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Abstract: The Peace River is a critical water source in southwest Florida, United States. The watershed
contains many phosphate mines that decrease water safety. Whether phosphate mining leads to
a reduction in surface runoff and affects water quality in the Peace River Basin has been a highly
controversial subject. Thus, the environmental impacts of phosphate mining in the Peace River were
assessed. The Soil and Water Assessment Tool (SWAT) model is a widely used physical-mechanism-
based distributed hydrological model that uses spatial distribution data, such as topography, soil,
land use, and weather, to predict water, sediment, nutrient, pesticide, and fecal bacteria production.
Based on a SWAT model, runoff, total nitrogen (TN) load, and total phosphorus (TP) load at the outlet
of the Peace River Basin from 2001 to 2018 were investigated. The applicability of the four uncertainty
methods in the hydrological simulation of the basin was assessed. The runoff at five stations in a
specified mining area was simulated to analyze the impact of human-dominated land use changes
caused by phosphate mining on the water environment. The results for the pre- and post-mining
periods showed that the land use transfer in the study area experienced large fluctuations and that the
land use change had a significant impact on the runoff (the outlet site decreased by 44.14%), indicating
that phosphate mining has a significant effect on reducing runoff in the basin. An analysis of three
scenarios (pre-mining [s1], post-mining [s2], and reclamation [s3]) showed that during s1–s2–s3, the
change in mining land area is large (increased by 142.86%) and that TN and TP loads increased,
indicating that human activities mainly affect the water environment through phosphate mining.
This is mainly because a large amount of wastewater containing high concentrations of inorganic
chemicals, which is produced in the process of phosphate mining and processing, overflows directly
or from the sedimentation tank into the river. In summary, the simulation results showed that the
changes in runoff and pollutants were attributed to phosphate rock mining. Therefore, strengthening
the management of phosphate mining and adopting effective protection measures is of substantial
significance for the effective protection of water resources. By analyzing the measured data, this study
can help people understand more actual situations and further evaluate the impact of phosphate
mining activities on the water environment. The simulation results can also be used to predict the
future trend of runoff and water quality in the Peace River Basin and provide a decision-making basis
for government management departments to issue water resource protection measures.

Keywords: phosphate mining; SWAT model; uncertainty analysis; land use change; runoff change;
total nitrogen and phosphorus load changes

1. Introduction

With the development of modern industry and science and technology, human de-
mand and exploitation of phosphate mineral resources have increased, leading to pro-
gressively more serious pollution and damage to the environment [1,2]. These include
the hazards of general mining, such as the wasting of land and destruction of vegetation
caused by collapses, landslides, the cracking of geological bodies, and the random piling
of slag [3,4]. Damage to the ecological environment and pollution affect not only the
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sustainable development of the economy and society but also individuals’ health, which
has become a prominent human issue. Nonpoint source pollution from phosphate mining
areas is a potential risk to ecosystems in many parts of the world [5–7]. The environmen-
tal problems of phosphate mining affecting the river basin environment have attracted
attention worldwide [8,9]. Many scholars have conducted in-depth research on this subject,
and their topics can be broadly categorized into TP pollution, heavy metal pollution, and
radioactive pollution [3,8,9].

Phosphate mining in Florida began in the late 19th century [10]. There are 27 phosphate
mines in Florida, covering more than 1821 km2. Phosphate mining disturbs between 12 to
24 km2 annually in Florida. Approximately 25–30% of these lands are wetlands or other
surface waters [11]. There has been a longstanding debate among residents and government
officials in Florida on the impact of phosphate mining on runoff [9,10,12–14]. Furthermore,
the flow of the Peace River was less in 1970–1999 than in 1940–1969. The Peace River is
the source of drinking water for four coastal counties in southwest Florida, and the debate
has intensified with the increasing dependence of the downstream water on surface water
flow [15–17]. In addition, the use of the Peace River to treat phosphate and other waste
has generated local and statewide attention because of the resulting river water pollution.
Recently, this concern has expanded to its potential impact on the groundwater supply. If
contaminants enter the ground and mix with freshwater, the problem will become much
worse. In recent years, increases in mining activities and the number of chemical plants
have increased the amount of waste discharged into rivers.

In 2004, a survey of the Southwest Florida Water Management District (SWFWMD)
indicated that the decrease or increase in the Peace River flow relative to larger flows could
be attributed to substantial differences in rainfall and that the impact of phosphate mining
on runoff could not be confirmed [18]. However, over the past 70 years, several serious
man-made accidents (some in the last few years) attributed to Florida’s phosphate industry
caused highly adverse environmental impacts on Florida’s original “one class” of ecological
areas. Along the upper Peace River, a progressive long-term decline in streamflow has
occurred since 1931 due to a lowering of the potentiometric surface of the Upper Floridan
aquifer by as much as 18.3 m because of intensive ground-water withdrawals for phosphate
mining and agriculture [19]. A decrease was observed in the flow of the Peace River from
1965–1984 due to factors other than rainfall, for example, phosphate mining in Florida [20].

