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Abstract: One important factor that affects the performance of statistical downscaling methods is
the selection of appropriate parameters. However, no research on the optimization of downscaling
parameters has been conducted in South Korea to date, and existing parameter selection methods are
dependent on studies conducted in other regions. Moreover, several large-scale predictors have been
used to predict abnormal phenomena such as droughts, but in the field of downscaling, parameter
optimization methods that are suitable for drought conditions have not yet been developed. In this
study, by using the K-nearest analog methodology, suitable daily precipitation downscaling parame-
ters for normal and drought periods were derived. The predictor variables, predictor domain, analog
date size, time dependence parameters, and parameter sensitivity values that are representative of
South Korea were presented quantitatively. The predictor variables, predictor domain, and analog
date size were sensitive to the downscaling performance in that order, but the time dependency did
not affect the downscaling process. Regarding calibration, the downscaling results obtained based
on the drought parameters returned smaller root mean square errors of 1.3–28.4% at approximately
70% of the stations compared to those of the results derived based on normal parameters, confirming
that drought parameter-based downscaling methods are reasonable. However, as a result of the
validation process, the drought parameter stability was lower than the normal parameter stability. In
the future, further studies are needed to improve the stability of drought parameters.

Keywords: analog method; downscaling; downscaling parameters; South Korea; drought

1. Introduction

In recent decades, climate change has caused unusual extreme climate conditions
all over the world. Numerous studies have reported that the flood and drought damage
probability will increase in the future [1–3]. One of the most rational means for simulating
climate change involves the use of global climate models (GCMs); most climate change
studies conducted over the past decades have been based on GCMs [4–6]. However,
since GCMs have spatial resolutions ranging from 100 to 300 km, limitations arise when
using these models to simulate spatial variabilities in regional-scale climate conditions
across basins, cities, etc. [7–9]. To address these scale mismatches, dynamic and statistical
downscaling methods have been developed over the past few decades [10–12].

Dynamic downscaling methods have advantages in that they can produce physically
consistent results. However, the lengths of data series and the ensemble members of dy-
namic downscaling results are often limited because considerable input data, computational
resources, and professional human intervention are required to conduct these simulations.
These limitations prevent the application of dynamic downscaling results in fields such as
water resources, agriculture, and ecology, in which experiments are conducted with regard
to various aspects [13–15]. Statistical downscaling methods, which are inexpensive and
easily applied with simple methods, have been used in these applied fields [15]. One of the
most popular statistical downscaling approaches is the analog method, which has achieved
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satisfactory performance despite its simple structure [13,16,17]. The analog method is based
on historical analog dates with synoptic weather patterns similar to those of the target
dates.

One common analog approach is the K-nearest analog method; in this method, K
analog dates are adopted for the downscaling process [18]. Since this method was first
developed, several attempts have been made to improve the analog methodology [16,19–21].
One of these attempts involved exploring parameters aiming to improve the performance
of the analog method [22]. In analog downscaling, appropriate parameters should be
applied in consideration of the regional synoptic weather patterns [22]. Some parameters
that are highly sensitive to the downscaling performance include the predictor variable,
predictor domain, analog date size used for downscaling, and time dependency [22].

Several studies have attempted to optimize the parameters listed above in specific
regions [20,23–27]. Trial and error methods have generally been applied to this parameter
selection process, and when multiple parameters are desired, a sequential process is used
to search for each parameter incrementally [24,26]. In addition, global optimization has
been performed based on vast computational resources to consider the combined effects of
various parameters [26]. Most of these studies have been conducted in certain countries,
such as Australia, France, and Switzerland [23–26], while few investigations have been
conducted in Asia [27,28].

In South Korea, past studies have explored spatial downscaling predictors [29,30].
In past research, the geopotential at the 500 pressure level, mean sea surface pressure,
air temperature at the 850 pressure level, and zonal and meridional wind speeds at the
200 pressure level were selected as rainfall and temperature predictors. However, these
predictors were searched for by hindcasting with predictive models, and the results thus
contained bias and returned potential predictors at few pressure levels. Precipitation
and surface temperature were used as predictors to apply the bias-corrected constructed
analog (BCCA) and multivariate adapted constructed analog (MACA) methodologies [13].
However, exploratory research on parameters other than predictor variables has not yet
been conducted. Because different weather patterns occur in different regions, selecting
downscaling parameters based on studies representing other regions may negatively affect
the downscaling performance. Because parameter-search research results can be used as
fundamental data not only for analog downscaling research but also for other downscaling
approaches, parameter selection research in South Korea is critical.

