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Abstract: Oil spill events are one of the major risks to marine and coastal ecosystems and, therefore,
early detection is crucial for minimizing environmental contamination. Oil spill events have a unique
appearance in satellite images created by Synthetic Aperture Radar (SAR) technology, because they
are byproducts of the oil’s influence on the surface capillary, causing short gravity waves that change
the radar’s backscatter intensity and result in unique dark formations in the SAR images. This
signature’s appearance can be utilized to monitor and automatically detect oil spills in SAR images.
Although SAR sensors capture these dark formations, which are likely connected to oil spills, it is hard
to distinguish them from ships, ocean, land, and other oil-like formations. Most of the approaches
for automatic detection and classification of oil spill events employ semantic segmentation with
convolutional neural networks (CNNs), using a custom-made dataset. However, these approaches
struggle to distinguish between oil spills and spots that resemble them. Therefore, developing a
tailor-made sequence of methods for the oil spill recognition challenge is an essential need, and
should include examination and choice of the most effective preprocessing tools, CNN models, and
datasets that are specifically effective for the oil spill detection challenge. This paper suggests a
new sequence of methods for accurate oil spill detection. First, a SAR image filtering technique was
used for emphasizing the unique physical characteristics and appearance of oil spills. Each filter’s
impact on leading CNN architectures performances was examined. Then, a method of a model
ensemble was used, aiming to reduce the generalization error. All experiments demonstrated in this
paper confirm that using the sequence suggested, in comparison to the common formula, leads to a
4.2% of improvement in the intersection over union score (IoU) for oil spill detection, and a 9.3% of
improvement in the mean IoU among several relevant classes.

Keywords: convolutional neural network; image filtering; pre-processing; oil spill detection; SAR
imagery; semantic image segmentation; ensemble modeling; marine oil spill

1. Introduction

Oil spills are a serious concern for the ecosystem of shorelines and reefs due to the
damage they cause. They can severely harm the coastal ecology, causing water pollution,
which takes effort to clean, and poisoning marine life [1], which may have an indirect
effect on habitats in which plants and animals live [2]. Moreover, marine oil spills have
major economic and social impacts, such as imposing costs and negative impacts on
fishing and marine industries [3]. The oil spill phenomenon is widespread; according
to [4], between 1970 and 2010, approximately 5.71 million tons of oil were leaked from
ships. Thus, there is a major international focus on finding solutions for detecting and
minimizing these events, and especially identifying methods of minimizing response time
and enhancing the detection accuracy of oil spill recognition. The main challenge is to
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overcome the misclassification of similar-looking dark spots using Synthetic Aperture
Radar (SAR) images.

SAR sensors are mainly used to monitor and capture the marine status and events.
SAR is a microwave-based technology that emits radio waves and receives their reflection,
thereby capturing a representation of the target scene, widely referred to as SAR images [1].
Sentinel-1A, launched by the European Space Agency (ESA), is a widespread source
for images used in marine remote sensing systems. Two identical SAR satellites with
programmable polarizations continuously provide data on oceans, land changes, ships,
and oil. The data from the Sentinel-1 SAR repository is free and available for registered
users through ESA’s Sentinel-1 Internet data hub. This dataset was chosen for examination
and comparison of our method’s performances since it has been used in both research
studies and operational use for detecting ocean surface events [5]. However, there are
still challenges in using SAR images to detect oil spills despite the vast amount of data
SAR provides.

One of the main challenges in oil spills detection is the high frequency of false oil
detections, referred to as ‘oil look-alikes’. Both oil spills and oil look-alikes appear as dark
features in the SAR image, unlike more bright water and other ocean or land features. Oil
spills influence the surface capillary, causing short gravity waves, which change the radar’s
backscatter intensity and thus creating dark formations [6]. Although the appearance of
these dark oil spills features is rare, similar dark features also appear in the SAR images,
such as grease ice, current shears, internal waves, wind shelters, and unknown objects [3].
To date, research on this challenge has been handled by creating a new class, known as
Oil Look-Alike, so any non-oil spill dark spot is labeled as Oil Look-Alike. One of the
consequent method challenges is developing a semantic segmentation system that can
distinguish between oil spills and oil look-alikes.

