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Abstract: The impacts of climate change on the Nile River and Grand Ethiopian Renaissance Dam
(GERD) along with the increased water demand downstream suggest an urgent need for more efficient
management of the reservoir system that is well-informed by accurate modeling and optimization of
the reservoir operation. This study provides an updated water balance model for Aswan High Dam
Reservoir, which was validated using combined heterogeneous sources of information, including
in situ gauge data, bias-corrected reanalyzed data, and remote sensing information. To investigate
the future challenges, the spatial distribution of the annual/seasonal Aswan High Dam Reservoir
surface air temperature trends over the period from 1979 to 2018 was studied. An increase of around
0.48 ◦C per decade in average annual temperature was detected, a trend that is expected to continue
until 2100. Moreover, a set of machine learning models were developed and utilized to bias-correct
the reanalyzed inflow and outflow data available for Aswan High Dam Reservoir. Finally, a policy
tree optimization model was developed to inform the decision-making process and operation of the
reservoir system. Results from the historical test simulations show that including reliable inflow
data, accurate estimation of evaporation losses, and including new regulations and added projects,
such as the Toshka Project, greatly affect the simulation results and guide managers through how the
reservoir system should be operated in the future.

Keywords: Nile River; Aswan High Dam Reservoir; evaporation losses; policy tree; water balance

1. Introduction

Surface water reservoirs are important parts of water systems; therefore, their optimal
operation is key for effective management of water resources [1]. It is expected that more
countries will face water shortages in the near future, and as a result, more conflicts and
competition over shared limited rivers and lakes [2]. Studying reservoir systems involves
developing operational simulation models. Reservoir simulation models help operators
and managers to better assess the different operation policies and make informed decisions
under changing climate. These models provide great perspective on current and future
water budgets and help estimate water losses from reservoirs, as measuring losses is often
a challenging task. For example, the evaporation loss from the surface of a water reservoir
has been considered as a paramount factor in planning and operating reservoir systems,
especially in arid and semi-arid regions [3]. Thus, finding ways to reduce the amount of
evaporation loss from a reservoir, or by keeping the reservoir surface constant, plays an
important role in designing optimal operation policies [4].

Water 2022, 14, 1061. https://doi.org/10.3390/w14071061 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14071061
https://doi.org/10.3390/w14071061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-1744-5992
https://orcid.org/0000-0002-0429-3029
https://orcid.org/0000-0001-8915-7714
https://doi.org/10.3390/w14071061
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14071061?type=check_update&version=1


Water 2022, 14, 1061 2 of 22

Different simulations and optimization analysis techniques have been developed to
study reservoir systems, estimate losses from the reservoir systems, and offer appropriate
operational policies [5,6]. One of the important surface water reservoirs is the Aswan High
Dam Reservoir (AHDR). This reservoir retains the water in Lake Nasser and Lake Nubia as
a result of the construction of Aswan High Dam (AHD) in 1964. After the Soviet Union
offered to build the Aswan High Dam in 1958, the construction of the dam started in 1960
and was completed in 1964. This was followed by filling the reservoir until its construction
was finalized in 1970. This enabled the reservoir to reach its full capacity in 1976 [7].
As seen in Figure 1, Aswan High Dam Reservoir extends from latitudes 21.8 to 24.0◦ N
and longitudes 31.3 to 33.1◦ E in Egypt and Sudan [8,9]. Aswan High Dam Reservoir is
considered one of the largest man-made reservoirs in the world [10], with an overall length
of more than 500 km and a surface area of 5000 km2. The full capacity of the Aswan High
Dam Reservoir at the level 182 m is estimated to be 162.3 BCM [11,12]. Considering the
limited amount of freshwater resources in Egypt, Aswan High Dam Reservoir is considered
the national freshwater bank for the Egyptians. However, this reservoir has considerable
rates of evaporation loss (on average 12 BCM annually) [13]. In addition to the existing
water scarcity situation in Egypt, and as suggested by recent studies, Egypt will face over
the next decades the need for an additional source of water as large as the Nile to be able
cover its rapidly increasing demand [14]. After the construction of the Grand Ethiopian
Renaissance Dam (GERD), cooperation will be urgently needed for the joint operation of
these big dams on the Nile River [15–17]. More detailed climate change impact studies
should be conducted to study not only the increased amount of losses due to evaporation
from these reservoirs, but also future changes in demand; additionally, the Nile flow
variability should be addressed [18]. A recent global analysis of the climate change risk
to hydropower projects concluded that Aswan High dam will be at the highest risk of
flooding and scarcity under 2050 pessimistic scenarios [19]. This study investigated the
future challenges, examined the spatial distribution of the annual/seasonal Aswan High
Dam Reservoir surface air temperature trends over the period from 1979 to 2018, and
predicted future increasing trends until 2100.
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Global initiatives started to build a regularly updated database of global dams to
facilitate basin and global-scale management [20]. Various successful attempts [18,21–25]
were undertaken to overcome challenges associated with the scarcity and sharing of reliable
long-term hydrological data for the Nile River Basin using remote sensing data, and
reanalyzed data and regional and global model outputs. A satellite-based framework [26]
has been developed to include the Variable Infiltration Capacity (VIC) hydrologic model
information for efficient near real-time hydrological data sharing. Moreover, the model
was required by satellite observations, while the Aswan High Dam Reservoir storage was
estimated using altimeter data and visible imagery of the reservoir area. Another study [27]
assessed the average annual/seasonal variation of terrestrial total water mass on the River
Nile Basin and extracted underground water data from the Gravity Recovery and Climate
Experiment (GRACE). Furthermore, GRACE products were utilized to examine the trend
dynamics of terrestrial water storage in the Nile River Basin [21]. A recent study [28]
investigated the terrestrial water storage anomalies (TWSA) measured by GRACE satellites
to fill the gap in the field hydrological data for the region. Reservoir assessment tools
also can be developed based on combinations of satellites, operational hydrological model
outputs, and long-term field observations to quantify the dynamics of reservoir operations
around the world [29]. The need to search for new sources of information and gather
reliable data measurements calls for development of new and robust operational rules for
multi-purpose reservoir management that are supported by state-of-the-art simulation-
optimization models and performance assessment measures [30–33]. This study sought to
develop and test a set of machine learning models to bias-correct the reanalyzed inflow and
outflow data available for Aswan High Dam Reservoir. Moreover, a policy tree optimization
model was developed to inform the decision-making process and operation of the reservoir
system.

