flux. The bottom is set as a waterproof boundary condition. The initial
temperature of the topper and lower are set to 6.55 ◦C and 7 ◦C, respectively, according to
the experimental results, and the temperature changes with time during the simulation.
And since the heat and water migration in the freezing and thawing process are mainly
reflected in the vertical direction, the boundary conditions in the coupling model are
assumed to be horizontally closed [6–10].The left boundary (x = 0–0.05 m) and the right
boundary (x = 0.85–0.90 cm) of the simulation area are both physical boundaries, which are
set as zero flux boundary conditions [39].

Coupled simulation is achieved through the transfer of heat and water volume time
by time between HYDRUS-1D and TOUGH, and the temperature and water content at
each depth are verified by measured data. The interface for the water flux interaction of the
coupled model is the layer above the water level fluctuation in the TOUGH model. In order
to realize the mutual coupling of water flow, 16 cells in this layer are used as the water
injection and pumping cells to control the water level changes, and the changed flux is
entered into the source and sink of the cell. Figure 3 shows the water level control obtained
by TOUGH. On the other hand, the interaction of heat in the coupled model is achieved
jointly by each layer of cells in TOUGH. The heat source–sink items are added to each cell
after the division in TOUGH, and the corresponding conversion relationship between the
rate of heat addition and the temperature change at each representative layer is calculated.
Thus, the coupling of water and heat between the two models is realized.
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In the water and heat transfer model, The modified Richards’ equation [43] is used as
the basic equation of water migration:

∂θu(h)
∂t

+
ρi
ρw

∂θi(T)
∂t

=
∂

∂z

[
KLh(h)

∂h
∂z

+ KLh(h) + KLT(h)
∂T
∂z

+ KVh(θ)
∂h
∂z

+ KvT(θ)
∂T
∂z

]
− S (1)

where θu is the volumetric unfrozen water content (L3 L−3) (= θ + θu), θ is the volumetric
liquid water content (L3 L−3), θv is the volumetric vapor content expressed as an equivalent
water content (L3 L−3), θi is the volumetric ice content (L3 L−3), t is time (T), z is the
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spatial coordinate positive upward (L), ρi is the density of ice (M L−3) (931 kg m−3), ρw
is the density of liquid water (M L−3) (approximately 1000 kg m−3), h is the pressure
head (L), T is the temperature (K), and S is a sink term (T−1) usually accounting for
root water uptake. Water flow in Equation (1) is assumed to be caused by five different
processes with corresponding hydraulic conductivities. The first three terms on the right-
hand side of Equation (1) represent liquid flows due to a pressure head gradient (KLh,
[LT−1]), gravity, and a temperature gradient (KLT, [L2 T−1 K−1]), respectively. The next
two terms represent vapor flows due to pressure head (Kvh, [LT−1]) and temperature (KvT,
[L2 T−1 K−1]) gradients, respectively.

The soil hydraulic conduction module uses the Van Genuchten–Mualem equation,
which is generally recognized in soil water calculations. The basic equation of soil heat
transfer [28] is given as follows.

∂CpT
∂t

− L f ρi
∂θi
∂t

+ L0(T)
∂θv(T)

∂t
=

∂

∂z

[
λ(θ)

∂T
∂z

]
− Cω

∂qlT
∂z

− Cv
∂qvT

∂z
− L0(T)

∂qv

∂z
− CωST (2)

where the first term on the left-hand side represents changes in the energy content, and the
second and third terms represent changes in the latent heat of the frozen and vapor phases,
respectively. The terms on the right-hand side represent soil heat flow by conduction,
convection of sensible heat with flowing water, transfer of sensible heat by diffusion of
water vapor, transfer of latent heat by diffusion of water vapor, and uptake of energy
associated with root water uptake, respectively. The phase change between water and ice is
controlled by the generalized Clapeyron equation, which defines a relationship between
the liquid pressure head and temperature when ice is present in the porous material [32].
Hence, the unfrozen water content can be derived from the liquid pressure head as a
function of temperature alone when ice and pure water coexist in the soil [43]. Further, ice
volume fraction is determined by the difference between initial water content and liquid
water content. The volumetric heat capacity of the soil, Cp (J m−3 K−1, M L−1 T−2 K−1), in
Equation (2) is defined as the sum of the volumetric heat capacities of the solid (Cn), liquid
(Cw), vapor (Cv), and ice (Ci) phases multiplied by their respective volumetric fractions:

Cp = Cnθn + Cwθ + Cvθv + Ciθi (3)

Furthermore, in Equation (2), Lo is the volumetric latent heat of vaporization of
water (J m−3, M L−1 T−2), Lo = Lw ρw, Lw is the latent heat of vaporization of water
(J kg−1) (=2.501 × 106 − 2369.2 T [◦C]), and Lf is the latent heat of freezing (J kg−1, L2 T−2)
(approximately 3.34 × 105 J kg−1).