In applications such as water resources, some studies have been conducted on abnor-
mal periods that cause more significant socioeconomic risks than normal phenomena. In
particular, climate change impact assessments related to drought have been conducted
in various aspects based on results obtained with GCMs [5,31,32]. Therefore, downscal-
ing studies considering drought conditions need to be conducted, but studies involving
searches for analog parameters have been conducted only for normal periods thus far.
Drought prediction research has suggested that synoptic weather variables, which rep-
resent large-scale weather patterns, are commonly used as predictors to predict drought
situations [33,34]. In addition, according to previous studies, meaningful relationships exist
between synoptic variables and rainfall during drought periods in South Korea [35–37].
These studies have led to reasonable inferences as follows. In analog downscaling processes
that use synoptic patterns, if drought-appropriate parameters are used, the performance of
the downscaling results is better than that obtained through the conventional approaches
during drought periods. Therefore, it is necessary to search for analog downscaling param-
eters that are suitable for drought periods.

In this study, we aim to find optimal parameter sets that are suitable for downscaling
daily precipitation in cases of normal and drought periods in South Korea and elaborate
the added value of considering optimal drought period parameters.
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2. Study Area and Data Collection
2.1. Study Area

As shown in Figure 1, South Korea was selected as the study area. The large-scale
reanalysis data were downscaled to the scale of the ground weather stations. The grid
of reanalysis consisted of the 1.25◦ grids used by the Korea Meteorological Association
(KMA) for global simulation, and 59 automated synoptic weather system (ASOS) stations
were utilized as ground observation points. Figure 1 shows the ASOS stations, grids of
reanalysis, and elevation. The annual average precipitation of the ASOS is approximately
1400 mm. The 18 grids cover most of South Korea.
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2.2. Data Collection

The relationship between predictand and predictor used for spatial downscaling can
be explored differently depending on the GCM performance for simulating predictand
and predictor. Therefore, the relationship between predictor and predictand found in
a specific GCM output may not be valid in other GCMs. To prevent this distortion in
the results due to the different performances of various GCMs in terms of exploring the
analog parameters, the perfect prognosis (PP) downscaling approach was adopted in this
study [38]. In the PP approach, the relationship between the predictand (observed data)
and the reliable predictors (e.g., reanalysis data) is derived, and this relationship is applied
to the downscaling process. Since the relationship is not affected by the performance of
the GCMs, it is reliable and applicable for downscaling all GCM outputs. Therefore, the
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PP approach is commonly used for the search parameters mentioned in the introduction
section. However, its downscaling performance is relatively lower than that of other
approaches because it does not consider model bias in the downscaling process.

In this study, reanalysis data were used as large-scale predictors, and the downscaling
results were evaluated through comparisons with ground truth observed data. Table 1
shows the ground weather observations and reanalysis data collected in this study. To
obtain ground observation data, daily precipitation data from 59 ASOS stations were
collected over a 36-year period, and to obtain reanalysis data, reanalysis v5 (ERA5) data
provided by the European Centre for Medium-Range Weather Forecasting (ECMWF) were
collected over the same 36-year period. ERA5 data were upscaled from a 0.25◦ grid and
hourly scale to a 1.25◦ grid and daily scale. The use of upscaled ERA5 data to search for the
downscaling parameters was an efficient approach in terms of the associated computational
costs [39]. Large-scale potential predictors, which are commonly used in previous studies,
were selected [40]. The potential predictors consisted of circulation, thermal, and humidity
variables known to be related to precipitation.

Table 1. Predictand and potential predictors used in the downscaling analysis based on K-nearest
analog methodology.

Type Field Variable Period Source Spatial
Boundary

Ground
observations
(predictand)

- Daily precipitation 1980–2015 KMA 59 stations

Reanalysis data
(potential
predictors)

Circulation
variables

Mean sea level pressure (msl)

1980–2015
ECMWF
(ERA5)

E100.75–E152.25
N19.25–N52.00
(0.25 decimal

degree)

1000-, 850-, 700-, 500-, and
250-mb-level horizontal wind

velocity (u)

1000-, 850-, 700-, 500-, and
250-mb-level vertical wind

velocity (v)

1000-, 850-, 700-, 500-, and
250-mb-level geopotential height

(z)

Thermal
variables

Daily maximum temperature
(tmax)

Daily average temperature (tave)