Although there have been some studies on runoff from phosphate mining areas [8,9,14,21,22],
they have mainly used biochemical or mathematical analysis methods to study runoff or water
quality, while using hydrological models to study the land use changes caused by human
activities (phosphate mining) and the impact on the environment is still relatively rare.
Mineral exploitation activities lead to changes in the type of land use in the mining area,
affecting the degree of pollution of the surface water environment [14,23–27]. Among
the many hydrological models, the Soil and Water Assessment Tool (SWAT) is a widely
used and distributed hydrological model based on physical mechanisms [28–30] that has
unique advantages in simulating runoff and water quality. This study simulated the
runoff and total nitrogen and total phosphorus loads of the Peace River from 2001 to 2018,
which can effectively evaluate and predict the impact of multi-year phosphate mining
activities on the water environment to provide a direct reference for better protection of the
water environment.

The purpose of this study was to investigate whether phosphate mining has harmed
the river environment that contributes to the Peace River. In this study, (1) the SWAT
hydrological model was used to simulate the runoff and TN and TP loads at the outlet of
the Peace River Basin from 2001 to 2018; (2) the applicability of four uncertainty methods in
the hydrological simulation of the basin was assessed; (3) the runoff at five stations in the
specified mining area was simulated to analyze the impacts of the land use change caused
by phosphate mining on the water environment; and (4) three scenario analyses (pre-mining
[s1], post-mining [s2], and reclamation [s3]) were conducted to assess the effect of phosphate
mining on water quality. The research results provide evidence on whether phosphate
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mining reduces surface water flow and affects water quality and provide a basis for the
management of phosphate mining activities and the planning of reclamation projects.

2. Materials and Methods
2.1. Study Area

The study area (960 km2) is located in the southwestern part of Florida (27◦29′45′′–
27◦50′5′′ N, 81◦34′0′′–82◦3′35′′ W). It has the characteristics of the coastal plain; for example,
it has high drainage density, encompasses many streams and rivers, and is connected to the
Peace River. Starting from Hancock Lake (1828 ha) in Polk County, south-central Florida,
the river flows southwest (211 km) through Hardy and De Soto Counties and then flows
into the Charlotte Harbor Estuary in Charlotte County (Figure 1).

Fresh water from the Peace River is essential for maintaining the subtle salinity of
Charlotte Harbor, which has various endangered species, is home to fisheries (shrimp, crab,
and fish), and is used for recreation. The Peace River has always been an important source
of water for nearby residents. On a good-flow day, the Peace River provides approximately
22.7 million liters of drinking water to residents of Charlotte, Sarasota, and De Soto Counties.
The upstream and downstream communities rely on the river to provide drinking water;
high-quality wildlife habitats; and support for key industries, such as fisheries, agriculture,
and ecotourism [5,31].
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Figure 1. Location of (a) the phosphate mine and sites in study area, (b) the Peace River Basin in 
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Figure 1. Location of (a) the phosphate mine and sites in study area, (b) the Peace River Basin in
Florida, and (c) the study area in the Peace River Basin.

In 1886, high-grade phosphates were discovered along the Peace River. Mining activity
along the Peace River proceeded both in the river itself and on the adjacent land [32]. In
the southwestern part of the county, water fluctuations associated with phosphate mining
substantially affected groundwater levels. The United States Geological Survey (USGS)
stated that there are areas prone to sinkhole formation in southwest Florida that may be
affected by large amounts of water (phosphate open pit) [33]. According to data from the
SWFWMD, the Peace River has been at risk of “serious hazards” due to reduced water
production, in part due to phosphate mining. There is widespread concern that mining
has reduced will continue to reduce downstream water quality and quantity. In 2004, the
American Rivers Organization declared the Peace River as one of the most endangered
rivers in the United States [34]. In making this designation, they listed the proposal to
expand the mining of phosphate belts as a major risk. Open-pit mining deprives the natural
surface profile of the land, changing the water quality and quantity of the flow into the
Peace River. The small amount of water flowing into the Peace River has a much higher
mineral content than that commonly found in the river. This difference affects the water
content in Port Charlotte, a residential community.
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2.2. Data Collection

The digital elevation model (DEM) used in this study was based on Shuttle Radar
Topography Mission data with a resolution of 30 m. The DEM data of the study area were
obtained by splicing, cutting, and tamping the data. The land use types in the study area
were divided into six types.

The necessary meteorological data for the SWAT model included daily precipitation,
daily minimum and maximum temperatures, daily wind speed, daily relative humidity,
and daily solar radiation data. The meteorological data of the study area were obtained
from the Bowling Green weather station. The Peace River runoff and water quality data
were measured by the Zolfo Spring station of the USGS (site number USGS02295637), and
the measured data were monthly flows from 2001 to 2018. The relevant data sources are
presented in Table 1 and were used to create the SWAT model.