In the simulation of LNAPL migration and retention with water level fluctuation, the
mass and energy conservation equations [37] are used as the basic governing equations
of the components in the multiphase flow (i.e., water, gas, and NAPL phases). Parker’s
equation [39] is used as the relative permeability coefficient equation in the multiphase
flow problem. Van Genuchten’s equation [39] is used as the capillary pressure governing
equation of the NAPL–water phase. Finally, the migration and flow equation of free
LNAPLs in the soil medium [38] is shown in Equation (4).

∂

∂t
(ϕSNρN) = − ∂

∂x
(ϕSNρNV)− ∂

∂z
(ϕSNρNV) + I (4)

where φ is the porosity, SN is the NAPL phase saturation, ρN is the NAPL phase density,
and V is the Darcy flow velocity of the immiscible phase. The last term I on the right side of
the equation is the source (sink) term (=ρNQN + E), QN is the volume of NAPL existing or
leaked in the unit time, and E represents the mass exchange between phases. Such source
and sink terms are not considered in this model, so I = 0.
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3. Results
3.1. Law of Soil Water and Heat Transfer during Freezing and Thawing

During the freeze–thaw experiment, the water content within 4 cm of the top of the
soil column changes drastically, becoming weaker with increasing depth (Figure 4(c1)).
This is mainly related to the mutual transformation of the water and ice phases. During
the freezing process, as shown in Figure 4(b1,c1), the upper part of the soil body freezes
first, decreasing the water content. The negative temperature transfers from top to bottom
and the water migrates upward, causing the water level to drop, as shown in Figure 4(d1).
In the process of melting, the ice phase on the upper part of the soil melts, the water
content increases, and the water moves downward, which increases the groundwater
level. The HYDRUS-1D model also shows the changes of temperature, water content
and water level in the medium-sand medium during the freezing and thawing process
(Figure 4(a’2–d’2)), and its water and heat transfer law is consistent with the results of the
soil column experiment: Moisture migration due to freezing and thawing of the upper soil
is responsible for changes in the water table.
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As shown in Figure 4(1,2), In the HYDRUS-1D model, the changes of soil temperature
and water content at each depth are similar to the soil column experiment results. Although
the water level changes stepwise, the overall trend and range of change are consistent with
the soil column experiment results. In order to evaluate the accuracy of the Hydrus-1D
model, two indicators, the percentage of deviation (PBIAS) and the root mean square
error (RMSE), were used to quantitatively evaluate the simulation data of HYDRUS-1D for
medium-sand media. The PBIAS absolute value of the water level and temperature data
in the HYDRUS-1D model is less than 10%, and RMSE is within 0.6, indicating that the
water level and soil temperature simulation results are good, and they are overall consistent
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with the experimental results and have high accuracy. Figure 5a–f show the changes in the
water level and temperature obtained by the HYDRUS-1D model with different media. The
response rate of soil temperature conduction and water level to the freeze–thaw process is
in the order of silty clay > fine sand > medium sand > coarse sand. Compared with the
other three media, the soil temperature at the middle depth level of silty clay responds
more quickly to the temperature changes in the upper part of the soil. This is because
the soil solid particles are arranged closer together, allowing the upper temperature to
diffuse downward during the freeze–thaw process [16] and thus improving the overall heat
transfer properties of the soil. Moreover, because the temperature of silty clay soil changes
rapidly, the capillary force of the upper part of the soil also changes faster, and the time of
drop and rise of the water level is earlier than that in the case of coarse sand, medium sand,
and fine sand.
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The magnitude of the water level change in different media is in the order of fine
sand > silty clay > medium sand > coarse sand. For the same temperature gradient, the
smaller the particle size of the soil, the better is its water holding capacity and the greater is
the capillary force produced during freezing. Therefore, in the freezing process, the amount
of water migration on the soil profile in the fine sand medium is greater than that in the
medium sand and coarse sand, which increases the water level change.

Compared with fine sand, silty clay has smaller particles; however, owing to its lower
residual moisture content and greater soil porosity, silty clay has lower capillary force
generated during the freeze–thaw process. Consequently, the water migration and the
water level fluctuation range on the soil profile are smaller than those in the case of fine
sand. In addition, the water level change range in silty clay is larger than that in coarse
sand and medium sand. The reason is similar to that for fine sand: the smaller the soil
particle size, the better is the water holding capacity and the greater is the capillary force
generated during freezing.