Machine learning is one of the trending approaches for modeling that has been applied
so far in various fields. A model based on neural network (NN) theory along with stochastic
dynamic programming (SDP) has been suggested to generate reliable and less vulnerable
policies for AHD [34]. Moreover, the artificial bee colony (ABC) algorithm was utilized
to provide decision-makers with the optimum release curves based on demand [35]. The
proposed release policy meets demand for 98% of the total period (historical data for
18 years). The operating rules for the Aswan High Dam have been re-evaluated through
an integrated remote sensing approach applying the surface energy balance algorithm for
land (SEBAL) for accurate evapotranspiration estimation of the stresses downstream [36].
Moreover, a variety of machine learning and metaheuristic techniques have been used in
past studies of reservoir operation [37–42]. A recent review study highlights the increasing
trend of studies on reservoir optimization including mathematical programming, open-
loop decisions, rule curves, dynamic programming, approximation in value space, and
approximation in policy space [43].

In the current study, an accurate simulation model that incorporates various elements
affecting the reservoir was developed. This model evaluates the effects of different manage-
ment scenarios and policies for the operation of the dam. In the absence of continuous and
reliable observed data, reanalyzed and historical simulation data were first bias-corrected
using linear regression (LR) and various machine learning methods. After preprocessing
the input data, a developed water budget simulation model was used to simulate the
reservoir operation and evaluate the accuracy of the data, gained from different sources,
by comparing the simulation results with historical reservoir level data. Finally, a policy
tree optimization model was then implemented to find the optimized structure of a policy
tree for Aswan High Dam Reservoir. The input data for the model incorporated various
historical in situ data along with remote sensing and bias-corrected inflow and outflow data.
In the following sections, first more information and background on AHD are presented.
Then, the data and methodology section provides detailed explanations on the used data
and their sources, such as remote sensing and historical data, and methods for analyzing
data and developing the policy tree optimization model are discussed. This is followed
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by an overview of the projected surface air temperatures under the four representative
concentration pathway climate change scenarios. Finally, the results and conclusions are
presented for the application of the policy tree optimization model to Aswan High Dam
Reservoir.

2. Aswan High Dam Reservoir Case Study

Aswan High Dam Reservoir, located on the Nile River at the border of Egypt and
Sudan, is an artificial reservoir formed as a result of construction of the Aswan High Dam.
Aswan High Dam Reservoir is one of the world’s largest artificial lakes. The construction
of the dam started in 1964 and was completed in 1970; dam operation started in 1976. The
water demand downstream of the reservoir is approximately 55.5 BCM/year, based on
an average natural flow of 84 BCM/year, with an annual allocation of 18.5 BCM/year for
Sudan. The evaporation losses from the reservoir are on average 10 BCM/year [44]. AHD
plays a pivotal role in the water resources and economic sectors of Egypt, and as a result,
the operation of the reservoir has an enormous impact on Egypt and part of the Sudanese
territories. The advantage of building this large dam, instead of a series of smaller dams, is
that it is able to help Egypt have better protection against long-term floods and droughts.
For example, AHD played an important role in mitigating the droughts between 1979–1987
and the floods between 1998–2002 [45]. The location of the lake is shown in Figure 1. AHDR
has several outflows, including the main spillway, the emergency spillways, the Toshka
uncontrolled spillway, and the water pumped for the Toshka Project.