Daily minimum temperature
(tmin)

1000-, 850-, 700-, 500-, and
250-mb-level temperature (t)

Humidity
variables

Daily precipitation
(prcp)

1000-, 850-, 700-, 500-, and
250-mb-level relative humidity (q)

3. Methodology

Figure 2 shows the methodological framework of this study. After collecting the
data, daily drought periods were extracted by using the daily standardized precipitation
index (SPI). Based on these drought periods, optimal parameter sets corresponding to
the normal period (Case 1) and drought period (Case 2) were searched. Case 1 included
flood, normal, and drought periods, while Case 2 included only drought periods. The
performances of the downscaling results were evaluated and compared case by case. Finally,
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it was possible to derive the optimal parameter set and assess its sensitivity regarding the
downscaling of daily precipitation in South Korea and to elaborate added values in the
downscaling method to optimize the method for the drought period. All of these processes
were implemented with MATLAB codes written by the authors.
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3.1. Extraction of the Daily Drought Period

Seasonal or long-term precipitation is known to be related to very large-scale circu-
lation features, such as the El Niño Southern Oscillation (ENSO) [33], while short-term
precipitation is related to regional synoptic patterns. In this study, because we focused on
short-term precipitation cases, regional synoptic patterns were considered. Because the
downscaling method in this study was conducted at a daily scale, an index that is used to
assess daily short-term drought was utilized. A daily SPI data series with a 28-day dura-
tion was adopted to extract the drought period. Series of drought indices are commonly
adopted to assess short-term or very-short-term droughts, such as flash droughts [41,42].
The SPI was calculated based on the daily moving average of the precipitation data at all
ASOS stations (Equations (1)–(5)). For each station, the corresponding drought period was
constructed based on the dates when the SPI values were less than −1 (the criterion used
to determine drought conditions) [43]:

F(x) =
∫ x

0

1
αΓ(β)

( x
α

)β−1
exp

(
− x

α

)
dx (1)

t =

√√√√ln

(
1

(F(x))2

)
, 0.0 < F(x) ≤ 0.5 (2)

t =

√√√√ln

(
1

(1− F(x))2

)
, 0.5 < F(x) ≤ 1.0 (3)

SPI = −
(

t− c0 + c1t + c2t2

1 + d1t + d2t2d3t3

)
, 0.0 < F(x) ≤ 0.5 (4)

SPI =
(

t− c0 + c1t + c2t2

1 + d1t + d2t2d3t3

)
, 0.5 < F(x) ≤ 1.0 (5)
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where F(x) is the cumulative distribution function (CDF) based on the gamma distribution,
x is the 28-day cumulative precipitation, α is a scale parameter, β is a shape parameter, Γ(β)
is the gamma function, and c0–c2 and d1–d3 are coefficients [43].

3.2. K-Nearest Analog Downscaling Method

Analog downscaling is performed with analog dates, which are extracted from histori-
cal dates. To prevent the analog downscaling performance from being artificially adjusted,
the period for evaluating the downscaling performance and the period for extracting analog
dates should be separated. In addition, for the calibration and validation of analog down-
scaling parameters, independent data periods are needed. In this study, the data period was
divided into two periods (1980–1999 and 2000–2015). These two periods were then used
as the validation and calibration periods. The analog parameter sets were obtained from
the data corresponding to the calibration period and were used to verify the parameters
for the validation period. When downscaling the calibration period, the analog dates were
searched in the validation period. Downscaling the validation period, the analog dates
were searched in calibration period.

In this work, the K-nearest-based approach was chosen as the downscaling method.
This approach is one of simplest approaches for analog downscaling, and most analog-
based downscaling methods are based on this type of simple structure [44–46]. Due to
these characteristics, the K-nearest approach has been utilized to search for the parameters
of the analog downscaling method rather than other sophisticated approaches [20]. The
analog search process consisted of two steps. To consider seasonality, potential analog
dates were preliminarily searched by using the average temperature similarities between
the historical dates and target dates. After sorting the historical dates based on the average
temperature similarities with the target dates, the dates with large similarity values were
selected as potential analog dates. The number of potential analog dates (n1) was set to be
equal to the length of a season (90 days) multiplied by the number of years in the calibration
period. The analog dates used for the final downscaling process were selected from the
potential analog dates by considering the similarities among the predictors. Hereafter,
analog date size used for downscaling is called ‘K’ based on the K-nearest approach. To
remove dependencies among predictors, a principal component analysis (PCA) was used.
Principal component scores indicating normalized predictors with explanatory power
greater than 80% were used to find the analog dates. The similarity of the scores between
the target date and historical date was estimated using Euclidean distances (Equation (6)).
Finally, the predictand (downscaled results) was calculated by averaging the local weather
data across the K analog dates:

Similarity
(
i, t, t′

)
= (

N

∑
l=1

(
psl(i, t)− psl

(
i, t′
))2

)

1/2

(6)

where i is the station number, t is the target date, t′ is the historical date used in the
analog search, N is the number of principal scores, and psl is the lth principal score of the
predictors.