Table 1. Data required for model operation and their sources.

Data Type Source Format

Digital elevation model (DEM) data Land Processes Distributed, NASA (30 m resolution) [35] GRID
Land use data Florida Southwest Water Management District (SWFWMD) [36] GRID
Soil type data SWAT US SSURGO Soils Database [37] GRID

Meteorological data NASA POWER Project [38] TXT
Hydrological data US Geological Survey (USGS) [39] TXT

2.3. Research Methods
2.3.1. SWAT Calibration and Uncertainty Programs

The SWAT model was developed by the US Department of Agriculture Agricultural
Research Service. It was used to predict the impact of land management measures on
water, sediment, and agrochemical production in large and complex watersheds with
different soil, land use, and management conditions [40]. SWAT calibration and uncertainty
programs (SWAT-CUP) were used to calibrate the SWAT model. This software can be
used to perform calibration, validation, sensitivity analysis (one-at-a-time or global), and
uncertainty analysis [41]. SWAT-CUP also has a graphical module for viewing watershed
visualizations and statistical reports using graphs of simulation results, uncertainty ranges,
and sensitivity.

2.3.2. Sequential Uncertainty Fitting Version Method

The sequential uncertainty fitting version (SUFI-2) method is based on the difference
between the simulated and observed variables [42]. It consists of a Bayesian framework
that determines the uncertainty through sequential and fitting processes. SUFI-2 performs
a combination optimization and uncertainty analysis using a global search method and
processes many parameters through Latin hypercube sampling. SUFI-2 is a semi-automated
method that makes the calibration process easier to execute in an achievable time range [43].
Researchers use this model because, if it is conducted manually, adding many parameters
to the model means a more complex calibration process and a larger amount of calculation.

2.3.3. Generalized Likelihood Uncertainty Estimation Method

The generalized likelihood uncertainty estimation (GLUE) method can estimate the
non-uniqueness of the best parameter set in the parametric model. This analysis is an un-
certainty analysis inspired by importance sampling or regional sensitivity analysis. Similar
to SUFI-2, GLUE explains all sources of uncertainty because the likelihood metrics are
associated with the parameter sets and reflect any impact of all of these error sources [44].

2.3.4. Parameter Solutions Method

The parameter solutions (ParaSol) method aggregates objective functions (OFs) into
global optimization criteria (GOC), minimizes these OFs or GOC by using the stochastic
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compound evolution algorithm (SCE-UA), and chooses between two statistical concepts to
perform an uncertainty analysis. The SCE-UA method is a global search method for the
minimization of a single function of as many as 16 parameters [45].

2.3.5. Particle Swarm Optimization Method

Particle swarm optimization (PSO) is initialized with a set of random particles (so-
lutions), and the best value is then searched by updating the algebra. In each iteration,
each particle is updated using the following two “best” values: the best solution thus far,
called pbest, and the other “best” value tracked by the particle swarm optimizer is the best
value obtained by any particle in the population to date, called gbest. When a particle has a
partial population as its topological neighbor, the best value is the local optimum, called
lbest. After finding the two best values, the particles update their speed and position [46].

2.3.6. Land Use Transfer Matrix

The Markov transfer matrix can further describe the mutual transformation of land use
types [47–49]. The transfer matrix can reflect the structure of land use types in different pe-
riods and show the transfer changes among different land types. Thus, the spatiotemporal
evolution of land use patterns can be understood more intuitively [50].

Pij =

∣∣∣∣∣∣∣
P11 · · · P1n

...
...

Pnl · · · Pnn

∣∣∣∣∣∣∣ (1)

In Equation (1), Pij is the transfer probability from land use type i to land use type j,
where 0 ≤ Pij ≤ 1, ∑n

j=1 Pij = 1, and the sum of the elements in each row is 1.
The conversions of land use types can be classified into four types:

(1) conversion from one type to another;
(2) a first transformation of one type into a second type and then to a third type;
(3) a first transformation into a second type and then back to the first type;
(4) a transformation from one secondary type to another within a type.

2.3.7. Sensitivity Analysis

In this study, the SUFI-2 method embedded in SWAT-CUP was used to analyze the
parameter sensitivity of the Peace River Basin. The widely used SUFI-2 method considers
the uncertainty of the input data, model structure, parameters, and observational data
and reflects it in the calibrated parameter range [51,52]. The method uses two indicators,
the p-factor and the r-factor, to evaluate the uncertainty of the parameters; the p-factor
represents the percentage of observed data included in the 95% confidence interval, and the
r-factor represents the density of the samples within the 95% confidence interval. In theory,
the closer the p-factor is to 1 and the closer the r-factor is to 0, the closer the simulation
results are to the observed data [53].

