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Abstract: The ASM1 model was elaborated by the IWA Task Group for Mathematical Modelling, with
the aim of explaining and predicting the output values of organic matter concentration in activated
sludge processes, especially for domestic wastewaters. In recent years, ASM1 has been completed
with new components and extended to other biological processes, including biological membrane
reactors, activated carbon filters, and microalgae bioreactors. In this article, the essentials of this
model are studied by outlining the original topics that were formulated in the model, and by using
a practical example of a wastewater treatment plant (WWTP), which can clarify the application of
the ASM1. A protocol of approximation between the dynamic model and the experimental data
for the COD effluent concentration is presented, based on three steps of tuning and fine tuning,
and the corrected values of the kinetic parameters YH and µH,max are calculated in accordance
with the minimum error. In the simulation procedure, the baseline and dynamism are controlled,
comparing them to the experimental data line, and the values obtained for the kinetic parameters are
YH = 0.60 and µH,max = 0.40 d−1. The kinetic parameters reflect the activity of the mixed community
of microorganisms in the WWTP.

Keywords: biological wastewater treatment; dynamic model; activated sludge; ASM

1. Introduction

Biological wastewater treatment is strongly influenced by environmental perturbations.
Variations in temperature, influent organic matter, biomass concentration, and influent
flow modify the bacterial community activity and produce a modification in the output
concentration of the organic matter. Traditional stationary mathematical models do not
consider this situation, which occurs daily in wastewater treatment plants (WWTP).

A dynamic model is a non-stationary mathematical model, which considers the dy-
namic behaviour of the variables affecting the output parameters. The IWA Task Group
for Mathematical Modelling (International Water Association), conducted by Morgens
Henze, published the first activated sludge model (ASM1) [1] in 1987, which is a deter-
ministic model (based on basic engineering principles), initially formulated as a general
mass balance to the biological reactor. This original model was extended to phosphorus
and nitrogen removal, oxygen consumption, and sludge production [2–4]. All ASMs are
recorded in the IWA Report No. 9 [5].

The ASM1 includes 13 components (different types of substrates and biomass) and
8 fundamental processes (growth and substrate utilisation rates), resulting, initially, in
13 mass balance equations, with almost 20 kinetic parameters. The model was initially
proposed for domestic wastewater, and was validated more than a decade ago in its
application to specific cases of WWTPs [6,7]. The ASM1 is often too complicated for solving
predictions in real-scale operations at wastewater treatment plants. The characterisation of
wastewater for mathematical modelling with the ASM1 can sometimes be hard and time
consuming. In addition, the use of so many parameters for the model can result in poor
parameter identifiability [8].
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The ASM1 was designed to be adapted to the special characteristics of the wastewater
and the biological treatments applied. In other words, the system of differential equations is
limited to the components in consideration, and the process rates are selected as a function
of the biological treatment conditions.

In recent years, the ASM1 has been improved by including new components or
processes to the original model [9,10], because of the special and flexible configuration of
the ASM1, which permits continuous updates and adjustments. The application of this
dynamic model is not only possible for activated sludge processes [11–14], but also for other
biological treatments, such as membrane bioreactors [15,16] and microalgae systems [17].
In fact, the ASM1 represents the basis for the formulation of new mathematical models for
nutrient removal in WWTPs [18] and in granular activated carbon filters [19], and for the
application of activated sludge models (ASMs) to MBR systems [20,21].

The ASM1 has been applied to diverse biological processes, for suspension growth
or fixed growth, for bacteria or microalgae, but the detailed procedure of formulating the
model, related to the election of components and processes, and especially to the protocol of
simulation, has not been described in depth, and needs an explanation for more extended
use, mainly in WWTPs. Predicting the COD value in a WWTP under abnormal situations
or special environmental events is of great value for adequate correction of the effluents,
and for preserving the quality of natural streams.