3.3. Search of the Analog Parameter Sets

In this study, the predictor variables, domain size (hereafter D size), analog date size
for downscaling (hereafter K size), and time dependency (hereafter T size) were explored
as parameters in the analog downscaling method. The predictor variables included the
large-scale atmospheric variables representing synoptic weather patterns that were utilized
to find analog dates. Large-scale predictor variables should be physically linked to local-
scale predictands and should also be accountable to local weather variabilities when used
for downscaling. Most components that are physically related to rainfall are already
known [38], but regionally relevant combinations of predictors and pressure levels must be
explored. The D size refers to the appropriate spatial range that could reflect large-scale
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atmospheric states. This parameter is tightly linked to the selection of predictor variables.
An appropriate D size contributes to the large-scale predictor being able to appropriately
respond to local weather variations [20].

Analog methods are based on the assumption that historical meteorological phenom-
ena will be reproduced in the future. However, in some cases, it is difficult to search for a
meaningful analog date to the target date. In this case, the degradation of the downscaling
performance is prevented by increasing the K size used in the downscaling process. There-
fore, an appropriate K size is a significant parameter affecting the analog performance. The
T size is mainly used for analog-based forecasting, and the temporal dependencies between
predictors and predictands are considered by changing the time step of the predictor.

Because several parameters were explored in this work, a sequential methodology
was adopted [24]. The parameter variables D size, K size and T size were searched in
order. After all parameters were set to their default values, the parameters were opti-
mized sequentially in the above order. To find the optimal predictor variable combination,
a stepwise method was applied. In the process of the stepwise method, forward selec-
tion and backward elimination were applied iteratively to find the best combination of
predictors. Although this approach has limitations in terms of considering all possible
combinations, it has been widely used to select dependent variables in various areas due
to its simplicity [38,47]. The values of the other parameters gradually increased, and the
parameter value exhibiting the best downscaling performance was selected as the optimal
parameter. The parameter sets were selected based on the downscaling performance of
the daily precipitation data. The downscaling performance was evaluated based on the
root mean square error (RMSE). The RMSE has been used as an objective function to search
for parameters in previous studies [20,27]. This selection process was conducted for two
cases. First, the downscaling performance in the normal period (Case 1) was considered;
then, the downscaling performance of the drought period (Case 2) was assessed. Case 1
represents a conventional approach, while the approach applied to Case 2 attempted to
derive parameter sets suitable for identifying drought conditions in this study.

4. Results
4.1. Extraction of the Daily Drought Period

Figure 3 shows the results obtained by extracting the drought period from the ASOS
station data. The drought period was extracted, and the severity values were classified
based on the previously established drought classification criteria of the SPI by Mckee [43].
At most stations, approximately 14–17% of the analyzed period could be classified as
reflecting drought conditions. This is an appropriate drought period proportion considering
the SPI characteristics, as the SPI is calculated based on a standard Gaussian distribution.
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4.2. Investigation of Optimal Predictor Variables

Figure 4 displays the results obtained after evaluating the downscaling performance
based on a single predictor variable. The ranges of the box plots correspond to the RMSEs
of the downscaled results based on each single predictor, as shown in Table 1. The average
RMSE of Case 2 was slightly smaller than that of Case 1; the RMSE range of Case 2 was 38%
greater than that of Case 1. This variation indicates that the drought period downscaling
performance was more sensitive to the predictor selection than the performance obtained
in normal periods. This result supports the concept stated herein that it is necessary to use
parameters that are suitable for drought periods when attempting to downscale drought
periods.
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Figure 4. Downscaling performances derived based on a single predictor variable.