The content used for oil spill detection captured by SAR sensors also contains ships,
ocean, and land appearances, which have been found to be elements that can indicate the
likelihood of an oil spill event in their area. Thus, by designing an automatic detection
model that can classify them, the overall detection of oil spills may also be improved. A
neural network that can help the early detection of oil spills, both in a specific region and in
general, can alert relevant authorities earlier and hasten the response to such disasters. As
part of the suggested detection sequence, this research proposes using deep neural network
learning models aimed at analyzing SAR image datasets, which can help in decision making
via the semantic segmentation of ocean oil spill classification.

Some previous results have shown that using convolutional neural networks (CNNs)
outperformed classic signal processing techniques used solely in many tasks and applica-
tions [7]. CNNs can be trained in an end-to-end fashion for mapping an input image to
the desired output. This knowledge can be generalized to classify new unseen SAR image
segmentations. By leveraging the ability of CNNs to be re-trained using a dataset specified
for the oil spill detection challenge, a new state-of-the-art method to detect oil spills may be
achieved, compared to the classic methods of pattern recognition [8], which tend to be more
domain specific [9]. We believe that in addition to using only CNNs, combining them with
classic image processing techniques can lead to better and more accurate performances
than the current state-of-the art techniques. For comparison and performance evaluation,
our methods were applied to extensive experiments on the Oil Spill Detection Dataset,
which was also used in a 2019 study by Krestenitis et al. [10]. This dataset is split into
1002 images designated for training, and another 110 images designated for testing the
evaluation and for comparison.

The CNN training process requires a large and varied dataset of images for oil spill
automatic recognition but, in its original form, the SAR dataset we examined does not
contain enough images. Therefore, we implemented image augmentation methods on the
training dataset [11]. In data analysis, data augmentation refers to strategies that increase
the quantity of data by adding slightly changed copies of current data or creating new
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synthetic data from existing data. When training a machine learning model, these added
samples work as a regulator to alleviate overfitting [12].

Oil spills’ special appearance has unique physical characteristics on SAR images.
Attempting to differentiate oil spills from oil look-alike backscatter intensity, methods that
enhance and distinguish oil spills’ characteristics from other phenomena were searched
for. As a result, we found that adding traditional image filtering as a pre-processing step
outperforms CNNs’ baseline form.

In a previous work, an attempt to include a speckle filter followed by a median
filter was examined [10], without intensifying the disparities between the labels. Another
study [13] has suggested using image filtering prior to the CNN step, while using different
datasets, by applying the Refined Lee Filter for noise reduction. A study also tested
threshold segmentation techniques on the results [14], which enhanced the appearance of
oil spills and oil look-alikes while resulting in the loss of valuable information from the
original images

Although there have been several attempts to use the combination of both classic image
filtering methods and CNNs for accurate results in the oil spill detection challenge, many
of these have caused information loss, while look-alike misclassifications have remained
a problem. We hypothesized that the classification of actual oil would be improved by
focusing on examining filters and methods based on specifically emphasizing the physical
unique characteristics of oil spills in SAR images, that would differentiate them from
oil look-alikes, without causing a significant information loss. Since this theory has not
been observed yet, we used a variety of image filters on the dataset, including histogram
equalization and contrast stretching. The filters used overcome both information loss and
misclassification challenges.

Our goal was to create a systematic sequence of methods, including the use of CNN
architectures for the semantic segmentation step, and use several classic image processing
methods adjusted for each label’s most accurate detection, all combined with an ensemble
model and applied to the dataset. Specifically, the application of image filters to the dataset
was examined, such as histogram equalization and contrast stretching, alongside the imple-
mentation of augmentations on the training dataset. These methods were implemented to
determine the most beneficial solutions compared to existing detection methods, and their
effectiveness was measured. Using this combination of selected techniques resulted in a
decrease in the oil spill vs. look-alike false detection rate while increasing the mean score by
9.3% in terms of the intersection over union (IoU), compared to the current state-of-the-art
approaches [10].