In the present work, the ASM1 will be described in depth, and, as a novelty, a protocol
of simulation, based on the approximation between the dynamic model and real data
(tuning), will be proposed. A simulation of the output COD concentration will be performed
from a medium–high-sized WWTP (260,000 habitants), considering dynamism in the reactor
temperature (affecting µH), biomass concentration, and influent COD. The effect of dynamic
variables on the output parameter (COD) will be analysed from the biological treatment
point of view, explaining the behaviour of the bacterial community, focusing on the response
to organic matter removal.

2. Materials and Methods
2.1. Dynamic Model ASM1

The mathematical expression for the generic mass balance applied to the vector ξ,
representing substrate or biomass concentration, is as follows (Figure 1):

V
dξ

dt
= Qξin −Qξ + Vr(ξ) (1)

dξ

dt
= r(ξ) +

1
Θ
(ξin − ξ) (2)

where Θ in Equation (2) is the hydraulic residence time (HRT) and r(ξ) is the conversion
vector of the variable ξ (substrate utilisation global rate).
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Figure 1. CSTR scheme for the ASM1. ξ is the vector of reactor and effluent concentration, ξin is the
vector of influent concentration, Q is the influent flow rate, and V is the reactor volume.
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The substrate utilisation global rate (ri) in the ASM1 is a conversion rate for the
component i by the process j, as follows:

ri = ∑
j

νijρj (3)

where νij is the stoichiometric coefficient and ρj is the process rate. This equation de-
fines a differential equation system, in which every differential equation has the form of
Equation (2) for each component i of the model, affected by the different process rates
designed by the j subscript. The process rates that affect the components of the ASM1 are
described in the Peterson matrix (Table 1).

Two of the most remarkable and valuable points of the ASM1 are the division of
the components into fractions and the separation of the rates into processes. Organic
matter is divided into soluble and rapidly biodegradable (Ss), and particulate and slowly
biodegradable (Xs), so the notation S means soluble, X means particulate, and the subscripts
refer to the nature of the substrate. The most important processes affecting organic matter
removal are the aerobic and anaerobic growth of heterotrphs, and the decay and hydrolysis
of particulate organic matter (Table 2).

2.2. Uncoupling of the Components

When applying the ASM1 for the simulation of oscillation in the output organic
matter concentration in a WWTP, 3 differential equations must be written for soluble and
particulate substrates (Ss and Xs), and for heterotrophic biomass (XBH). The system of these
equations for the 3 components (numbers 2, 4 and 5 in Table 1), in accordance with the
process rates that affect them, is as follows:

dSs
dt = − µH

YH

(
Ss

Ks+Ss

)((
So

KOH+So

)
+ ηg

(
KOH

KOH+So

)(
SNO

KNO+SNO

))
XBH + kh

(
XBH

KxXBH+Xs

)((
So

KOH+So

)
+ ηh

(
KOH

KOH+So

)(
SNO

KNO+SNO

))
Xs +

1
Θ (Ss,in − Ss) (4)

dXs
dt =

(
1− fp

)
bHXBH +

(
1− fp

)
bAXBA − kh

(
XBH

KxXBH+Xs

)((
So

KOH+So

)
+ ηh

(
KOH

KOH+So

)(
SNO

KNO+SNO

))
Xs +

1
Θ (Xs,in − Xs) (5)

dXBH
dt = µH

(
Ss

Ks+Ss

)((
So

KOH+So

)
+ ηg

(
KOH

KOH+So

)(
SNO

KNO+SNO

))
XBH − bHXBH + 1

Θ (XBH,in − XBH) (6)

The complexity of solving these differential equations is evident and highly incre-
mented because variables are coupled among different equations. For solving differential
equations separately, coupled variables present in mass balance equations can be intro-
duced in the model as analysed parameters (discrete values). In this case, mass balance
equations become independent and can be solved separately. For example, the solution of
Equation (4) for soluble substrates predicts output COD values in biological treatments.
This procedure, in which numerical values of the dynamic variables are introduced for the
solution of differential equations, is named “uncoupling”.