As mentioned before, reliable assessment of evaporation is crucial in the water balance
modeling of the lake [46]. Many researchers [47–51] have investigated the evaporation in
Aswan High Dam Reservoir and concluded that the evaporation through the lake ranged
between 12 to 16 BCM/Year. The Ministry of Irrigation and Water Resources in Egypt
states that the yearly mean of daily evaporation in the Aswan High Dam Reservoir is
7.54 mm/day with a maximum value of 10.8 mm/day in June and a minimum value of
3.95 mm/day in December [47]. Another study [52] analyzed 10-year evaporation data
covering seasonal and interannual variations and concluded that, with a coefficient of
variation of 63%, the mean evaporation rate for Aswan High Dam Reservoir was 5.88 mm
per day, based on the Bowen ratio energy budget method. A detailed study [53] investigated
the sensitivity and predicted the uncertainty of 12 evaporation models to estimate long-
term evaporation based on 10 years of data. However, the error standard deviation of the
best model, the Bowen ratio energy budget (BREB) method, was 1.67 BCM per year based
on the previous calculations by [48]. In 2016, a study [54] applied the bulk aerodynamic
method over 20 years (1995/1996 to 2014/2015) and estimated the evaporation losses from
12.004 BCM to 15.53 BCM in 1995/1996 and 2007/2008, respectively, with an average of
13.62 BCM per year. Using GIS and remote sensing techniques [55], monthly evaporation
rates were investigated. The average annual evaporation rates in the year 2006 were also
estimated based on Aswan High Dam Authority (AHDA), surface energy balance system
(SEBS) and Terra Moderate Resolution Imaging Spectroradiometer (MOD16ET), at about
6.93, 6.38, and 6.61 mm/d, respectively. In 2019, it was proposed to calculate the accurate
spatial distribution of evaporation in the lake using a co-active neuro-fuzzy inference
system (CANFIS) [56]. CANFIS was also used in another study for evaporation prediction
in AHD [57]. From the literature, there are considerable differences between different
methods of estimation regarding evaporation from the reservoir.

For the operation of the reservoir, its storage has been divided into three zones: the
dead storage zone with a volume of 31.6 BCM and a top elevation of 147 m; the live storage
zone with a volume of 89.7 BCM and elevation of about 175 m; and the flood control
zone, which is nearly 40 BCM in volume and lies between the elevations of 175 and 182
m [58]. The operational policy is designed to provide for downstream demand as well as
prevent river damage. There are a few restrictions in place such as a maximum release of
250 MCM/day to avoid downstream erosion and maintain water levels around 175 m at
the beginning of the water year (August 1st) to fulfill high and low flood requirements.
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After the water level rises above 178 m, the 30 sluices of the emergency spillway are used
to release the extra water, if necessary, to prevent flooding. Additionally, the uncontrolled
Toshka spillway starts releasing the water towards the Toshka depression after the water
level reaches above 178 m. Mubarak Pumping Station, located on the left bank of the
reservoir, pumps water into El Sheikh Zayed Canal flowing to the Toshka Project. The New
Valley Project in Toshka was developed in the Western Desert by the Egyptian government
along with the huge Mubarak Pumping Station with a maximum discharge of 300 m3/s [59].

One of the mail challenges of developing an accurate long-term water budget model
for the AHD reservoir is the existence of the Toshka lakes [60]. In the flood season of 1998,
the water started to enter the Toshka depressions when the water level was above 178 m
above MSL [61]. In the same study, it was predicted that the Toshka lakes would start to
vanish in 2012 and disappear gradually by 2019. Globally, surface water temperatures
(SSTs) of the lakes have increased at an average rate of 0.34 ◦C per decade, similar to air
temperature trends [62], and are expected to increase 16% by 2100. This increase may
be also dependent on some local factors, such as solar radiation in this region, which is
characterized by the highest solar energy potential in the world [63]. In 2009, a study [64]
evaluated the expected evaporation losses from the Aswan High Dam Reservoir and
concluded the change would be quite negligible with an increase of only 0.29% due to
the combined impact of temperature rise, which would raise the humidity and reduce the
wind speed. With the population increasing and no other major water resources available,
developing an efficient long-term management plan for the reservoir to mitigate the effects
of climate fluctuation in the Nile River Basin is becoming both more challenging and
crucial [65].