The current paper is organized as follows: Section 2 describes existing methods
that led to the improved accuracy in classification identification. The CNN architectures
that were used, Unet and DeepLabv3+, are described and the motivation for using them.
This section also explains the data pre-processing methods that were applied; how and
why the data augmentation was implemented; the image filtering; and how the model
ensemble impacted detection accuracy. Section 3 discusses the numerical results and
performance rates, and compares them to the current state-of-the-art approaches in this
field. Section 4 summarizes the conclusions from our research and the implementation
process, and presents suggestions for future work.

2. Methods

This section details the discussion of the methods we used to form the semantic
segmentation system that assists in highlighting the differences between the labels. The
system design concept is presented, in addition to the theoretical research and development
of the system. This section also details the dataset used, the pre-processing tools, and the
architectures examined.
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2.1. CNN Architectures

The main goal was to classify each pixel in a SAR image into one of the following
classes: Ocean, Oil Spill, Oil Look-Alike, Ship, and Land. This required an analysis of
all the pixels in the input image. Each image used a 2-dimensional array of integers in
the range 0 to 255, where every integer indicates the grayscale value of a pixel coming
from a processed SAR image. The main analysis method applies a CNN whose output
would be one of the classes mentioned above, tagged for each pixel of the input SAR
image. The CNN algorithm takes multidimensional arrays known as tensors for input;
these tensors are sequentially passed through different layers of processing that may use
convolution, pooling, normalization, full connection, and activation. The processed 2-D
array SAR image was used as the input tensor. To segment the pixels into classes as output,
the SoftMax activation function was used as the final layer for the CNNs. SoftMax was
chosen due to its ability to normalize the network’s output to a probability distribution
over the predicted classes: Ocean, Oil Spill, Oil Look-Alike, Ship, and Land. Equation (1)
expresses the normalized output given by the function:

σ(z)i =
ezi

∑K
j=1 ezj

, ∀i ∈ {1, 2, 3, 4, 5} (1)

where z1, z2, z3, z4, z5 are the original prediction for the classes and σ(z)1, σ(z)2, σ(z)3, σ(z)4,
σ(z)5 are the respective predictions normalized by the SoftMax function. Based on the
SoftMax outputs, we create a predicted segmentation map for each pixel by choosing
the class that achieved the highest SoftMax score; this can be interpreted as the class in
which the model predicts that the pixel will most likely be classified. Further details of the
architectures used are presented in the following subsections.

2.1.1. Unet

Unet is a CNN architecture for image segmentation initially proposed to deal with
semantically segmenting biomedical images. The Unet model contains two parts: the
contracting path (i.e., the encoder) and the expansive path (i.e., the decoder).

The encoder incrementally decreases the tensor it receives while increasing the number
of features that it contains, to capture the meaningful content of the image into a dense
vector of features. Various implementations are offered for the encoder; typically known
as backbones, they are often chosen to be other CNNs that are trained for classification,
sharing the same structure that incrementally decreases the size of the tensor and increases
the number of features. Originally, the implementation of the encoder consisted of four
layers, where each layer consists of two 3× 3 convolutional layers, followed by a 2 × 2 max
pooling operation with stride 2.

After the encoder incrementally compresses the tensor, the decoder gradually upscales
the tensor back to its original size, mapping the meaningful features to their respective
locations. At every step, the tensor is initially up-sampled to increase the size of the
tensor. Then, it has a 2 × 2 convolution performed on it for decreasing the number of
features. Following that, it is concatenated to the tensor that was at the matching level of
the encoder for avoiding the loss of information. Then, two consecutive 3 × 3 convolutions
are performed, further decreasing the number of features. The final step of the decoder is a
1 × 1 convolution to change the feature map for matching the number of output classes.

The ResNet-101 architecture was used for the encoder since it demonstrated good
performance in previous classification studies on the ImageNet dataset, which was designed
for visual object recognition software [15]. In addition, ResNet-101 was the backbone used
in the baseline paper for the Unet model [10].