2.3. Approximations in Process Rates

Equations (4)–(6) need to be approximated in order to reduce unnecessary complexity
and for good parameter identifiability, because having so many parameters leads to the
loss of a good response in the output variables. These approximations are in accordance
with the nature of wastewater and the operating conditions of the biological process.

Normally, in WWTPs, wastewater entering the biological process after primary treat-
ment has a relatively low concentration of solids, so hydrolysis is not a predominant process
in substrate reduction. In addition, oxygen concentration is known to be not limiting over
1.5 mg/L, and in biological processes, it is maintained over this value.
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Table 1. Peterson matrix for the ASM1. Components are recorded in columns and processes can be identified in rows.

i—Component→
j—Process↓

1
SI

2
SS

3
XI

4
XS

5
XBH

6
XBA

7
XP

8
SO

9
SNO

10
SNH

11
SND

12
XND

13
SALK

1-Aerobic growth of
heterotrophs − 1

YH
1 − 1−YH

YH
−iXB

−iXB
14

2-Anoxic growth of
heterotrophs − 1

YH
1 − 1−YH

2.86YH
−iXB

1−YH
14×2.86YH

− iXB
14

3-Aerobic growth of
autotrophs 1 − 4.57−YA

YA

1
YA

−iXB − 1
YA

−iXB
14 −

1
7YA

4-Decay of
heterotrophs 1 − fP −1 fP −iXB − fPiXP

5- Decay of
autotrophs 1 − fP −1 fP −iXB − fPiXP

6-Ammonification
of soluble organic nitrogen 1 −1 1

14

7-Hydrolysis
of entrapped organics 1 −1

8-Hydrolysis
of entrapped organic nitrogen 1 −1
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Table 2. Expression of the process rates for ASM1 in accordance with Henze et al. (2000). Numbers
of the processes are identified by j subscript.

Process Rate Mathematical Expression

1—Heterotrophs, aerobic growth µH

(
Ss

Ks+Ss

)(
So

KOH+So

)
XBH

2—Heterotrophs, anaerobic growth µH

(
Ss

Ks+Ss

)(
KOH

KOH+So

)(
SNO

KNO+SNO

)
ηgXBH

3—Autotrophs, aerobic growth µA

(
SNH

KNH+SNH

)(
SO

KOA+SO

)
XBA

4—Heterotrophs, decay bH XBH
5—Autotrophs, decay bAXBA
6—Organic nitrogen, ammonification kaSNDXBH
7—Hydrolysis of particulate organic matter kh

(
Xs/XBH

KX+Xs/XBH

)((
So

KOH+So

)
+ ηh

(
KOH

KOH+So

)(
SNO

KNO+SNO

))
XBH

8—Hydrolysis of particulate organic nitrogen kh

(
Xs/XBH

KX+Xs/XBH

)((
So

KOH+So

)
+ ηh

(
KOH

KOH+So

)(
SNO

KNO+SNO

))
XBH

(
XND
Xs

)

If these approximations are assumed, the process rates of the hydrolysis of particulate
organic matter (Table 2) are not considered in Equations (4) and (5), anoxic growth of
heterotrophs does not affect Equations (4) and (6), and oxygen concentration (Monod term)
in aerobic growth of heterotrophs is not limiting and, in consequence, is not considered in
Equations (4)–(6).

With these approximations, the system of these 3 differential equations is as follows:
Soluble substrate:

dSs

dt
= −µH

YH

(
Ss

Ks + Ss

)
XBH +

1
Θ
(Ss,in − Ss) (7)

Particulate substrate:

dXs

dt
=

(
1− fp

)
bHXBH +

(
1− fp

)
bAXBA +

1
Θ
(Xs,in − Xs) (8)

Heterotrophic biomass:

dXBH
dt

= µH

(
Ss

Ks + Ss

)
XBH − bHXBH +

1
Θ
(XBH,in − XBH) (9)

At this point, we must define which are constants in the model in time (kinetic
parameters) and which are dynamic variables, modifying in time and introduced as routine,
time-dependent numerical values in the differential equation to be solved. A mathematical
program must be elaborated for this purpose. Because of the use of discrete values for
the dynamic variables, which are present in several equations (XBH and µH), differential
equations can be solved separately (uncoupling).