3. Data and Methodology

In this section, the steps of the methodology are presented. First, the sources of data
used for simulation of the reservoir operation are described and the future perspectives
on the reservoir and corresponding data sources are presented. Then, the bias correction
process for the reservoir inflow and outflow data is explained, and finally, the simulation
model and policy tree optimization model are described in detail. Figure 2 shows the
general steps of the methodology.
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3.1. Data Gathering
3.1.1. Nile River Discharge

Nile River discharge data were obtained from the Global Flood Awareness System
(GloFAS) from 1979-01-01 up to near real-time. This dataset was freely downloaded from the
Copernicus Emergency Management Service (CEMS) via (https://cds.climate.copernicus.
eu/cdsapp#!/dataset/cems-glofas-historical?tab=overview, accessed on 20 March 2022).

These data were simulated by forcing the hydrological river routing model with
modeled gridded runoff data from global reanalysis. The land surface model that produced
the runoff was HTESSEL, and the river routing model component was LISFLOOD, run
with a 0.1◦ × 0.1◦ spatial resolution at a daily time step. It has been shown that this dataset
provides a relevant tool to estimate how much water is flowing in rivers [66].

Observed data for the River Nile discharge located at Aswan High Dam Station (1979–
1984), Dongola Station (1979–1984) were freely extracted from the Center for Sustainability
and the Global Environment (SAGE; http://nelson.wisc.edu/sage/data-and-models/
riverdata/keysearch.php?numfiles=50&startnum=1100, accessed on 20 March 2022). The
data were used to perform bias correction for the modeled Nile River discharge data.

3.1.2. Total Precipitation (TP)

Hourly gridded TP data (1979–2018) were extracted from the ERA5 database (ERA5,
fully described in the upper section about T2m ERA5). Three-hourly gridded data from
Tropical Rainfall Measuring Mission (TRMM) data with a 0.25◦ spatial grid (TRMM-3B42-
V7), 1998–2018 were collected. They used precipitation product (TRMM-3B42-V7) to
merge gauge measurements with multiple satellites and space-borne sensors, including
infrared, microwave, and radar data. TRMM-3B42-V7 provides a scientific tool to study TP
dynamics over a finer spatiotemporal resolution with some uncertainties [67–69]. (Due to
data availability, ERA5 TP was used only from 1979 to 1997 and TRMM data was used for
the remaining period (1998–2018).

3.1.3. Total Evaporation (TE)

Two different sources (Gleam; [51] and Global Land Evaporation Amsterdam Model
(GLEAM-https://www.gleam.eu/, accessed on 20 March 2022) were used separately to
estimate open-water evaporation over the High Aswan Dam Reservoir.

• Daily gridded data from GLEAM (GLEAM v3.3b), 2003–2020 were mainly based on
satellite data [70].

• Ref. [51] described a model to estimate TE (= 0.06164 (1 + 0.062633 u) (1-RH) es), with
known values for relative humidity (RH), wind speed at 2 m height above ground
(m/s), and the saturated vapor pressure (mb).

Total evaporation datasets were used as inputs to the model, and a comparison be-
tween the simulation results and historical observation of the lake elevation was performed.
The average monthly evaporation rate used during the simulation is presented in Figure 3.

3.1.4. Historical Lake Elevation Data

The data from the following sources were directly used in the model as a reference to
calculate the accuracy of the simulation.

• Aswan High Dam Reservoir Level Global Reservoirs and Lakes Monitor (G-REALM)-
TOPEX/Poseidon/Jason satellite series (a 10-day resolution).

• Toshka Flow-Level Relation [71].
• Volume Elevation Area Relation of Aswan High Dam Reservoir [72].

https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-glofas-historical?tab=overview
http://nelson.wisc.edu/sage/data-and-models/riverdata/keysearch.php?numfiles=50&startnum=1100
http://nelson.wisc.edu/sage/data-and-models/riverdata/keysearch.php?numfiles=50&startnum=1100
https://www.gleam.eu/
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3.2. Future Perspectives for Sustainable Management of the Aswan High Dam Reservoir

For future management of Aswan High Dam Reservoir, it is important to understand
the current and future warming variability. Modeling the future warming dynamic for
Aswan High Dam Reservoir is the key factor to project future evaporation, which has a
significant effect on water balance calculations. Evaporation projection merits our consider-
ation and will be discussed in our future work. However, the temperature variability for
the Aswan High Dam Reservoir future has been discussed here.