2.1.2. DeepLabv3+

DeepLabv3+, which is an upgrade of the DeepLab architecture used for segmentation,
was also examined.
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DeepLabv3+ combines two important abilities: (1) it probes the incoming features with
filters or pooling operations at several rates and multiple effective fields-of-view to encode
multi-scale contextual information; and (2) it captures sharper object boundaries by gradu-
ally recovering the spatial information [16]. As opposed to its predecessor, DeepLabv3+ has
an effective decoder that refines the segmentation results and can produce distinctive object
boundaries [10]. The decoder up-samples the outcome of the main branch encoder. As
input, it also uses the low-level feature map that was extracted from the encoder backbone
and processed by a convolutional layer. All inputs are concatenated into a feature map
containing another two convolutional layers. The output is bi-linearly up-sampled, so the
original dimensions of the given image are recovered. For more details about DeepLabv3+,
the reader is referred to [16].

The MobileNetV2 architecture for the encoder was chosen since it has fewer param-
eters in the architecture, enabling efficient and fast learning for the model. In addition,
MobileNetV2 was the backbone used in the baseline paper for the DeepLabV3+ model [10].

2.2. Data Pre-Processing
2.2.1. Sentinel-1 Dataset

In order to learn the characteristics of the different classes, the CNN system requires a
large database of satellite images.

Research on oil spill detection lacked a common database of images until a 2019 study
by Krestenitis et al. [10], which succeeded in providing a well-established dataset that
can be used to identify oil spills by analyzing SAR photos. The dataset also includes
semantically annotated masks that enable researchers to evaluate their experimental results.
This research used a dataset created by the European Space Agency (ESA), which gathered
the SAR images, and the European Maritime Safety Agency (EMSA), both providing
information on the geographic coordinates and timestamps via the Clean Sea Net service.
Oil pollution records from 28 September 2015 to 31 October 2017 were used, and the SAR
images are from the European Sentinel-1 satellite missions.

The dataset described was used both for training and evaluating in this research. More
details on this dataset are available in Krestenitis et al., 2019 [10] (p. 4).

2.2.2. Data Augmentation

The original dataset used contains 1112 varied SAR images, taken by Sentinel-1 and
supplied after being pre-filtered with a speckle filter followed by a 7 × 7 median filter [10].

The CNN learning method requires a large and varied dataset, meaning that our
CNN input would have to include a varied set of oil spill instances. Having only about
1000 images was not enough to reach high accuracy for oil spill detection, so a method to
augment the dataset was needed.

One of the challenges faced by automatic recognition is preventing overfitting in the
learning process of CNN. Another challenge is generalizing the oil spill instances in the
input images. This can be achieved by applying image augmentation methods during the
training phase for each epoch and directly on the original dataset before the CNN algorithm
is applied.

Data was augmented using the following random transformations: The first transform
applied was a random image horizontal and vertical flip, which reverses the pixels along the
rows or columns and mirrors the image horizontally and vertically. Using these mirroring
transforms ensures that there are no dependencies between rows or columns in the learning
process. This allows the labeling step to retain generalization per pixel. The second trans-
form applied was image rotation, which rotates the image within affine transformations at
a random angle for each epoch. In this way, the oil spill characteristics are generalized for
every capturing angle needed to be labeled in the detection output. The image perspective
transformation, which converts a 3-dimensional image into a 2-dimensional one, and vice
versa, was also used. This prevented the recognition of each class of capturing the image.
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To avoid overfitting and for making sure that the augmentations remained varied from
one epoch to another, all the augmentations mentioned above were applied using random
combinations. The type of augmentation was chosen randomly. A binary threshold of
0.5 from the uniform range of 0 to 1 probability was used for determining whether each
augmentation type for every composition should be included. When image rotation
was applied, the degree of rotation was also chosen randomly from the range of 90 to
270 degrees. When image perspective was applied, its distortion scale was set to 0.6. for
each epoch, such that each epoch would have a different composition of transformation
applied to the images.

The same input modifications to the segmentation masks for every pixel were applied,
ensuring that the input segmentation masks matched the image and that the target segmen-
tation masks remained after the transformations were applied (e.g., Figure 1). The size of
the image and the relative location of each pixel to its neighboring pixels are not necessarily
preserved after the transformation. Therefore, interpolation of some pixel values in the
augmented image included ensuring the same interpolation method was applied for both
the image and its labeled mask.
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image perspective with horizontal flip composition; vertical flip augmentation only; horizontal,
vertical, and image rotation combined.

Previous studies mostly used the default bi-linear filter as the interpolation method,
but we chose an interpolation method based on the nearest neighbor approach [17].