2.4. Experimental Setup

Equation (7) is the differential equation in which the simulation of effluent COD
was obtained. Dynamic variables that affect the output COD value are biomass concen-
tration (XBH) and specific growth rate (µH); these are both influenced by temperature
(µH = µH,max 1.072(T−20)). Ss,in is also included as a dynamic variable because of daily
fluctuations in the WWTP. Equation (7) was solved by MATLAB R2021b [6,22], adjusting
the kinetic parameters YH and Ks, using the known range 0.40–0.75 for YH and using the
medium value of effluent COD for Ks [23].

The protocol of simulation is separated into three steps for the approximation of the
simulation line to the experimental data. In the first step (tuning on YH), the value of
YH is obtained, in the range 0.5–0.7 for µH,max = 0.1 d−1 as a fixed value. This value of
the maximum specific growth rate is low for better visualisation of the dynamism of the
simulation. In the second step (tuning on µH,max), the value of µH,max is selected maintaining
the fixed value for YH obtained in the first step. In the third step (fine tuning on µH,max),
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the value of µH,max is carefully adjusted, comparing errors between the simulation and the
experimental values.

2.5. Biological Treatment in WWTP

The wastewater treatment plant used in this study is a medium–high-sized plant,
designed for 260,000 habitants of the city of Salamanca (Spain). The scheme of the treatment
processes is described in Figure 2.
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Figure 2. Scheme of the WWTP. Average influent flow rate was 60,466 m3/d during the measur-
ing time. Total biological reactor volume (orange colour) was 37,240 m3, 4 chambers of 9310 m3

(Θ = 14.8 h), and oxygen concentration was maintained in 1.5 ± 0.3 mg/L.

2.6. Analytical Methods

COD was analysed as total COD in influent and effluent of the biological treatment,
following the standard method [24]. Biomass concentration in the biological reactor was
determined as MLSS (mixed liquor suspended solids), which is the solid residue after
evaporation at 103–105 ◦C in samples filtered by filters with a pore size of 0.45 µm [24].
The temperature was measured in the biological reactor by a thermocouple.

3. Results and Discussion
3.1. Dynamic Variables

The simulation of effluent COD in the biological treatment of a WWTP relies on
the solution of Equation (7), in which XBH, µH and Ss,in are the three dynamic variables
included in the MATLAB programme, as time-dependent, discrete values (analysed values).
These discrete values were obtained from Table 3.

Table 3. Experimental values for biological treatment measured in the WWTP between May 2020
and April 2021 (343 days). Data were supplied by the staff of the WWTP.

Day
CODin COD Temp Biomass

(mg/L) (mg/L) (◦C) (mg/L)

1 —- 23.7 17.6 2723
5 367 32.9 18.3 2160
7 302 27.3 18.5 2210
12 229 25.3 18.3 1967
14 250 24.1 18.9 1850
19 290 21.6 19.2 1477
21 338 21.0 18.7 1730
26 331 27.2 18.4 1623
29 365 34.1 19.0 1720
33 326 29.3 19.5 1367
35 369 31.1 19.8 1433
40 342 25.9 20.5 1790
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Table 3. Cont.

Day
CODin COD Temp Biomass

(mg/L) (mg/L) (◦C) (mg/L)

42 354 25.6 20.8 1787
47 290 23.7 21.1 1610
49 342 23.9 21.6 1647
54 291 26.2 21.4 1470
56 331 23.7 22.5 1447
61 269 18.6 21.7 1677
63 324 24.3 21.8 1277
68 284 45.6 22.0 1210
70 251 22.4 22.8 1310
77 364 31.4 22.4 810
82 478 25.9 22.9 2103
84 321 40.6 22.8 2263
89 265 21.5 21.6 1993
91 308 21.5 21.8 1770
96 278 21.1 21.8 1357
98 280 19.3 22.1 917