Hourly gridded T2m data, from 1979 to 2018, were extracted freely from the ERA5 with
a spatial resolution of 0.25◦ × 0.25◦ (https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels?tab=form, accessed on 20 March 2022). ERA5 replaced the
successful old version (ERA-Interim) with a significant improvement in its model physics
and core dynamics [73]. According to C3S (2017), ERA5 is strongly recommended to
analyze the current climate correctly.

Daily simulated data on surface air temperature (Tas) for the 2006–2100 period were
extracted based on three different Geophysical Fluid Dynamics Laboratory (GFDL) general
circulation models; GFDL-ESM2M [74,75], GFDL-CM3 [76], and GFDL-ESM2G [74,75].
Each model contains daily data covering the four Coupled Model Intercomparison Project,
phase five (CMIP5) future emission scenarios with a coarse grid resolution of 2◦ × 2◦;
RCP2.6, RCP4.5, RCP6.0, and RCP8.5. These realizations are freely available via the
GFDL website (ftp://nomads.gfdl.noaa.gov/CMIP5/output1/NOAA-GFDL, accessed on
20 March 2022). For these three simulations, the GFDL model ensemble mean was also
calculated. Direct annual biases (T2m minus Tas) were calculated for the four simulations
(Ensemble mean, GFDL-ESM2M, GFDL-CM3, and GFDL-ESM2G) to evaluate their per-
formance in describing the study area surface air temperature. Only the simulations that
realistically described the T2m over the overlapped period (2006 to 2018) were used to
project Tos through 2100.

3.3. Bias Correction

In this study, GloFAS data were used for reservoir inflow and outflow. These data were
strongly biased, so bias correction was needed before using them in modeling. The data
were split into training and validation datasets, and then, several different methods were
used and evaluated. First, an LR function was fit to the training dataset. The same process
was applied using three different machine learning methods, random forest (RF), support
vector regression (SVR), and multilayer perceptron (MLP). The inputs of the machine
learning (ML) models were the modeled streamflow data, historical streamflow data and
the number of months. Each ML model was first trained, and the hyperparameter was

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
ftp://nomads.gfdl.noaa.gov/CMIP5/output1/NOAA-GFDL
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tuned using the training dataset. In the next step, the LR and the three ML models were
utilized to bias-correct the validation dataset, and the results were compared. The flowchart
of the bias-correction procedure is illustrated in Figure 4.
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Since the reservoir plays a significant role in regulating the flow, the outflow follows a
simple pattern based on downstream demand. This changes the pattern and complexity
of the outflow compared to inflow. Different machine learning models perform better on
inflow and outflow. RF was chosen as the most accurate method for bias correction of the
inflow data, and MLP was chosen for outflow data based on the results of the validation.
The bias correction results are shown in Figures 5 and 6, and the Nash–Sutcliffe, R-squared,
and RMSE calculated for each method are presented in Table 1. The NSE and R-squared
for the best method of inflow and outflow bias corrections were both more than 0.6, which
was satisfactory. The time period shown in Figures 5 and 6 is the period of available field
data for Dongola and Downstream of AHD. After validating the machine learning models
during this period, the trained models were used to bias-correct the inflow and outflow of
the reservoir during the modeling period. These bias-corrected and validated data were
then used in the simulation model, which is described in the following.
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Table 1. Nash–Sutcliffe model efficiency coefficients for the bias-corrected inflow and outflow data
using different methods.

Reservoir Inflow

Linear Regression Random Forest SVR MLP

Inflow NS Validation 0.594 0.649 0.635 0. 631
Inflow R2 Validation 0.628 0.637 0.652 0.665

Inflow RMSE Validation 4090 3832 3970 3848
Inflow NS Calibration 0.637 0.799 0.698 0.691
Inflow R2 Calibration 0.639 0.811 0.704 0.692

Inflow RMSE Calibration 3974 2953 3601 3644
Downstream of Reservoir

Outflow NS Validation 0.598 0.434 0.558 0.649
Outflow R2 Validation 0.603 0.485 0.571 0.660

Outflow RMSE Validation 1063 1324 1096 992
Outflow NS Calibration 0.780 0.885 0.724 0.724
Outflow R2 Calibration 0.826 0.911 0.733 0.737

Outflow RMSE Calibration 698 514 806 798

3.4. Simulation Model

A mass balance model was developed in python for the simulation of reservoir
operation and water budget assessment. The evaporation and reservoir losses were given
to the model in mm. To convert these losses to volume, first reservoir surface area was
estimated using the volume-elevation-area curve, then evaporation losses and effective
rainfall volume were calculated based on the following formula:

PR[t] = P[t]× A[t − 1] (1)

L[t] = Ev[t]× A[t − 1] (2)

where PR is the precipitation volume, L is the evaporation loss volume, and P and Ev are
precipitation and evaporation loss height, respectively.