Figure 5 shows a comparison of the downscaling performance obtained for Case
1 and Case 2 using a single predictor. Each bar chart indicates the RMSE between the
downscaling result and the observation based on each individual predictor. The results of
both Case 1 and Case 2 showed that the maximum RMSE was approximately double the
minimum RMSE. In other words, the predictor selection process was highly sensitive to the
downscaling performance. In the Case 1 results, prcp showed the best performance for all
stations. Additionally, v850, a circulation variable, and the humidity variables q850, q700,
and q500 all showed high performances. The high-pressure-level variables showed lower
RMSEs than the low-pressure-level variables. In Case 1 and Case 2, the top 10 predictors
included similar variables, although their orders differed. In both cases, except for tmax, the
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performances of the thermal variables were low, while the performances of the humidity
and circulation variables were comparatively high.
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variable: (a) downscaling performance of Case 1 and (b) downscaling performance of Case 2.

Previous literature has indicated that it is advantageous to use a combination of
predictors rather than a single predictor in the downscaling process [20,21,27]. In this study,
predictor combinations were searched for all stations, as shown in Table 2, through the
stepwise method. When these combinations were used, the downscaling performance was
10.0% better than that obtained in the case in which individual predictors were used (Case
1) and 17.8% better than that in Case 2. The double combination was the most common, and
the combination of prcp and circulation variables (u, v, z) was the most practical. Regarding
the pressure level, the variables at 1000–700 mb showed relatively high performances.

Table 2. Optimal predictor sets for ASOS stations.

Sta. Case 1 Case 2 Sta. Case 1 Case 2

90 prcp/v1000 prcp/v1000 202 prcp/u850/u1000 q850/z500
100 prcp/v1000 prcp/v1000 203 prcp/u850/u1000 q850/q500/u250
101 prcp/u850 prcp/u850 211 prcp/v1000 prcp
105 prcp/v1000 prcp/v1000 212 prcp/v1000 prcp/v1000
108 prcp/z850 prcp/u700 221 prcp/u850 prcp/u850
112 prcp/u850/u1000 prcp 226 prcp/z850 prcp/u850
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Table 2. Cont.

Sta. Case 1 Case 2 Sta. Case 1 Case 2

114 prcp/v850 prcp/v250 232 prcp/u850 prcp/u850
119 prcp/u850/u1000 prcp 235 prcp/u850 prcp/u850
127 prcp/v850 prcp 236 prcp/z850 prcp/z850/z1000
129 prcp/u500 prcp/u500 238 prcp/u1000 prcp/v250
130 prcp/v850 prcp 243 prcp/v500 prcp/z850
131 prcp/u850 prcp/u850 244 prcp/u850 prcp/v500
133 prcp/v250 prcp/u850 245 prcp/u850 prcp/v500
135 prcp/v250 prcp/v1000 247 prcp/v500 prcp/u1000
138 q500/prcp/t1000/v500 t500/t1000/v1000/v250 260 prcp/tmin prcp/z850
140 prcp q500 261 prcp/v500/v250 prcp/v500/v250
143 prcp/v250 v850/z500 262 prcp/v500/v250 prcp
146 prcp/v500 prcp/v250 272 prcp/v700 prcp/v250
152 prcp/v850/v1000 prcp/v850 273 prcp/v850/v1000 prcp/v700
156 prcp/v250 prcp/u850 277 prcp/v250 prcp
159 prcp/tmin prcp/v700 278 prcp/z850 prcp/z850
162 prcp/v1000 prcp/v850 279 prcp/v250 prcp/v1000
165 prcp/v500 prcp/u500 281 prcp/v700 prcp/v700
168 prcp/v700 prcp/v500 284 prcp/v1000 prcp/v1000
170 prcp prcp 285 prcp/v250 prcp/z850
184 prcp/u500 prcp/v1000 288 prcp/z850 prcp/v700
188 prcp/v250 prcp/tmin 289 prcp/v700 prcp/v700
189 prcp/v850 prcp/v850 294 prcp/v700 prcp/v1000
192 prcp/z850 prcp/z850 295 prcp/v850 prcp/v850/z700/v250
201 prcp/z850 q700/u250/t1000

By case, Case 1 and Case 2 had 41 stations for which different predictor variables
were selected, composing approximately 70% of the total number of stations. To examine
whether the optimal predictor set derived in Case 2 had added value compared to
that in Case 1, the RMSEs obtained for Case 1 and Case 2 were compared during the
drought period. Among the 41 stations where different predictors were selected between
Case 1 and Case 2, the average RMSEs obtained for Case 2 were 10.5% smaller than
the corresponding Case 1 RMSEs at 35 stations. Therefore, selecting drought period
predictors can effectively improve the downscaled precipitation accuracy during a
drought period. However, the lack of improvement at six stations was thought to be
caused by the limitations of the stepwise method, as this method cannot consider all
possible predictor combinations.