105 350 26.7 21.6 1790
113 321 27.5 21.1 1227
118 303 29.9 22.1 1410
120 322 35.0 21.4 1177
125 296 17.8 21.1 1527
127 267 22.7 21.1 1480
132 373 37.0 21.0 1673
134 368 30.2 20.3 1300
135 347 26.7 21.5 2027
139 384 26.9 19.5 1945
141 326 25.0 19.7 1715
147 390 27.2 19.8 1560
149 382 28.3 18.8 1623
153 408 23.6 18.8 1485
155 189 15.4 16.5 1895
160 244 18.1 17.4 1650
162 306 20.2 18.1 1968
167 352 27.6 18.1 1553
169 332 33.2 17.8 1618
173 198 23.2 14.9 1675
175 311 25.8 17.5 1635
180 300 33.9 17.2 1608
182 372 25.9 17.4 1490
187 369 24.7 17.0 2590
189 361 17.7 17.0 2215
194 392 27.3 16.5 2590
195 365 24.1 16.1 1895
197 469 12.6 15.7 2105
203 347 18.6 14.0 2255
208 349 24.9 15.4 1665
210 306 23.5 14.9 1860
215 340 29.5 15.1 2008
222 341 26.9 11.4 1475
229 379 37.3 13.5 1748
232 427 38.9 13.4 2045
236 396 32.1 12.2 2690
239 372 30.5 11.9 2483
243 384 30.7 12.1 2525
246 259 23.5 11.1 2778
250 277 53.2 12.5 2283
253 390 58.1 13.2 2325
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Table 3. Cont.

Day
CODin COD Temp Biomass

(mg/L) (mg/L) (◦C) (mg/L)

257 358 49.5 13.3 1948
260 114 28.1 13.8 2133
264 196 33.3 9.1 1808
267 215 24.0 11.6 3013
271 251 20.3 11.8 4375
274 253 24.8 13.0 3510
278 259 20.7 12.5 3165
281 264 27.4 13.1 2533
285 275 32.1 12.6 2575
288 134 23.6 13.8 2343
292 304 24.1 14.0 2205
295 300 26.8 14.1 1983
299 319 28.8 14.1 1838
301 284 24.3 13.9 1855
306 334 26.9 13.5 2260
309 323 47.6 14.8 1913
313 352 28.6 14.1 2008
320 329 30.8 14.7 2530
323 301 27.1 15.1 2340
327 287 22.7 15.1 2190
334 310 24.5 15.2 2050
336 283 27.4 15.9 2060
341 254 62.1 15.8 1830
343 235 19.9 15.7 1090

3.2. Tuning on YH

Tuning is the operation in which the simulation is adjusted to make it coincide with
the experimental data. The first time that the dynamic model response is checked, the
behaviour of YH should be assayed. The initial value of µH,max normally marks the baseline
of the simulation, and, in this first approximation, it was decided that µH,max would be low
for better visualisation of the mathematical response to the output of COD and the dynamic
variables, because the dynamism was expected to be reduced, increasing the µH,max value.
The value selected was µH,max = 0.1 d−1 (Figure 3), a low value compared with the ranges for
domestic wastewater in the literature: 0.45–1.0 d−1 [16], 0.6–13.2 d−1 [23], and 3.0–13.2 d−1

for the original ASM1 [1] were proposed. For tuning on YH, Ks = 27.7 mg/L (average value
of effluent COD) and Θ = 14.8 h (biological process of WWTP in Figure 2).

The main conclusion (Figure 3) in the prediction of the output Ss value in the WWTP
is that the higher the fraction of substrate incorporated into the biomass, the higher the
concentration of remaining organic matter after the biological treatment (YH = 0.7 elevates
the simulation line).

The elevation of the simulation line when the YH value was incremented can be
explained by the fact that the formation of the biomass is a slow process (synthesis reaction),
compared to the transformation of organic matter (oxidation reaction).