After calculating the losses and precipitation, the outflow from Toshka via uncontrolled
spillway was estimated using the formula developed by [71]:

TFlow[t] = 22.8 × (El[t − 1]− 178)1.6475 (3)

in which El is the storage elevation.
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Hydropower generation was estimated using the following formula:

P[t] = γ× hturbine[t]× Q[t]× η× n (4)

γ specific weight of water, Q water released for hydropower generation, η the efficiency
of turbines (0.85), n number of hours in the modeling time step and hturbine the head over
the turbines calculated as the difference between reservoir elevation and turbine elevation:

hturbine[t] = El[t]− Elturbine (5)

The mass balance equation for the Aswan High Dam Reservoir was formulated as
Equation (6):

S[t] = S[t − 1] + I[t]− R[t] + PR[t]− L[t]− TFLow[t]− SLoss[t]− TProject[t] (6)

where I is the inflow to the reservoir, R is downstream release, SLoss is seepage losses
and TProject is the volume of water pumped in Mubarak Pumping station to supply the
demands at Toshka Project. Seepage losses and Toshka Project demand volumes were given
to the model as input data. The reservoir storage was simulated using this mass balance
model and then the results were compared with historical storage data to test the accuracy
of the model and input data. This validated mass balance model for AHD was then used to
test the policy tree optimization model.

3.5. Policy Tree Optimization Model

In order to improve the current operation of the AHD, a policy tree optimization
model was used to find the optimized policy tree for the reservoir operation. The mass
balance model was modified to be able to run based on a pre-defined policy tree, integrated
with a policy tree optimization model developed by Herman and Giuliani (2018) [77], and
tested for 10 years between 1997 and 2007. This algorithm optimized the structure of the
policy tree using genetic programming.

A policy tree optimization algorithm, unlike a traditional optimization algorithm,
optimizes a set of predefined policies instead of a decision variable. A policy tree is a set
of decisions that are triggered based on thresholds of the defined indicators such as the
number of the month or reservoir inflow. Figure 7 shows a sample policy tree. In this
study, we used three indictors: number of months, inflow to reservoir and reservoir storage.
Based on the thresholds and the current value of the indicators, a policy was chosen in each
month. The policies in this study included flood control release, release demand (releasing
exactly as much water as downstream demand) and four hedging policies (releasing 60, 70,
80, and 90 percent of downstream demand).
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The structure of such policy trees is optimized in an iterative scheme using the muta-
tion and cross-over processes and based on the output of fitness or evaluation functions
that measure the efficiency of policy trees. Cross-over is the process of creating a tree by
randomly combining two chosen decision trees, called parents. The mutation is the random
changes made in a tree to ensure diversity, i.e., making sure the population is exploring a
wide and diverse decision space.

After the generation of a population in an iteration, the population is evaluated using
the fitness function, which is the reservoir simulation model.

The structure of the optimization algorithm is illustrated in Figure 8. The objective
function of the policy tree model is minimizing the sum of shortage cost and flood cost.
Flood cost itself is composed of two parts, the flood cost of exceeding the maximum release
of the reservoir and cost of going above the 178 m elevation:

Obj.Function = min(FloodCost + ShortageCost − Hydropower) (7)
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4. Results and Discussion
4.1. Historical Simulations

In this section, the historical simulation results are presented to validate the accuracy
of the mass balance model. There are many different estimations of the average monthly
evaporation rate from the reservoir, which are affected by different climate factors. We
used evaporation estimation from various studies [51,73,78–81], as well as the average
from all studies, in our simulation model to see which one produced the most accurate
estimation of reservoir water level. Figure 9 shows the resulting simulation based on all
evaporation data. As the Figure shows, many of these studies seem to underestimate the
evaporation rates. Among them, the evaporation estimation by Yao and Georgakakos (2003)
resulted in the most accurate simulation. The simulation result using Yao and Georgakakos
evaporation rate estimation is shown in Figure 10 separately. As the Figure and the NSE
values show, the simulation showed very good agreement with historical data, so we
chose this estimation as evaporation to estimate Toshka spillway flow and hydropower
generation. The historical simulations conducted in this study showed that using different
estimations of monthly evaporation rate would change the results significantly. This is
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expected in such a vast reservoir, where small changes in the evaporation rate drastically
change the total evaporation volume.
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Toshka uncontrolled spillway was modeled using the formulation presented by
ref. [71]. The modeled flow to Toshka through the uncontrolled spillway during the
simulation period is illustrated in Figure 11. As can be seen in the Figure, during 1998–2002
the release through Toshka spillway is the highest, and as the water level goes down after
2002, the Toshka release reaches zero, since the water level never goes above the level of
the Toshka spillway.
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Figure 11. Toshka Spillway flow in simulation model.