In the dataset labeling method, every class is represented by a number. Therefore, to
maintain correspondence between image, labels, and mask augmentations, the bi-linear
filter interpolates the label’s class for the artificial pixels added in the perspective transfor-
mation. Every label for each class is represented by a different number. When using the
bi-linear filter, the label for the interpolated pixels is set by the weighted average of the
surrounding neighbor pixels’ numerical representation. As a result, the average value of
each label does not necessarily represent an existing class. It can even represent an existing
incorrect class that does not relate to the value of the edge labels. In short, the bi-linear filter
causes every mask to have an incorrect (average, by number) labeling for each edge pixel
between 2 classes as depicted in Figure 2, which leads to undesirable misclassification.
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Using the nearest neighbor interpolation method prevents this issue by labeling the
new pixels of the augmented image based on the prevalence of existing labels in the
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neighboring pixels (Figure 3). Thus, we chose to use this option of interpolation on the
original image and its labeled mask.
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2.3. Image Filtering

Image filtering is a technique for altering the size, colors, outlines, shading, and other
characteristics of an image. Each filter affects different features of the image characteristics.
Several types of filters were applied to the image to find those that emphasize the image’s
edges or outline, and better influence the detection performance. Ultimately, the goal was
to find methods that emphasized the differences between each class in the original image.

These filters are used in transforming the images and are based primarily on math-
ematical convolutions between the image and a specific kernel that is used to create the
desired effect upon the image.

We set out to find the optimal image filter that would help the CNNs differentiate
between one class and another. It was found that there is a unique set of filters that
achieved the best accuracy for each class. In this research, the effect of applying his-
togram equalization and contrast stretch filters to the SAR images was examined, prior to
CNN classification.

The histogram equalization filter balances the grayscales of every SAR image, based
on the image probability distribution. The general idea behind this filter is to re-assign
the pixels’ intensity values to make intensity distribution as uniform as possible. This is
a simple method that enhances a low contrast image when there is no apparent contrast
change between an object and its background [18]. In our case, the important objects to
detect were Oil Spill and Oil Look-Alike, located in the ocean. Consequently, the filter
would ideally enhance the contrast in these regions and highlight the differences between
these classes based on their texture, which also indicates that this filter also created some
noise that could be incorrectly identified as ships.

The performance of the contrast stretch filter, which maps the minimum intensity
in the image to the minimum value in the image range, and the maximum intensity to
the maximum value in the range(Figure 4), was also tested and analyzed. This filter was
chosen for its effectiveness as a point operator, supporting the independent labeling of
each pixel, which enables it to overcome the noise mentioned above by normalizing each
pixel’s value and increasing the contrast of the image’s gray shades. Since the contrast
stretch filter parameters are usually not tailored to the values and distribution of the image
gray-shades, this filter can be considered to be inferior to histogram equalization. Our
solution to this challenge was to use the lowest or highest approximate value of the pixels
when implementing the filter using the following equation [19]:

Pout = b(Pin − c)·
(

255
d− c

)
c (2)

where Pout is the updated value of a pixel, Pin is the original value, and c and d are the 2nd
and 98th percentile in the image histogram. In addition, values below 0 are rounded up to
0 and values above 255 are rounded down to 255.
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Figure 4. Filter comparison: (a.1) original image; (b.1) image with contrast stretching; (c.1) image
with histogram equalization. the second row contains image histograms (black) and the cumulative
distribution function (red) of each case: (a.2) original image; (b.2) image with contrast stretching;
(c.2) image with histogram equalization. As can be seen, each filter affects the image histogram
distribution differently.

2.4. Model Ensemble

A noticeable difference between the scores of the models on the training set and the
scores for the test set was observed, indicating that the neural networks experienced a
high generalization error. As undertaken by Zhou [20], it was decided to combine several
models in an effort to decrease the generalization error and boost the overall performance.
A separate model was created for averaging the output SoftMax score of several models,
similar to Simonian and Zisserman [21]. This resulted in a probability distribution over the
predicted output classes, where the prediction for each pixel is the class that achieved the
highest probability. The ensemble consisted of all six models that were trained: Unet with no
filter added, DeepLabv3+ with no filter added, Unet with contrast stretch filter, DeepLabv3+
with contrast stretch filter, Unet with histogram equalization filter, and DeepLabv3+ with
histogram equalization filter.