Taken together, in the same temperature gradient, the capillary force generated by the
medium during the freeze–thaw process and the thermal conductivity of the medium are im-
portant factors that affect the water migration, range, and speed of the water level change.

3.2. Migration and Retention Process of LNAPLs Affected by Freezing and Thawing

Figure 6 shows the migration and retention of LNAPLs with water level fluctuation
(TOUGH model with toluene as the LNAPL and medium sand as the medium). The
residual saturation of the LNAPL phase is 0.05; therefore, when the saturation is less
than 0.05, the LNAPLs will remain under the control of capillary force and transform
into a residual state. As the water level drops, the free-state LNAPLs migrate downward;
simultaneously, their saturation continues to decrease and gradually expands to the entire
level in the horizontal direction. When the LNAPLs drop to the lowest position with
the water level, a part of the LNAPLs with saturation close to 0.05 are distributed in the
descending range. This indicates that a considerable part of the free-state LNAPLs changes
into the residual state and remains in the process of the water level drop. In addition, there
are some LNAPLs below the water level during the water level drop. This proves that
LNAPLs will preferentially displace water when the water level drops [40].
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When the water level rises, the free LNAPLs also rise with the water level, and, at
the same time, their saturation continues to decrease. In this process, residual LNAPLs
continuously stay below the groundwater surface. Therefore, the drop and rise of the water
level during the entire freeze–thaw process will cause the original LNAPLs to undergo a
significant redistribution process. Furthermore, the pollution range of LNAPLs continues
to expand both vertically and horizontally with decreasing water level, while the pollution
range of the area above the initial water level increases as the water level increases. During
the whole process, the vertical fluctuation range of the water level is approximately 3.3 cm,
and the vertical pollution range caused by the migration and retention of LNAPLs is
approximately 6 cm.

Taken together, the mechanism of the freeze–thaw process on the migration and
retention of LNAPLs is as follows: soil temperature changes cause water phase changes,
resulting in water migration, which in turn causes water level fluctuations and the migration
and retention of LNAPLs within the water level fluctuation zone. The temperature at the
top of the soil is the most fundamental controlling factor in this process. During the
freeze–thaw cycle, when LNAPLs rose and fell with the water level, a considerable part of
the LNAPLs was retained and transformed into a residual state. Therefore, the effect of
retention cannot be ignored. Both migration and retention effects lead to the continuous
expansion of the pollution range of LNAPLs in the water level fluctuation zone, resulting in
the redistribution of LNAPLs with the water level. Therefore, compared with that in areas
not affected by freeze–thaw, the pollution range of LNAPLs in the water level fluctuation
zone will be larger in the seasonal frozen soil area.

3.3. Analysis of Factors Affecting the Migration of LNAPLs

After successfully simulating the migration and retention model of LNAPLs in the
freeze–thaw water level fluctuation zone by combining HYDRUS-1D and TOUGH, the
model is extended to different media conditions and different types of LNAPLs to study
their effect on the migration and retention of LNAPLs. Table 3 shows the comparison of
model results with different media conditions and different types of LNAPLs.

The response of water level and LNAPL position to temperature changes during
freeze–thaw is affected by the medium condition; the response speed in different media
is in the order of fine sand < silty clay < medium sand < coarse sand. This indicates that
the smaller the soil particles, the smaller the porosity. That is, with closer arrangement of
the soil particles, the heat conduction properties of the soil improves and the hysteresis of
the soil temperature change at the middle depth of the soil decreases. As a result, water
migration can quickly respond to changes in the top surface temperature of the soil during
the freeze–thaw process, and the start of the fluctuation of free LNAPLs near the water
level occurs earlier.
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Table 3. Comparison of influencing factors.

Influencing Factors
Corresponding
Time of Water

Level Change/h

Water Level
Fluctuation
Range/cm

LNAPLs
Pollution
Range/cm

The Speed of
Migration of

LNAPLs

Maximum Saturation of
LNAPLs after
Freeze-Thaw

Media

coarse sand 9.300 1.210 4 cm fast 0.227
Medium sand 7.540 3.300 6 cm slow 0.145

Fine sand 7.380 5.250 8 cm Extremely slow 0.115
Silty clay 7.510 4.250 7 cm slow 0.195

LNAPLs
Toluene 7.540 3.300 6 cm slow 0.145

Chloroethane 7.540 3.300 6 cm fast 0.134
Ethylbenzene 7.540 3.300 6 cm slow 0.15

The water level fluctuation and the final pollution depth range of LNAPLs in different
media are in the order of fine sand > silty clay > medium sand > coarse sand. This
phenomenon should be related to the porosity of the soil. The smaller the porosity of the
soil, the greater is the capillary force generated in the unsaturated zone during freezing,
resulting in the increase of the amount of water migration on the soil profile as well as the
ranges of water level fluctuation and LNAPL pollution.