3. Results and Discussion
3.1. Sensitivity Analysis of Parameters

There are many parameters involved in the calculation of the SWAT model, which
leads to a long running time of the model and increases the uncertainty of the simulation
results of the model to a large extent [54]. In order to improve the applicability of the
model as much as possible and reduce the phenomenon of “similar parameters and same
effects”, it is necessary to conduct a sensitivity analysis of related parameters. In this study,
eight parameters, including the groundwater delay time (GW_DELAY), effective hydraulic
conductivity in main channel alluvium (CH_K2), baseflow alpha factor (ALPHA_BF), and
average slope steepness (HRU_SLP), were selected to calculate the sensitivity of each
parameter respectively. The specific results are shown in Table 2. Among them, t-stat
represents the relative significance of the parameter; the larger its absolute value, the more
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sensitive the parameter is. The p-value represents the confidence level of the parameter, and
the closer its value is to 0, the more important the parameter is. It can be seen in Table 2 that
the top four parameters of sensitivity are GW_DELAY, CH_K2, ALPHA_BF, and HRU_SLP.

Table 2. Results of the parametric sensitivity analysis.

Parameter Name Physical Meaning Modification Ranges T-Stat p-Value Order

GW_DELAY Groundwater delay time v 0~150 −68.63 0.00 1

CH_K2 Effective hydraulic conductivity
in main channel alluvium v 0~350 48.04 0.00 2

ALPHA_BF Baseflow alpha factor v 0.4~1 −25.19 0.00 3
HRU_SLP Average slope steepness v 0~0.05 −12.10 0.00 4

CN2 Initial SCS runoff curve number
for moisture condition II r −1~−0.2 3.18 0.00 5

ESCO Soil evaporation compensation factor v 0.1~0.5 2.15 0.03 6
SLSUBBSN Average slope length r 0~1 2.06 0.04 7

SOL_AWC Available water capacity
of the soil layer r 0.5~1 −1.14 0.26 8

v means to replace the existing parameter value with the given value, r means to multiply the existing parameter
value by (1 + a given value).

3.2. Runoff Simulation Analysis at the Mining Area Outlet

The calibration and validation of the parameters of this study were based on monthly
data from January 2001 to December 2018, measured at the outlet station (USGS02295637),
with 1999–2000 as the warm-up period, 2001–2014 as the calibration period, and 2015–2018
as the validation period. The Nash—Sutcliffe efficiency coefficient (NSE), determination
coefficient (R2), p-factor, and r-factor were used as evaluation indexes of the simulation
results. The fitting results of the measured values of runoff and the simulated values are
shown in Figure 2a, and the behavior parameter probability density distributions of the four
uncertainty methods are shown in Figure 2b. The statistical results of the four uncertainty
methods are presented in Table 3.
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riods: (a) observation and simulation runoff; (b) behavior parameter probability density distribu-
tions of the four uncertainty methods: the sequential uncertainty fitting version (SUFI-2), general-
ized likelihood uncertainty estimation (GLUE), parameter solutions (ParaSol), and particle swarm
optimization (PSO).

Table 3. Evaluation indexes of the simulation results in the calibration period (2001–2014) and the
validation period (2015–2018).

Index Period SUFI-2 PSO GLUE ParaSol

Nash–Sutcliffe efficiency coefficient (NSE) calibration
validation

0.65 0.65 0.65 0.64
0.76 0.68 0.70 0.67

Determination coefficient (R2) calibration
validation

0.65 0.65 0.65 0.66
0.79 0.76 0.77 0.77

p-factor calibration
validation

0.51 0.33 0.48 0.26
0.46 0.31 0.29 0.25

r-factor calibration
validation

0.45 0.44 0.23 0.24
0.42 0.38 0.16 0.23

As shown in Table 3, the model results fulfill the requirements for the four uncertainty
methods in the calibration and validation periods, in compliance with the standards of
NSE ≥ 0.5 and R2 ≥ 0.6. The NSE and R2 of the SUFI-2 and GLUE methods in the validation
period were higher than those of the other two methods. Thus, subsequent TN and TP load
simulations were based on the SUFI-2 and GLUE methods.

3.3. Simulation of Total Nitrogen and Total Phosphorus Loads of Nonpoint Source Pollution
at Outlet
3.3.1. Calibration and Validation

Accurate simulation of the flow rate is the basis of the water quality simulation. This
study selected 1999–2000 as the preheating period, 2001–2010 as the calibration period,
and 2011–2018 as the validation period. After calibrating the runoff, the loads of TN and
TP were calibrated and validated. The model TP and TN load simulations obtained using
the SUFI-2 and GLUE methods are shown in Figure 3. The evaluation indicators of the
final results are presented in Table 4. As shown in Table 4, for the TN load simulation, the



Water 2022, 14, 1074 9 of 22

result of the GLUE method is better than that of the SUFI-2 method as a whole (NSE and
R2 are higher in both the calibration and validation periods). For the TP load simulation,
the simulation results of the GLUE and SUFI-2 methods are basically the same.
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Table 4. Evaluation indexes of the total nitrogen and total phosphorus load simulation results.