3. Results and Discussion
3.1. Experimental Methods

The models were trained and tested on the Oil Spill Detection Dataset using a PyTorch
framework and used the Segmentation Model Repository for the implementations of the
CNNs. Both the Unet and DeepLabv3+ architectures were trained on images of size
384 × 384, which were randomly cropped from each image at every epoch. A total of
100 images was held from the training dataset to form a validation dataset that was later
used to examine the optimal learning rate, optimizer, and batch size. The values obtained
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were 5× 10−5 for the learning rate and 32 for the batch size, and the selected optimizer was
Adam [22]. After choosing these parameters, we combined the validation set and training
set into one large training set.

All models were able to reach convergence by epoch 491, but we trained the models
for a total of 600 epochs each so we could compare them to the baseline paper [10]. For
obtaining the best results, a method of early stopping was used as the model saved was the
one that achieved the highest mean IoU score on the test set. Table 1 shows the epoch at
which each model obtained its optimal result.

Table 1. The required epoch number for each model that obtains its highest mean IoU score.

Model Epoch Number with Highest Result

Unet no filter 431
DeepLabv3+ no filter 383

Unet with contrast stretch 333
DeepLabv3+ with contrast stretch 491
Unet with histogram equalization 265

DeepLabv3+ with histogram equalization 366

Loss Function and Accuracy Metric

The mean intersection over union (IoU) was used as the loss function. The IoU score
is a metric that evaluates the resemblance between the prediction and the ground truth;
a score of 1 indicates total overlap, while a score of 0 indicates no overlap. For each class,
the IoU is defined as:

IoU Score =
|Prediction∩Ground Truth|
|Prediction∪Ground Truth| (3)

The mean IoU score is the average of all IoU scores, giving each class equal weight in
the score and counteracting the effect of class imbalance in the dataset. The loss is defined
as follows:

IoU Loss = 1−mean IoU (4)

Note that an IoU loss of 0 gives complete overlap for the predictions of all classes with
their respective ground truth, whereas a loss of 1 means no overlap at all.

3.2. Final Results

After training the models for the given number of epochs and saving the models that
achieved the best results on the test set, the IoU score was calculated for each class, along
with their mean IoU scores. These scores appear in Table 2, along with results from the
baseline paper for the Unet and DeepLabv3+ architectures [10].

Table 2. Comparison of different filters on the segmentation results of the Unet and DeepLabv3+ in
terms of IoU.

Model Ocean Oil Spill Oil
Look-Alike Ship Land Mean

Unet baseline [10] (p. 12) 93.90 53.79 39.55 44.93 92.68 64.97
DeepLabv3+ baseline [10] (p. 12) 96.43 53.38 55.40 27.63 92.44 65.06

Unet no filter 95.59 51.63 47.73 50.59 96.33 68.30
DeepLabv3+ no filter 95.85 49.00 51.62 39.39 93.99 65.98

Unet with contrast stretch 96.21 54.2 53.42 46.25 95.8 69.18
DeepLabv3+ with contrast stretch 96.07 54.5 54.51 42.46 95.94 68.68
Unet with histogram equalization 96.43 51.8 55.14 46.26 96.28 69.18

DeepLabv3+ with histogram equalization 96.35 53.78 57.70 41.37 92.3 68.3
Ensemble model 96.78 56.1 58.88 47.28 96.59 71.12
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As shown in Figures 5 and 6, applying the histogram equalization filter along with the
contrast stretch filter improves the overall performance of both the Unet architecture and
the DeepLabv3+ architecture when compared to the baseline results. The results in Table 2
below further imply that filters improve the performance on the Ocean, Oil Spill, and Oil
Look-Alike classes, but have a mixed effect on the Ship and Land classes. Averaging the
output of the given models for each class, which is presented as the ensemble model, shows
further improvement in the results for all classes, except the Ship class.
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Figure 6. Improvement compared to baseline—DeepLabv3+.