Total annual hydropower generation in the model was calculated and compared with
the result from another study [82]. Furthermore, ref. [83] performed a regression analysis
using hourly hydropower generation from 1988–2000 and developed a relation between
hydropower generation, release from reservoir and head over the turbine. We also used
their formula to estimate hydropower and compared with the simulated hydropower
generation. Figure 12 shows the annual hydropower generation in our model, regression
result and result from Moussa (2018). As the Figure shows, the calculated hydropower was
in good agreement with previous studies.
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According to the historical simulation tests, Yao and Georgakakos evaporation estima-
tion yielded accurate results both in terms of reservoir storage and hydropower generation.
Therefore, in the next stage, we used theses evaporation data.

4.2. Policy Tree Optimization Model

In this section, we present the results of the policy tree optimization model. As
described in the method section, the objective function is to minimize flood damage and
water shortage and maximize hydropower generation. The demand downstream of the
reservoir was set to the historical release of the reservoir, which was around 55 BCM
annually. The current monthly release of the reservoir is based on a simple rule curve that
specifies the amount of release in each month, as shown in Figure 13 [84].
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Figure 13. Aswan Reservoir monthly target release.

As Figure 14 shows, reservoir storage in the policy tree model is generally lower than
historical storage, since the model is maximizing hydropower generation and sometimes
releasing more water than the downstream demand. The modeled flow through the
uncontrolled Toshka spillway is plotted in Figure 15. Compared to the simulation model,
the Toshka flow decreased significantly, because the water level in the reservoir in the
policy tree model is lower. Figure 16 shows the annual hydropower generation in the policy
tree model compared with historical simulation. The Figure shows that in general, the
policy tree model increased hydropower production. In fact, the model increased total
hydropower generation in the modeling period by 3.8%. In the modeling period, there
was almost always enough water to meet downstream demand, and water level never rose
too high to risk flooding. As a result, the optimized structure of the policy tree model was
based on a tradeoff between hydropower generation and keeping enough water in storage
to meet future demand. The model releases water to increase hydropower production
as much as possible without imposing any scarcity downstream. The structure of the
optimized policy tree is shown in Figure 17.
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Figure 17. The optimized policy tree for the base scenario.

As Figure 17 shows, the optimized policy tree is very simple. During the period,
there is almost always enough water to supply the demand downstream, and the model
increases hydropower production by releasing more water whenever possible. Therefore,
the reservoir storage in the policy tree optimization model is generally lower. In order to
evaluate the operation of the reservoir and the recommended polices, more studies are
required, especially on evaluating different polices, future water demand and evaporation
losses.
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4.3. Current and Future Surface Air Temperature (T2m) over Aswan High Dam Reservoir

As mentioned before, current and future warming are being discussed as a basis to
give a primary direction for the future management of Aswan High Dam Reservoir. It
is clear from Figure 18 that maximum values of the annual/seasonal mean (from 1979 to
2018) T2m in Aswan High Dam Reservoir were concentrated in northern areas, and the
minimum values were generally in the southern grids. The annual, winter, spring, summer,
and autumn average T2m in Aswan High Dam Reservoir were 26.9, 19.5, 31.2, 33.4, and
23.5 ◦C, respectively, over the period 1979–2018. From Figure 18, we can conclude that
there was a significant range in seasonal and annual mean in Aswan High Dam Reservoir.
The annual mean in Aswan High Dam Reservoir reached its maximum value during 2010
(29 ◦C) and its minimum value during 1983 (25.2 ◦C) with a range of 3.8 ◦C. The seasonal
mean T2m reached its minimum during 1983 (15.9 ◦C), 1986 (29.5 ◦C), 1984 (31.5 ◦C), and
1982 (21.4 ◦C) for winter, spring, summer, and autumn, respectively. Similarly, the seasonal
mean T2m reached its maximum values during 2010 (22.8 ◦C), 2010 (32.6 ◦C), 2015 (35.2
◦C), and 2010 (26.4 ◦C) for winter, spring, summer, and autumn respectively.
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The annual T2m trends (from 1979 to 2018) in Aswan High Dam Reservoir (Figure 19) show
a significant positive trend (based on the Mann–Kendall test), ranging from 0.31 ◦C decade−1 in
spring to 0.61 ◦C decade−1 in winter, with an annual trend of 0.48 ◦C decade−1. During winter,
the T2m exhibits a more intensive warming trend than in the other seasons.
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Figure 19. Annual/seasonal surface air temperature time series for Aswan High Dam Reservoir.