4.3. Investigation of Optimal D, K, and T Sizes

At each station, the optimal D size was searched for, and the shape of the domain was
assumed to be a square. The search performance was evaluated by increasing the length
of the side of the square by 2.5◦. Nine cases were reviewed from a minimum of 1.25◦ to a
maximum of 21.25◦, and the optimal D size derived for each station is shown in Figure 6.
In Case 1, more than 50% of the optimal D sizes were 1.25◦, the minimum size. The D sizes
were relatively large at the stations located in the southern coastal area. In South Korea, it
is desirable to conduct downscaling using the smallest optimal D size at most stations, and
in some southern coastal areas, D sizes of 3.75◦ to 6.25◦ should be adopted.
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Comparing the results case by case, the D sizes obtained in Case 1 and Case 2 were
similar. In Case 2, the minimum D size and D size of 3.75 were found at more stations,
while the 6.25 D size was optimal for fewer stations. The average domain sizes were 4.09◦

for Case 1 and 3.62◦ for Case 2. Thus, the optimal D size was slightly smaller in the drought
case than in the normal case.

Figure 7 indicates the optimal K size for the ASOS stations. Each optimal K size was
selected as the value that resulted in the best downscaling performance as K was increased
from 1 to 41 by 2. The average optimal K obtained in Case 1 was 13.38, and the optimal
Ks of inland stations were larger than the optimal Ks at coastal stations. The optimal K
sizes were mostly distributed between 5 and 13, and stations with relatively large K sizes
were distributed in western South Korea. The optimal K value obtained in Case 2 was
12.3% larger than that derived in Case 1. Unlike Case 1, in which the optimal Ks were large
only at inland stations, in Case 2, the optimal Ks were relatively large at most stations.
Because it is difficult to find a small number of informative analog dates that are suitable for
representing unusual drought conditions, it was likely that the optimal K values obtained in
Case 2 would be larger than those of Case 1. As shown in Figure 7, the appropriate K value
may differ between drought and normal periods. These results support the idea of this
study that suitable parameters should be explored for drought periods when performing
drought assessments.

In this study, the time dependency (T size) was also searched for case by case. The
predictors were averaged depending on the T size and subsequently adopted for the down-
scaling process. Each optimal T size was selected as the value with the best downscaling
performance as T was increased from 1 to 31 by 2. In both cases, 1 was selected as the opti-
mal T value. As the T size increased, the downscaling performance decreased at all stations,
indicating that the synoptic predictor before the target date had no valid relationship with
the predictand. Therefore, it was not necessary to consider the time dependence parameter
when performing downscaling research rather than forecasting research.
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Figure 7. Comparison of optimal K sizes: (a) optimal K sizes for Case 1 and (b) optimal K sizes for
Case 2.

4.4. Sensitivity of Parameters

Figure 8 shows the sensitivity of each parameter, as assessed by comparing the param-
eter changes to the downscaling performances. The sensitivities were evaluated using the
standard deviation of the RMSE. The larger the standard deviation was, the greater the
sensitivity was. The standard deviation values of the T size and K size indicated RMSE
changes when each parameter changed by 2. The standard deviation value of the D size
indicated an RMSE change when the D size increased by 2.5◦, and the predictors were
assessed using the RMSE changes in accordance with the changes in the 30 individual
predictors. Because each parameter had different characteristics, it was difficult to compare
these sensitivities directly. However, these results can be informative due to the lack of
similar references in South Korea.
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As a result of the sensitivity tests performed for Case 1, the predictor variable was
found to be the most sensitive parameter in the downscaling process, with a standard
deviation of 1.56. In addition, the T size, D size, and K size were sensitive to the downscaling
performance. Because the T size was not an effective parameter for downscaling, it could
be ignored in the sensitivity results. Comparing Case 1 and Case 2, the Case 2 parameter
sensitivity levels were greater than the Case 1 sensitivities. The sensitivities of the predictor
variable and D size in Case 2 were 55% and 47% higher than those in Case 1, respectively,
and the sensitivity of the K size showed no significant difference between the two cases,
suggesting that the parameter optimization process is more important when conducting
spatial downscaling for drought periods than for normal periods.