Uncertainty Method Index Period Total Nitrogen Load Total Phosphorus Load

SUFI-2
NSE calibration

validation
0.62 0.6
0.75 0.76

R2 calibration
validation

0.63 0.6
0.75 0.75

GLUE
NSE calibration

validation
0.64 0.6
0.76 0.75

R2 calibration
validation

0.66 0.6
0.77 0.77

3.3.2. Probability Density of Behavior Parameters

The behavior parameter probability density distributions of the TN and TP loads are
shown in Figure 4 for the calibration and verification periods. As shown in Figure 4a, when
simulating the TN load, the probability density of the GLUE method was greater than that
of the SUFI-2 method when the calibration period NSE was approximately 0.5, whereas
the probability density of the GLUE method was smaller than that of the SUFI-2 method
when the NSE was approximately 0.6. As shown in Figure 4b, in the validation period, the
probability density of the GLUE method for the TP load was greater than that of the SUFI-2
method when the NSE was approximately 0.5, whereas the probability density of the GLUE
method was smaller than that of the SUFI-2 method when the NSE was approximately
0.7. The results when simulating the TN load show that the GLUE method has a lower
probability of obtaining a higher NSE than the SUFI-2 method and that the GLUE method
requires more runs and a longer run time to obtain a better NSE.

As shown in Figure 4c,d, when simulating the TP load, the probability density of the
GLUE method in the calibration and validation periods is greater than that of the SUFI-2
method; therefore, the GLUE method is superior to the SUFI-2 method and has a greater
probability of achieving a higher NSE.

Therefore, we have demonstrated that the GLUE method is better than the SUFI-2
method for the simulation of TN and TP loads. Xue reached a similar conclusion when
calibrating sediment based on the SWAT model in the upper reaches of the Huolin River
Basin [55].
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3.3.3. Parameter Uncertainty Analysis of Total Nitrogen and Total Phosphorus Loads

The following parameters were selected: ALPHA_BNK (basic flow α coefficient of
riverbank water storage), LAT_ORGN (organic nitrogen in basic flow, mg/L), CN2 (SCS
runoff curve number), OV_N (Manning value of land flow), SOL_K (soil saturated hydraulic
conductivity, mm/h), SOL_Z (thickness of the soil surface to the bottom of each soil layer),
HRU_SLP (average slope), SOL_ORGN (initial organic nitrogen concentration in the soil
layer, mg/L), LAT_ORGP (organophosphorus in the basic flow, mg/L), USLE_P (factors of
soil and water conservation measures based on the USLE equation), SOL_BD (fresh soil
bulk density, g/cm3), CH_K2 (effective hydraulic conductivity of the main river, mm/h),
GWQMN (initial water depth in the shallow impoundment necessary when the regression
flow is generated, mm), P_UPDIS (distribution parameters of phosphorus uptake by plants).
Figure 5a indicates that for the TN load simulation, correlations between CN2 and SOL_K,
CN2 and LAT_ORGN, and SOL_K and LAT_ORGN are strongly positive, positive, and
negative correlations, respectively. The scatter distribution of NSE varies with the values of
some parameters. According to the results, in the final parameter range, corrected based
on GLUE, when the SOL_Z parameter value is large and ALPHA_BNK and CN2 take the
middle value of the parameter range, it is easier to obtain the best runoff simulation effect.

As shown in Figure 5b, for the TP load simulation, correlations between the parameter
LAT_ORGP and the other parameters, except for BC4, are strong. The results show that it
is easier to obtain the optimal runoff simulation effect when the LAT_ORGP value is large.
They also show that the parameter LAT_ORGP has a greater impact on the uncertainty of
the model simulation results than the other parameters.

Compared with GLUE running 5000 times for both the TN and TP load simulations, as
the number of GLUE runs increases (from 5000 to 20,000 times), the number of parameters
showing correlation decreases, and the correlation becomes more obvious.
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3.4. Effect of Land Use Change on the Phosphate Mining Area

The types of land use in the study area include grassland, woodland, cultivated land,
towns, mines, and water. Historic and sustainable phosphate mining in the Peace River
Basin has disrupted the land and affected the water quantity and quality of the river. Most
of the activity in the Peace River Basin is open-pit phosphate mining and recycling.

Five stations were selected in the study area, and the daily flow was used as the
observational data. Phosphate mining began in June 2004. This study defined “pre” as the
period before mining, and the corresponding land use data were from the land use map for
2004. It defined “post” as the period after mining, and the corresponding land use data
were from the 2006 land use map. The flow data observations of all stations during this
period were completed from June 2004 to July 2005.

In addition to the pre- and post-land use data, this study compared and analyzed the
land use data of the study area in 2014 (reclamation). Statistics of the land use types in the
pre, post, and reclamation study areas are shown in Table 5.

Table 5. Land use types in the study area.