The ensemble model achieved a mean IoU score of 71.12%, showing an improvement
of ~9.3% compared to the highest score of 65.06% in the baseline research. The ensemble
model achieved the following improvements: ~0.3% for the Ocean class, ~4.2% for the Oil
Spill class, ~6.2% for the Oil Look-Alike class, 5.2% for the Ship class, and 10% for the Land
class, all as compared to the highest performing model in the respective class, as shown
in Figure 7. In the baseline research, the highest scores were achieved for either the Unet
model or the DeepLabv3+ model, except for the Land class, which achieved its highest
score of 63.97% with the LinkNet model.
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The Ocean class showed an improvement in the IoU score for both filters when applied
to either model. The highest score was 96.43% for the Unet model using the histogram
equalization filter, which is equal to the score performed by the DeepLabv3+ model in the
baseline research. The Oil Spill class, which is our most challenging and significant class,
showed an improvement in its detection for both the contrast stretch filter and histogram
equalization filters compared to the models without a filter. Using the contrast stretch filter,
the models showed an improvement compared to their baseline: a ~1% increase for the
Unet architecture and a 2% increase for the DeepLabv3+ architecture. The highest IoU
score of 54.5% was achieved by the DeepLabv3+ model with the contrast stretch filter. The
Oil Look-Alike class also showed an improvement for both filters compared to no filter.
The histogram equalization filter achieved the best results for Oil Look-Alike, showing
an increase of ~40% for the Unet architecture and ~4% for the DeepLabv3+ architecture.
Regarding the effects of the filters on the Ship and Land classes, there was no conclusive
change that could be inferred.

3.2.1. Evaluation during Training

The model was evaluated on the test set, by calculating the IoU scores for each class
after every epoch of the training, along with the mean IoU score. Figures 8 and 9 show the
results for each model.

As shown in Figures 8 and 9, throughout the training, the Ocean and Oil Look-Alike
scores were higher when filters were applied, as compared to no filters. This effect can also
be seen for the Oil Spill class, although it is more obvious for DeepLabv3+ than for Unet.
This reinforces further the results seen in Table 2, which showed a clear improvement when
using both filters. Both Unet and DeepLabv3+ regularly reached an IoU score of 0.55 for
the Oil Spill class when we applied the histogram equalization filter. However, in the best-
performing model, the IoU score of this class was slightly less for both architectures. This
indicates that although the results in Table 2 showed better performance for the contrast
stretch filter in detecting Oil Spill pixels, both filters are equally beneficial in this regard.
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3.2.2. Qualitative Results

A visual comparison is shown in Figures 10–12. Figure 10 shows an improvement
in the model’s ability to correctly predict more Ocean pixels. As a result, the Oil Spill on
the right, along with a Ship, could be successfully detected by the models trained on the
filtered images. Figure 11 shows that the effects of the filters made the Oil Look-Alike
pixels less similar to an Oil Spill, so the models were able to correctly detect the dark
pixels as look-alikes. Figure 12 shows three effects of the filters on a noisy image. In the
first effect, more Ocean pixels were falsely predicted as Oil Look-Alike on the filtered
images. The second effect showed fewer false predictions for the Oil Spill class, as they
were mostly replaced by predictions for the Oil Look-Alike class. The third effect was that
some correct predictions of the Oil Spill class were replaced by false predictions for the Oil
Look-Alike class. This was more clearly seen from the models that applied the histogram
equalization filter. The advantage of the ensemble model can be observed in this figure as
it was able to eliminate most of the errors produced by the filters while maintaining the
correct predictions.
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Figure 10. Example 1 of the different predictions created by the models: (a) original image; (b) image 
with histogram equalization; (c) image with contrast stretch; (d) DeepLabv3+ prediction; (e) 
DeepLabv3+ with histogram equalization prediction; (f) DeepLabv3+ with contrast stretch predic-
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Figure 10. Example 1 of the different predictions created by the models: (a) original image;
(b) image with histogram equalization; (c) image with contrast stretch; (d) DeepLabv3+ predic-
tion; (e) DeepLabv3+ with histogram equalization prediction; (f) DeepLabv3+ with contrast stretch
prediction; (g) Unet prediction; (h) Unet with histogram equalization prediction; (i) Unet with contrast
stretch prediction; (j) ground truth; (k) ensemble model prediction.
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Figure 11. Example 2 of the different predictions created by the models: (a) original image;
(b) image with histogram equalization; (c) image with contrast stretch; (d) DeepLabv3+ predic-
tion; (e) DeepLabv3+ with histogram equalization prediction; (f) DeepLabv3+ with contrast stretch
prediction; (g) Unet prediction; (h) Unet with histogram equalization prediction; (i) Unet with contrast
stretch prediction; (j) ground truth; (k) ensemble model prediction.
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(b) image with histogram equalization; (c) image with contrast stretch; (d) DeepLabv3+ predic-
tion; (e) DeepLabv3+ with histogram equalization prediction; (f) DeepLabv3+ with contrast stretch
prediction; (g) Unet prediction; (h) Unet with histogram equalization prediction; (i) Unet with contrast
stretch prediction; (j) ground truth; (k) ensemble model prediction.