Mathematically, increasing the YH value in Equation (7) makes the derivative of Ss less
negative, because the negative term normally has a higher value in the equation, leading to
a smaller decrease from the initial value (output substrate value rises).

The value assumed for YH in the literature is normally 0.6 [5,11,12], and this is the
fixed value used in subsequent tuning assays.
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Figure 3. Tuning on YH for µH,max = 0.1 d−1. (a) YH = 0.6, (b) YH = 0.5 and (c) YH = 0.7. Blue upper
line is simulation data and coloured lower line is the evolution of real values (analysed data) after
biological treatment in the WWTP (Table 3, COD (mg/L)).

3.3. Tuning on µH,max

Specific growth rates are strongly affected by temperature in biological processes. The
mathematical expression of this influence is µH = µH,max 1.072(T−20), and modification of
the µH,max value will generate an inverse response on Ss. Increments in µH,max will decrease
the effluent organic matter concentration (Ss), because the substrate will be degraded to a
greater extent.

Figure 4 shows two situations, in which the simulation results in an underestima-
tion (a), where the simulation line predicts lower values of organic matter concentration
(µH,max = 0.6 d−1), and in an overestimation (b), with the simulation line over the line of
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experimental data (µH,max = 0.3 d−1). The simulation will be coincident for a value of µH,max
in between those values.

Water 2022, 14, x FOR PEER REVIEW 9 of 14 
 

 

The main conclusion (Figure 3) in the prediction of the output Ss value in the WWTP 

is that the higher the fraction of substrate incorporated into the biomass, the higher the 

concentration of remaining organic matter after the biological treatment (YH = 0.7 elevates 

the simulation line). 

The elevation of the simulation line when the YH value was incremented can be ex-

plained by the fact that the formation of the biomass is a slow process (synthesis reaction), 

compared to the transformation of organic matter (oxidation reaction). 

Mathematically, increasing the YH value in Equation (7) makes the derivative of Ss 

less negative, because the negative term normally has a higher value in the equation, lead-

ing to a smaller decrease from the initial value (output substrate value rises). 

The value assumed for YH in the literature is normally 0.6 [5,11,12], and this is the 

fixed value used in subsequent tuning assays. 

3.3. Tuning on μH,max 

Specific growth rates are strongly affected by temperature in biological processes. 

The mathematical expression of this influence is μH = μH,max 1.072(T−20) , and modification of 

the μH,max value will generate an inverse response on Ss. Increments in μH,max will decrease 

the effluent organic matter concentration (Ss), because the substrate will be degraded to  

a greater extent. 

Figure 4 shows two situations, in which the simulation results in an underestimation 

(a), where the simulation line predicts lower values of organic matter concentration (μH,max 

= 0.6 d−1), and in an overestimation (b), with the simulation line over the line of experi-

mental data (μH,max = 0.3 d−1). The simulation will be coincident for a value of μH,max in be-

tween those values. 

On the other hand, comparing the graphs in Figure 4, increments in the μH,max value 

lowered the dynamism in the dynamic model simulation (Figure 4a,c), and fluctuations 

in the output value were higher when μH,max was lower (Figure 4b). Increasing the μH,max 

value tempers dynamism because the simulation reduced the fluctuations of the output 

parameter (more visible for a higher reduction in substrate), which means higher actua-

tion of the dynamic model in Equation (7) [25,26]. 

 
(a) 

Water 2022, 14, x FOR PEER REVIEW 10 of 14 
 

 

 
(b) 

 
(c) 

Figure 4. Tuning on μH,max for YH = 0.6. (a) μH,max = 0.6 d−1, (b) μH,max = 0.3 d−1 and (c) μH,max = 0.5 d−1. 

Simulation is the blue line and analysed data is the orange line. 

3.4. Fine Tuning on μH,max  

When the simulation is approximated to the analysed data (Figure 4c), quantification 

of fitting (fine tuning) in the dynamic model, visualised in Figure 5, has to be performed. 