Year Urban Mining Land Cultivated Grassland Forest Water Area

Area/km2
Pre 5.42 0.28 50.85 0.5 1.93 10.26
Post 5.23 0.68 51.48 0.04 4.22 7.59

Reclamation 5.13 11.07 9.71 29.53 4.34 9.45

Proportion/%
Pre 7.83 0.4 73.44 0.72 2.79 14.82
Post 7.55 0.98 74.35 0.06 6.09 10.96

Reclamation 7.41 15.99 14.03 42.65 6.27 13.65

As shown in Table 6, before and after phosphate mining (pre–post), the change in
cultivated land area is very small (increased by 1.24%), indicating that the impact of
agricultural activities on the water environment can be ignored; the change in urban
land area is very small (decreased by 3.51%); and the change in mining land area is
large (increased by 142.86%), indicating that human activities mainly affect the water
environment through phosphate mining. The total area of grassland, forest land, and
water area changed very little (decreased by 0.66%), indicating that changes in the water
environment were mainly affected by human activities.

Table 6. Change in land use types.

Land Use Type
Pre–Post Post–Reclamation

Changed Area/km2 Variation Range/% Changed Area/km2 Variation Range/%

Urban −0.19 −3.51 −0.1 −1.91
Mining land 0.4 142.86 10.39 1527.94

Cultivated land 0.63 1.24 −41.77 −81.14
Grassland −0.46 −92 29.49 73725

Forest 2.29 118.65 0.12 2.84
Water area −2.67 −26.02 1.86 24.51

As shown in Table 6, from phosphate mining to reclamation (post-2014), the cultivated
land area changed greatly (decreased by 81.14%), indicating that the negative impact of
agricultural activities on the water environment decreased; the change in urban land area
was very small (decreased by 1.91%); and the change in mining land area was large (in-
creased by 1527.94%), indicating that human activities mainly affect the water environment
through phosphate mining. The total area of cultivated land, grassland, forest land, and
water area decreased (16.26%), indicating that changes in the water environment were
mainly affected by human activities.



Water 2022, 14, 1074 14 of 22

3.4.1. Land Use Change from before to after Phosphate Rock Mining (Pre–Post)

As shown in Table 7, the land use type transfer from pre to post in the study area was
mainly from the water area, urban land, and grassland to arable land and forest. Among
these changes, the most drastic change was that in the water area to arable land and forest;
the changed areas were 0.67 km2 and 1.96 km2, respectively.

Table 7. Land use transition matrix from pre to post (km2).

Land Use Arable Land Forest Grassland Mining Urban Water Area Total

Arable land 50.10 0.09 0.04 0.28 0.27 0.08 50.86
Forest 0.14 1.69 0.07 0.00 0.03 1.93

Grassland 0.09 0.41 0.00 0.00 0.50
Mining Land 0.28 0.00 0.28

Urban 0.48 0.06 4.87 0.01 5.42
Water 0.67 1.96 0.06 0.10 7.47 10.26
Total 51.48 4.22 0.04 0.68 5.23 7.59 69.24

3.4.2. Land Use Change from after Phosphate Mining (Post) to 2014 (Reclamation)

As shown in Table 8, the most drastic change in land use from post to 2014 was the
change in arable land, which transformed into grassland and mining land; the transformed
areas were 28.67 km2 and 8.65 km2, respectively.

Table 8. Land use transition matrix from post to reclamation (km2).

Land Use Arable Land Forest Grassland Mining Urban Water Area Total

Arable land 9.68 3.12 28.67 8.65 0.68 0.67 51.47
Forest 0 1.15 0.16 0.95 0.07 1.88 4.22

Grassland 0 0.03 0.01 0.04
Mining land 0.68 0.68

Urban 0.03 0 0.61 0.11 4.37 0.1 5.23
Water area 0 0.03 0.08 0.67 0.01 6.8 7.59

Total 9.71 4.34 29.53 11.07 5.13 9.45 69.23

3.5. Simulated Runoff Changes before and after the Mining of Phosphate

Phosphate mining in the Peace River Basin, which began in 2004, has been conducted
mainly in the southeastern part of the basin. Thus, this study focused on an area of 69 km2

in this region (Figure 1). The daily flow data from five hydrological stations during the
period of mining from June 2004 to July 2005 were used to create the SWAT model. We
defined three scenarios: 2004 (pre-phosphorus mining, denoted as “pre”), 2006 (after
phosphate mining, denoted as “post”), and 2014 (denoted as reclamation). Due to the short
observation time (June 2004–July 2005, this study adopted a multi-site calibration method.
Sites SW-4, SW-6, and SWQ-4 were selected from among the five sites for calibration, and
sites SWQ-2 and outlet USGS02295637 were selected for verification (Figure 1). The daily
runoff simulation results for the five sites are shown in Figure 6. The relevant evaluation
indexes of the final simulation results of the model obtained by the SUFI-2 method are
shown in Table 9, and the results fulfill the standards.