4.5. Comparison of the Calibration and Validation Sets

The results described in Sections 4.2–4.4 are the results of the analog downscaling
parameter search based on the calibration set. In the current section, the robustness of the
searched parameters was reviewed by comparing the downscaling results obtained during
the calibration and validation periods. The calibration results were calculated based on the
downscaling period (2000–2015) and the analog search period (1980–1999). The validation
results were calculated based on the downscaling period (1980–1999) and analog search
period (2000–2015).

Figure 9 shows a scatter plot between the observation and downscaling results ob-
tained during the calibration period of station 235. For both the normal and drought
periods, the downscaling results were lower than the observations. The lower results were
due to the bias of the ERA5 reanalysis. Since no bias correction function was contained
in the PP downscaling process, the downscaling results were also lower. In most normal
periods, the results of Case 1 and Case 2 were similar. However, the results of Case 2 were
significantly different from the observations for a few days. In the drought period, the
results of Case 2 were closer to the observations than the results of Case 1. Therefore, it was
confirmed that Case 1 was relatively effective in the normal period and that Case 2 was
effective in the drought period.
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Table 3 shows the calibration and validation metrics achieved for Case 1 and Case
2. As the Case 1 results reveal, no significant difference was found in the downscaling
performances between the calibration and validation periods; this result supported the
concept that the searched parameter set was robust. On the other hand, in the Case 2 results,
a relatively large difference could be observed between the calibration and validation results.
Therefore, the Case 2 parameters were comparatively less stable than the Case 1 parameters.
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Table 3. Results of the calibration and validation processes.

Type
RMSE (mm/day)

Calibration (2000–2015) Validation (1980–1999)

Case 1 9.34 9.22
Case 2 8.24 9.46

To review whether the downscaling parameters suitable for the drought period had
added value, the downscaled results based on the optimized parameter sets obtained for
Case 1 and Case 2 were compared in the drought period. As a result of comparing the Case
1 and Case 2 parameter sets, the same parameter was searched for at three stations, and
different parameters were searched for at 56 stations. During the calibration period, the
Case 2 results reflected average RMSEs that were 8.2% (range: 1.3–28.4%) smaller than the
corresponding RMSEs obtained under Case 1 at 39 stations. During the validation period,
the Case 2 results reflected average RMSEs that were 6.3% (range: 1.2–25.4%) smaller
than those of Case 1 at 23 stations. In the calibration period, the drought period-suitable
parameters were shown to be effective for most stations. Although the number of effective
stations decreased during the validation period, these parameters were still effective for a
significant number of stations.

5. Discussion

In this study, the optimal parameters and parameter sensitivities associated with the
analog downscaling process were explored for South Korea, and the added value provided
by the optimal parameters for the drought period was reviewed. In this section, we discuss
the results and limitations of this work, as well as future research ideas.

To review the usefulness of the searched parameters, the parameters for the normal pe-
riod were compared with the results of previous studies. Regarding the predictor variables,
previous studies have indicated that it is advantageous to use a combination of predictors
rather than a single predictor in the downscaling process [20,21,27]. Several previous
studies have also suggested that prcp, which is estimated by climate models, is among the
best predictors for downscaling precipitation [13,27,40,48], and they showed that the use
of circulation variables can improve precipitation downscaling results [29]. These results
are consistent with the results of this research. However, some studies have mentioned
that msl, z850, z500, and t850 are informative for the downscaling approach [29,49], but in
this study, the performances of these predictors were relatively low compared to the other
predictors. This was because the predictors that were not reviewed in previous research
achieved better performances than these suggested predictors.

For D size, previous studies have revealed that small domains are advantageous for
downscaling, and due to the influence of the ocean, the D sizes of the stations in these
coastal regions are larger than those of the stations in inland regions [25,27]. These studies
presented characteristics that were similar to those of the results of this research. For K
size, in previous studies, the appropriate K was 30 considering the size of sample data and
the number of degrees of freedom [16], but according to the results presented in this study,
effective performance was achieved at a relatively low K. This may have been caused by
the use of different downscaling methods. The downscaling method in this study was a
simple averaging approach rather than a regression technique. T size is not an effective
parameter for downscaling daily precipitation, and previous research also mentioned that
T size is mostly effective for long-term downscaling or forecasting research rather than
daily downscaling [50]. Since most of the parameters explored in this study were consistent
with those of previous studies, this inference is reasonable. Therefore, it is concluded that
the suggested parameters in the normal period are informative in the application of analog
and other downscaling approaches in South Korea.