In Table S1 (Supplementary Material), the average error between the simulated and ana-

lysed data is presented, after the COD and simulated values in the table. In this case, the 

fine tuning in Figure 5 was solved for μH,max values close to 0.40 d−1 (0.38 and 0.42), with YH 

= 0.60 as a fixed value. The error is calculated by considering the analysed value as the 

true value, as follows: 

𝐸𝑟𝑟𝑜𝑟 =  
(𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)

𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑑 𝑣𝑎𝑙𝑢𝑒
×  100

  

The average errors show an overestimation for μH,max = 0.38 d−1 (error = 8.1%) and an 

underestimation for μH,max = 0.42 d−1 (error = −7.7%). The minimum error between the sim-

ulated and analysed values (COD (mg/L)) was obtained for μH,max = 0.40 d−1 (error = −0.5%), 

which was the value selected for the maximum specific growth rate of the community of 

microorganisms in the studied biological treatment of the WWTP. This value of μH,max is 

very close to the range 0.45–1.0 d−1 proposed by other authors [16,27]; although, in other 

articles, the proposed value is higher [28]. 

In Table S1 (Supplementary Material), high values of individual relative errors can 

be observed (as visualised in Figure 5). This is a normal result in dynamic simulations of 

biological treatments [15], in which the consequences of a “live” system are often ob-

served. The main reasons for overestimation and underestimation of the dynamic mathe-

matical model are especially related to the activity of biomass (active and inert fractions), 

attenuation and inertial effect of the bacterial community on fluctuations in temperature, 

Figure 4. Tuning on µH,max for YH = 0.6. (a) µH,max = 0.6 d−1, (b) µH,max = 0.3 d−1 and
(c) µH,max = 0.5 d−1. Simulation is the blue line and analysed data is the orange line.

On the other hand, comparing the graphs in Figure 4, increments in the µH,max value
lowered the dynamism in the dynamic model simulation (Figure 4a,c), and fluctuations
in the output value were higher when µH,max was lower (Figure 4b). Increasing the µH,max
value tempers dynamism because the simulation reduced the fluctuations of the output
parameter (more visible for a higher reduction in substrate), which means higher actuation
of the dynamic model in Equation (7) [25,26].
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3.4. Fine Tuning on µH,max

When the simulation is approximated to the analysed data (Figure 4c), quantification
of fitting (fine tuning) in the dynamic model, visualised in Figure 5, has to be performed. In
Table S1 (Supplementary Material), the average error between the simulated and analysed
data is presented, after the COD and simulated values in the table. In this case, the fine
tuning in Figure 5 was solved for µH,max values close to 0.40 d−1 (0.38 and 0.42), with
YH = 0.60 as a fixed value. The error is calculated by considering the analysed value as the
true value, as follows:

Error =
(simulated value− analysed value)

analysed value
× 100
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The average errors show an overestimation for µH,max = 0.38 d−1 (error = 8.1%) and
an underestimation for µH,max = 0.42 d−1 (error = −7.7%). The minimum error between
the simulated and analysed values (COD (mg/L)) was obtained for µH,max = 0.40 d−1

(error = −0.5%), which was the value selected for the maximum specific growth rate of
the community of microorganisms in the studied biological treatment of the WWTP. This
value of µH,max is very close to the range 0.45–1.0 d−1 proposed by other authors [16,27];
although, in other articles, the proposed value is higher [28].

In Table S1 (Supplementary Material), high values of individual relative errors can
be observed (as visualised in Figure 5). This is a normal result in dynamic simulations of
biological treatments [15], in which the consequences of a “live” system are often observed.
The main reasons for overestimation and underestimation of the dynamic mathematical
model are especially related to the activity of biomass (active and inert fractions), atten-
uation and inertial effect of the bacterial community on fluctuations in temperature, the
flow rate, and the substrate concentration [29,30]. A dynamic mathematical model does
not reproduce this behaviour of the bacterial community, no theoretical model is able to do
this, but its utility, especially for the prediction of the response to perturbations and the
oscillatory behaviour of the output parameter, is evident [31].