4. Conclusions

SAR images from satellite monitoring of marine areas and coastlines may be helpful
for protecting the ocean environment from oil spills. Analyzing these images to detect
oil spills using CNNs with semantic segmentation has shown promising results, but still
leaves room for improvement. By applying different data augmentation and image filtering
methods, we were able to improve the performance of oil spill detection performed using
CNNs in both the Unet and DeepLabv3+ architectures.

Using various image processing techniques, the goal was to distinguish the differences
between the labels Oil Spills and Oil Look-Alikes. Moreover, regarding the challenge of
the model’s generalization error, we found that a possible solution is using the ensemble
model, which has increased accuracy and performance due to combining all the techniques
mentioned above. This suggests that integrating various aspects and characteristics of SAR
images’ features can improve the overall detection of marine elements.

Regardless of the architecture chosen, the histogram equalization and contrast stretch-
ing filters helped in the detection of the Ocean, Oil Spill, and Oil Look-Alike classes but
showed nothing conclusive for Land and Ship classes. Most previous studies in this field
did not attempt methods to highlight the textures and outline of the images’ elements,
i.e., [10,13]. The authors of [14] examined the effect of tested threshold segmentation tech-
niques on the results, which resulted in the loss of information from the original images.
The image pre-processing techniques used in this study were able to highlight the dif-
ferences between elements without losing significant information from the images. This
indicates that emphasizing the disparities between the elements of the images, without
causing much loss of information, assists in the detection of marine oil spills.

Using an ensemble approach improved the results of all classes and reached the
highest mean IoU score of 71.12, showing an improvement of 9.3% over the state-of-the-art
DeepLbav3+ model presented in [10], which achieved a mean IoU score of 65.06.
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In general, applying these methods has improved the overall mean IoU rate and the
IoU score for all the classes examined: Ocean, Land, Oil Spill, Oil Look-Alike, Ship.

In conclusion, the following chart (Figure 13) represents the steps suggested in the Oil
Spill detection sequence as a solution system for this challenge:
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Future Work—Dual ‘Oil Look-Alike’ Relabeling

Although we achieved significant improvements in this work, there is room for further
improvement. We plan to apply different methods of image processing to a wider variety
of algorithms. Specifically, further highlighting the differences between images’ features
may improve the label detection performance. In addition, relabeling may help to further
separate the Oil Spill and Oil Look-Alike pixels. To date, recent studies have considered only
five labels: Ocean, Oil Spill, Oil Look-Alike, Ship, and Land. However, defining all darker
spots in the ocean as Oil Spill or as Oil Look-Alike is too general. Many Oil Look-Alike
spots are differed by several characteristics. Splitting Oil Look-Alike into sub-labels can
highlight the differences between them and improve the overall Oil Look-Alike detection.

For future work, we propose using two types of Oil Look-Alike labels, based on their
dark spots and other characteristics: (1) feathery, tail, and angular winding shapes (‘Sharp
Look-Alike’); and (2) patch and droplet spots (‘Patch Look-Alike’). Having two types of
Oil Look-Alikes can help us distinguish them from the oil spills in the training phase and
improve the accuracy of automatic oil spill detection.

Figures 14–16 present the original satellite image along with the current labeling, with
a single Oil Look-Alike, and the new labeling, with dual Oil Look-Alike types.
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