Several aspects must be improved regarding the search for downscaling parameters
due to the lack of related research conducted in South Korea. In this study, a sequential
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methodology was adopted to search for downscaling parameters, and this methodology
could not consider combinational effects among parameters. The sequential results were
thus discussed as semi-optimized parameters [39], and a global optimization methodology
was proposed to conduct complete optimization. Since the global optimization methodol-
ogy consumes vast computational resources, there are few applied cases, but this direction
should be considered in the future. Additionally, the searched parameter set is expected
to differ depending on the selected reanalysis product [39,51]. In this study, ERA5, one
of most advanced reanalysis datasets available [39,52], was applied, but it is necessary to
examine how the parameter search results would be affected by the use of other reanalysis
data. Lastly, although the parameter sensitivity and quantitative values are presented in
this study, the characteristics of the increase, decrease, or bias of the downscaling results
according to each parameter were not analyzed in detail. Further detailed follow-up studies
are needed to improve the parameter search. It is also necessary to consider a decision
tree-based methodology, which can be a powerful tool for such detailed studies [53–55].

The search parameters for the drought period exhibited advantages in the downscaling
process for the drought period. However, the stability of the parameters was relatively low,
and to apply the parameters that were suitable for the drought period to downscaling, it
is necessary to improve the stability of the parameters. In this study, the drought period
was classified by using only the amount of precipitation. This simple drought classification
methodology may not be sensitive to the holistic extraction of drought periods, which
have valid relationships with other large-scale predictors. It is not difficult to find studies
that have attempted to analyze the synoptic weather patterns associated with drought
occurrences [35–37]. Therefore, if drought classifications are conducted based not only
on precipitation but also on these synoptic weather patterns, drought periods that are
highly correlated with synoptic weather patterns can be derived. This sensitive drought
classification process could improve the stability of the downscaling parameters used to
represent drought conditions.

In addition, to derive more stable drought period parameters, it is necessary to apply
a seasonal parameter extraction methodology. Because South Korea is dominated by the
Asian monsoon climate and experiences large monthly precipitation variations, the rainfall
mechanisms in this region differ substantially from season to season. Therefore, if a single
parameter is derived without considering these mechanisms, the stability of the resulting
parameters may be poor. Thus, methodologies in which seasonal effects are considered
must be applied to both normal and drought periods.

6. Conclusions

In this study, optimal parameter sets, that are suitable for the downscaling of daily
precipitation in the cases of normal and drought periods in South Korea, were presented,
and the added value of considering the optimal drought period parameters was elaborated.

As a summary of the parameter search results for the normal period, the sensitivities
of the parameters to the downscaling performance were large in the following order:
the predictor variables, D size, and K size. The combination of predictor variables was
more advantageous than a single predictor. The combination of prcp and the circulation
variables yielded the best performance. For D size, the smallest grid was advantageous
for downscaling, and a relatively large D size was effective for the southwest coast of
South Korea. The average K size was 13.38, and T size was meaningless with respect to
downscaling performance. The normal period parameters were reasonably calculated due
to their relatively high stability and their consistency across other studies. This result is
valuable because it can provide a reference not only for analog downscaling but also for
other downscaling methods for South Korea.

As a summary of the parameter search results in the drought period, the order of the
parameters in terms of sensitivity was similar to that of the normal case. However, the
parameters were much more sensitive than in the normal case. For the predictor variables,
as in the normal case, the combination of prcp and the circulation variables yielded high
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downscaling performance, but the selected variables were different from those used in
the normal case at 70% of the stations. For D size, the smallest grid was also effective
for downscaling, and the average K size was 12.3% larger than that in the normal case.
T size was also not effective for the downscaling of daily precipitation. To examine the
added value provided by the drought period parameters, the performances of the normal
parameters and the drought parameters were compared for the drought period. The
downscaling performance achieved based on the drought parameters was better than that
yielded based on the normal parameters at most stations. It is concluded that suitable
drought parameters provide added value in the downscaling process.

This study was meaningful in that it provided downscaling parameter information
with high usability with regard to the South Korean region, where climate change and
spatial downscaling studies are being actively conducted [5,13,53]. In addition, this study
represents a scientific contribution in that it presents a new perspective for achieving
improved downscaling performance for drought periods by considering drought conditions
when searching for downscaling parameters. In the future, more downscaling approach
studies considering these conditions are expected to be conducted to improve the overall
downscaling performance.
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