4. Conclusions

The ASM1 is the basis for the mathematical modelling of organic matter reduction
in aerobic biological wastewater treatment systems. Although the original model was
published more than 30 years ago, the configuration and flexibility of this model make it
almost universal in the explanation of biological treatment processes.

Understanding how it was formulated and how it works is of great value for the
mathematical modelling of real systems, and for new proposals in the modelling of special
systems. One of the most important steps in ASM1 use is the selection of the processes
involved after the components are selected. Adjustment and simplification of the dynamic
model are crucial for the correct application of this useful model.

When applying ASM1 dynamic modelling for the prediction of a WWTP, tuning
on YH and µH,max has to be elaborated. In the case of the WWTP of Salamanca (Spain,
260,000 habitants), Ks is fixed as the average value of effluent COD (Ks = 27.7 mg/L),
and Θ is in accordance with the reactor volume and the influent flow rate (Θ = 14.8 h).
Assuming a short range of YH values (0.40–0.75) in the protocol of simulation proposed
in this article, in which the approximation of the simulation line to the experimental data
is performed in three steps, tuning on YH, conducts to YH = 0.60, and tuning on µH,max,
after the approximation of the baseline and dynamism, comparative errors between the
simulated and analysed data mark the correct value (fine tuning, µH,max = 0.40 d−1).

Individual errors are high in the dynamic modelling of biological treatments; a live
system reproduced by a mathematical model will inevitably lead to this result, but utility in
the prediction of the oscillatory behaviour of the output parameter value, especially when
environmental perturbations occur, is essential.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14071046/s1, Table S1: Table of errors between simulated
values (Sim) and analysed values (COD) for fine tuning, YH = 0.60 and µH,max = 0.40, 0.38 and
0.42 d−1.
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Abbreviations

Nomenclature
bA decay coefficient for autotrophic biomass (d−1);
bH decay coefficient for heterotrophic biomass (d−1);
fp fraction of biomass leading to particulate products;
iXB nitrogen fraction in biomass;
iXP nitrogen fraction in products from biomass;
k kinetic coefficient (d−1);
kh hydrolysis rate constant (d−1);
KOH oxygen half-saturation coefficient for heterotrophic biomass (mg/L);
Ks half-saturation coefficient for readily biodegradable substrate (mg/L);
KX half-saturation coefficient for particulate biodegradable substrate (mg/L);
Q influent flow rate (L/d);
ri substrate utilization rate (mg/(L d));
r(ξ) conversion vector of the variable ξ (mg/(L d));
SALK alkalinity (mol/L);
SI soluble inert organic matter (mg/L);
SND soluble biodegradable organic nitrogen (mg/L);
SNH ammonia nitrogen (mg/L);
SNO nitrate and nitrite nitrogen (mg/L);
SO dissolved oxygen (mg/L);
SS readily biodegradable substrate (mg/L);
SS,in influent readily biodegradable substrate (mg/L);
t time (d);
T temperature (◦C);
V reactor volume (L);
XBA active autotrophic biomass (mg/L);
XBH active heterotrophic biomass (mg/L);
XBH,in influent active heterotrophic biomass (mg/L);
XI particulate inert organic matter (mg/L);
XND particulate biodegradable organic nitrogen (mg/L);
XP particulate products arising from biomass decay (mg/L);
XS slowly biodegradable substrate (mg/L);
XS,in influent slowly biodegradable substrate (mg/L);
YA growth yield of autotrophic biomass;
YH growth yield of heterotrophic biomass.
Greek symbols
ξ vector of reactor and effluent concentration (mg/L);
ξin vector of influent concentration (mg/L);
µH specific growth rate for heterotrophic biomass (d−1);
µH,max maximum specific growth rate for heterotrophic biomass (d−1);
ρ(ξ) vector of reaction kinetics (mg/(L d));
ρj process rate (mg/(L d));
Θ hydraulic residence time, HRT (d);
νij stoichiometric coefficient;
ηg correction factor of µH under anoxic conditions;
ηh correction factor for hydrolysis under anoxic conditions.
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