The GFDL mini-ensemble simulation of projected Tas scenarios in the current century
indicates significant warming during the 2006–2100 period in Aswan High Dam Reservoir,
especially for the RCP8.5 scenario (Figure 20). The expected warming up to 2100, in
correlation to the 2006–2035 period, ranges from 0.45 ◦C (RCP 2.6) to 3.8 ◦C (RCP 8.5).
This significant warming trend for the current century gives an early awareness that the
evaporation rate over Aswan High Dam Reservoir is expected to increase, which would
increase the water scarcity for Egypt.
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Figure 20. Thirty-year running annual means of projected surface air temperatures (Tas) under the
four representative concentration pathway scenarios studied (RCP2.6, RCP4.5, RCP6.0, and RCP8.5)
relative to the 2006–2035 period for the mini-Ensemble mean GFDL model simulation in Aswan High
Dam Reservoir.

5. Limitations and Future Scope

The current study provides a framework for improving the future operation of the
AHD. However, in order to better study the future operation of the reservoir, updated and
accurate data as well as information about the operation of various projects affecting High
Aswan Dam, such as GERD, potential changes in the Nile flow itself due to climate change
and Toshka Valley Project, should be acquired and incorporated into the model. The policy
tree optimization model has the potential to improve the operation of the reservoir using
an easily interpretable policy tree, but the feasibility of the recommended polices needs
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to be thoroughly evaluated before application, and the effects of each policy on the river
basin should be studied.

6. Conclusions

In the River Nile, there is a lack of reliable data in terms of streamflow measurements to
model and manage the regional water resources, especially the operation of the Aswan High
Dam, as the AHD operation will be connected to all other dams, and it is not optimized
for energy as most of the upstream dams are. One way to address this issue is to use
the abundance of remote sensing and model simulation data available through different
sources. These data, however, can be strongly biased to a degree that using them without
correcting the bias is rendered impossible. Various methods could be used to alleviate
this problem. Here, random forest and MLP were identified as the best methods for bias
correction of inflow and outflow data, respectively. Since AHD has a significant effect on
regulating the flow, the inflow and outflow time series had different patterns, and as a
result, the model that works best for inflow is different from the ML model, which is more
effective for outflow.

To simulate the operation of Aswan High Dam, other data were required, such as
direct precipitation over the lake, volume elevation relations, operational rules, evaporation
rates, and historical lake level data. For precipitation and historical lake level, remote
sensing datasets were the best source of available data, and hence, were used directly in
modeling. Evaporation and precipitation data are particularly important for such a vast
lake as Aswan High Dam Reservoir. However, since Aswan High Dam Reservoir is located
in a very dry region, precipitation events rarely occur, and the amount of precipitation
is insignificant. Evaporation, however, plays an important part in the reservoir’s mass
balance. This was shown by our historical simulations. The historical simulations also
showed the importance of accurate modeling of Toshka uncontrolled spillway. The Toshka
flow relation by Mostafa (1998) was used in this study, as it resulted in accurate reservoir
storage simulations compared with historical data. In 1997, the Egyptian government
started a new project known as the New Valley Project or Toshka Project. As part of the
project, the Mubarak Pumping Station was built on Aswan High Dam Reservoir to pump
and divert the water through a canal to the Toshka Valley Project. In 2005, Mubarak Station
started operation. Inclusion of the operation of the pumping station in the model was
crucial and helped the model to simulate the decline in water levels during the period
2005–2007 more accurately.

Incorporating all the components of the reservoir and using remote sensing data and
monthly evaporation rate estimates, we were able to create an accurate model that simulated
the lake level with high accuracy (NS = 0.85). Using the developed simulation model, a
policy tree optimization model was also developed to investigate potential improvements
in the operation of the Aswan High Dam. A policy tree optimization model, unlike the
common optimization model, optimizes the structure of a tree using a set of predefined
indicators and actions instead of optimizing the decision variables. An advantage of the
policy tree model is that it requires considerably less time to run. Moreover, the output of
a policy tree optimization model is a decision tree that is easily interpretable and usable
by decision-makers. The policy tree optimization model was tested in the same period as
the simulation model (1996–2007). The optimized policy tree increased the hydropower
generation and generally kept the reservoir storage in a lower level. However, the feasibility
of the recommended polices needs to be thoroughly assessed before application. The results
of this study show that in the absence of field measurements, remote sensing data, with
some pre-processing, can be used to simulate and investigate improvements in the current
operation rule of the Aswan High Dam. The modeling framework in this study can be used
as a basis for further exploring the future of the reservoir system under climate change and
operational changes.
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