Table 9. Evaluation indexes of the daily runoff simulation results of the five sites.

Time Site NSE R2

Calibration
SW-4 0.72 0.76
SW-6 0.68 0.74

SWQ-4 0.69 0.71

Verification SWQ-2 0.67 0.66
USGS02295637 0.64 0.8
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Figure 6. Daily runoff simulation of the five sites (a) SW-4, (b) SW-6, (c) SWQ-4, (d) SWQ-2, and
(e) USGS-02295637.

By using the calibrated SWAT model and retaining the meteorological and soil data as
unchanged, a land use type map of the pre- and post-mining periods was substituted into
the model to simulate the daily runoff of the five sites in the study area and to analyze the
influence of the land use change caused by phosphate mining on the runoff. The simulated
daily cumulative flow results for each site were calculated and are shown in Table 10.

As shown in Table 10, the flow at site SWQ-2 increased slightly (1.16%) after phosphate
mining, indicating that the land use type of the site was basically unchanged. Notably, two
of the five sites (SW-6 and SW-4) showed a flow increase of 34.6% and 29.47%, respectively.
This may be due to an increase of 2.29 km2 in forest area and a decrease of 2.67 km2 in
water area, resulting in a decrease in surface evaporation and an increase in runoff.

By contrast, the flow at the other two sites decreased significantly during the same
period: USGS02295637 (outlet) by 44.14% and SWQ-4 by 23.45%. After phosphate min-
ing, the water area and recharge decreased, leading to a decreased flow. As the mining
land area increased (142.86%), surface water was trapped in the mining area during the
mining process, reducing runoff. This situation must occur; otherwise, sand, silt, clay,
pollutants, and other mining by-products flow downstream and reduce the water quality.
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In addition, pumping operations require a large amount of water, which contributes to the
decomposition of ore and also leads to a reduction in surface runoff.

Table 10. Total cumulative simulated flow changes among the pre-mining, post-mining, and reclama-
tion periods at the five sites (m3/s).

Site Pre Post 2014 Pre–Post
Variation (m3/s)

Pre–Post
Change (%)

Post–
Reclamation

Variation (m3/s)

Post–
Reclamation
Change (%)

SW-4 637.24 825.03 821.61 187.79 29.47 −3.42 0.00
SW-6 638.99 860.11 855.17 221.12 34.60 −4.94 −0.01

SWQ-4 108.66 83.18 78.08 −25.48 −23.45 −5.1 −0.06
SWQ-2 232.29 234.98 232.32 2.69 1.16 −2.66 −0.01

USGS02295637 17,293.72 9660.85 9555.03 −7632.87 −44.14 −105.82 −0.01

Table 10 shows that the runoff of four of the five sites was almost unchanged from
post to reclamation. However, the flow of the outlet station (USGS02295637) in the basin
decreased significantly during this period, by 105.82 m3/s. The area of mining land in
2014 was 10.39 km2 larger than that of the post, the area of cultivated land was decreased
by 41.77 km2, and the total area of forest and grassland was increased by 29.61 km2. The
decrease in cultivated land, corresponding to the decrease in irrigation water and the
increase in vegetation area, is conducive to an increase in runoff, but the total discharge
of the water outlet of the river basin was still significantly reduced, indicating that the
continuous mining of phosphate rock had a great effect on the decrease in runoff of the river
basin (surface water is retained in the mining area during the mining process; pumping
operations require a lot of water).

In addition, from the pre- to post-mining period, the outlet site flow decreased by
44.14%, and SWQ-4 decreased by 23.45%. However, from the post-mining period to
reclamation, the total water outlet flow decreased by 0.01%, and SWQ-4 decreased by 0.06%.
The proportion of the decrease is lower because the decrease in cultivated land corresponds
to the decrease in irrigation water, and the increase in vegetation area is conducive to the
increase in runoff. In addition, it shows that reclamation and restoration are effective in
restoring runoff.

Figure 7 shows the annual runoff and precipitation at the total water outlet site from
2001 to 2018. Phosphate mining began in June of 2004. As shown in Figure 7, the runoff
in 2004 (before phosphate mining) and 2005 (during phosphate mining) of the total water
outlet site of the basin was greater than that in 2006 (after phosphate mining) and 2014.
The runoff in 2006 was smaller than that in 2014, mainly because the rainfall in 2014 was
higher than that in 2006, resulting in a corresponding increase in runoff. Overall, the runoff
before 2005 (2001–2005) was greater than that after 2005 (2005–2018), indicating that the
continuous mining of phosphate rock had a greater effect on reducing runoff in the river
basin. After 2006, the runoff increased gradually because the decrease in irrigation water
and the increase in vegetation area promoted an increase in runoff. Therefore, phosphate
mining would lead to decreased runoff in river basins.
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3.6. Effects of Land Use Change on the Total Phosphorus and Total Nitrogen Loads in the Phosphate
Mining Area