The rate of LNAPL migration and expansion is related to the porosity, permeability,
and properties of the medium. With higher porosity and permeability of the soil or lower
viscosity of LNAPLs, the migration speed of LNAPLs as well as the distribution thickness of
free-state LNAPLs that can move with the water level increase. Conversely, with lower soil
porosity and permeability or greater viscosity of LNAPLs, the migration speed of LNAPLs
in the vertical direction decreases and more LNAPLs will expand and be retained in the
lateral direction. Thus, the maximum saturation of LNAPLs becomes lower at the end of
the freeze–thaw process. Therefore, at the lowest water level, in the fine sand medium with
the least porosity, the residual LNAPLs near the initial position have the largest retention
range. Among different LNAPLs, there is less residual chloroethane in the initial position
because of the lower viscosity of chloroethane.

In addition, some LNAPLs exist below the water level during the freezing period,
and from the perspective of saturation, this part of the LNAPLs is not in a stagnant state.
This is possibly because LNAPLs will preferentially displace water when the water level
decreases [42]. In each medium, this part of LNAPLs does not have much difference
in the range below the water level; however, comparing the three LNAPLs, the denser
chloroethane has a wider range below the water level. Therefore, LNAPLs with high
density can more easily displace water below the water level.

In the same TOUGH model, each medium is simulated at a constant temperature,
only changing the non-isothermal mode to the isothermal mode. The soil temperature was
constant at 22 ◦C, with no change in other conditions such as the water level. The results of
isothermal simulation are compared with the results during the freeze–thaw process. The
comparison is shown in Table 4.

Table 4. Comparison of LNAPL migration status during isothermal and the freeze–thaw process.

Medium LNAPLs Contamination Range
(Isothermal/Freeze-Thaw)

Status of LNAPLs Near the
Water Level

Maximum LNAPLs Saturation
(Isothermal/Freeze-Thaw)

coarse sand 4.3 cm/4 cm similar 0.137/0.127

Medium sand 6.2 cm/6 cm similar 0.161/0.145

Fine sand 8.0 cm/8 cm similar 0.130/0.115

Silty clay 7.0 cm/7 cm similar 0.214/0.195

The migration distribution and pollution range of LNAPLs in both isothermal and
non-isothermal models do not show any considerable difference. The only difference is that
the maximum saturation of LNAPLs in the isothermal condition is approximately 0.01–0.02
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larger than that during the freeze–thaw process; this difference is relatively small. This
confirms that temperature does not directly control the migration and retention of LANPLs,
but indirectly leads to the redistribution of LNAPLs by affecting water level changes.

4. Conclusions

In this study, the HYDRUS-1D software and TOUGH program were combined to suc-
cessfully establish a migration and retention model of LNAPLs with water level fluctuation
under the effect of the freeze–thaw cycle. This model can thus be applied to study the
interaction mechanism of freezing and thawing temperature-dependent LNAPL redistribu-
tion in the water level fluctuation zone. Based on this model, the migration models under
different media, LNAPLs, and temperature conditions were established. The following
conclusions can be drawn:

(1) The temperature changes during freezing and thawing is the most fundamental
factor controlling the migration of LNAPLs in the water level fluctuation zone. The
LNAPLs near the water level during the freeze–thaw process migrate or remain with
the fluctuation of the water level. Thus, the pollution range and diffusion degree
of LNAPLs in the seasonal frozen soil area are greater than those in the non-frozen
soil area.

(2) The particle size and porosity of the medium as well as LNAPL composition type are
the main factors that affect the migration of LNAPLs. In general, the finer and more
closely packed the medium particles, the faster is the response of soil temperature
and water level changes to freezing and thawing. The smaller the porosity, the greater
is the capillary force generated above the water level during the freeze–thaw process
and the greater are the amount of water migration, the amplitude of the water level,
and the migration and diffusion range of LNAPLs. By contrast, the composition type
of LNAPLs determines their retention process and phase change.

(3) The coupling model in this study can provide a simulation method for the analysis
of the migration and retention of LNAPLs in the water level fluctuation zone of
seasonal frozen soil regions. The research results on the migration and retention
mechanism and the factors affecting LNAPLs can be used as a theoretical basis for
LNAPL pollution evaluation and treatment in areas subjected to freeze–thaw cycles.
Considering that T2VOC lacks simulation functions for chemical adsorption and
microbial degradation processes, the effect of temperature on chemical and biological
processes is not reflected and requires further research.
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