The TN and TP loads from 2001 to 2018 were simulated at the outlet, and the results
fulfilled the requirements. Among these, the result of the GLUE method was better than
that of SUFI-2; hence, the following sections use the simulation results obtained using the
GLUE method. Using a calibrated SWAT model and maintaining the weather and soil data
constant, we set the land use type map of 2004 as scenario 1 (s1), 2006 as scenario 2 (s2),
and reclamation as scenario 3 (s3). The TN and TP loads in the study area from 2001 to
2018 were simulated, and the effects of land use change on these parameters were analyzed.
The simulation results are shown in Figure 8. As shown in Figure 8, the multi-year TN load
simulation results under the three scenarios were ranked as s1 < s2 < s3, and the multi-year
TP load simulation results were s1 < s2 and s2 > s3.
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From before to after phosphate mining (s1–s2), the forest area increased, the water area
decreased, and the TN and TP loads increased. This occurred mainly because of the large
amount of wastewater containing high concentrations of inorganic chemicals produced by
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phosphate mining being processed directly or spilled from the sedimentation tank into the
stream, increasing the TN and TP loads in the river.

As the area of mining land continued to increase (s2–s3), the area of cultivated land
decreased, and the total area of forest and grassland increased. The decrease in the TP
load was mainly due to the decrease of arable land and urban areas, which leads to the
reduction in the fertilization of agricultural land and urban parks as well as the reduction
in domestic wastewater. Furthermore, vegetation absorbs nutrients, and the increase in
forest and grassland areas reduces the dissolved pollutants in water. The increase in the TN
load was mainly due to the increase in the mining area, which led to a continuous increase
in the TN content of the discharged wastewater.

4. Conclusions

The Peace River is a critical water source in southwest Florida, United States. The
watershed contains many phosphate mines that decrease water safety. Whether phosphate
mining leads to a reduction in surface runoff and affects water quality in the Peace River
Basin has been a highly controversial subject. Thus, the environmental impacts of phosphate
mining in the Peace River were assessed. In this study, (1) the SWAT hydrological model
was used to simulate the runoff and TN and TP loads at the outlet of the Peace River Basin
from 2001 to 2018; (2) the applicability of four uncertainty methods (GLUE, ParaSol, PSO,
and SUFI-2) in the hydrological simulation of the basin was assessed; (3) the runoff at five
stations in the specified mining area was simulated to analyze the impacts of land use
change caused by phosphate mining on the water environment; and (4) three scenario
analyses (pre-mining [s1], post-mining [s2], and reclamation [s3]) were conducted to assess
the effect of phosphate mining on water quality.

The results showed that (1) the simulation results of the SWAT model in the study
area of runoff, TN and TP loads meet the requirements and have reasonable NSE and R2

values. (2) When simulating runoff, SUFI-2 and GLUE are better than the ParaSol and
PSO methods; when simulating TN and TP loads, GLUE is better than the SUFI-2 method.
(3) From before to after phosphate mining (pre–post), two of the five hydrological stations
showed increased flow; at one station, the flow was almost unchanged, and the other two
showed significantly reduced flow, with the flow at the outlet site decreasing by 44.14%.
From post-mining to reclamation, the outlet flow of the basin decreased significantly,
diminishing by 105.82 m3/s. Overall, the run-off before 2005 (2001–2005) was greater
than the runoff after 2005 (2005–2018), indicating that continuous phosphate mining has
significantly reduced the runoff in the basin. (4) Before and after phosphate mining (pre–
post), the TN load simulation result is s1 < s2, and the TN load increased by 7.66%; the TP
load simulation result is s1 < s2 and the TP load increased by 4.62%. This is mainly because
a large amount of wastewater containing high concentrations of inorganic chemicals, which
is produced during phosphate mining and processing, overflows directly or from the
sedimentation tank into the river. From phosphate mining to reclamation (post-2014), the
TN load simulation result was s2 < s3, and the TN load increased (13.80%), which was
mainly due to the wastewater discharged during phosphate mining and processing. The
TP load simulation result was s2 > s3, and the TP load decreased (3.50%), which was mainly
due to the reduction in chemical fertilizers required by agricultural activities.

In summary, land use change affects the water environment. Through the analysis of
land use change, it was proven that the change of water environment is mainly affected
by human activities, and human activities mainly affect the water environment through
phosphate mining. The simulation results show that phosphate mining has a large impact
on changes in runoff and pollutants. Therefore, government management departments
should be more cautious when issuing mining licenses to phosphate rock companies. At
the same time, they should strengthen day-to-day supervision of the mining and recla-
mation processes. In addition, a scientific long-term plan for water resource protection
should be formulated as early as possible to ensure the safety of water for production and
domestic use.
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5. Future

The results of this study provide two resources: a reference pertinent to the debate
on whether phosphate mining reduces surface water flow and affects the polluted water
environment and a basis for the management of phosphate mining activities and water
resource protection planning.
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