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Abstract: Nanoscale zerovalent iron particles (nZVI) immobilized on coconut shell-based granular
activated carbon (GAC) were studied to remove organoselenium from wastewater. A chemical reduc-
tion technique that involves the application of sodium borohydride was adopted for the adsorbent
preparation. The texture, morphology and chemical composition of the synthesized adsorbents were
analyzed with a scanning electron microscope (SEM), nitrogen adsorption–desorption isotherms
and X-ray diffraction (XRD). Batch experiment with various pHs and contact times were conducted
to evaluate nZVI/GAC adsorption performance. The results showed that nZVI/GAC has a strong
affinity to adsorb selenomethionine (SeMet) and selenocysteine (SeCys) from wastewaters. The
maximum removal efficiency for the composite (nZVI/GAC) was 99.9% for SeCys and 78.2% for
SeMet removal, which was significantly higher than that of nZVI (SeCy, 59.2%; SeMet, 10.8%). The
adsorption kinetics were studied by pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic
models. Amongst the two, PSO seemed to have a better fit (SeCy, R2 > 0.998; SeMet, R2 > 0.999). The
adsorption process was investigated using Langmuir and Freundlich isotherm models. Electrostatic
attraction played a significant role in the removal of organoselenium by nZVI/GAC adsorption.
Overall, the results indicated that GAC-supported nZVI can be considered a promising and efficient
technology for removing organoselenium from wastewater.

Keywords: selenium; organoselenium; selenomethionine; selenocysteine; nanocomposite–nZVI/GAC;
adsorption kinetics; wastewater treatment; isotherm studies

1. Introduction

Selenium is an interesting element, it is highly toxic for biotic and physiological well-
being at high concentrations but is necessary at trace levels. Chronic exposure to elevated
concentrations of selenium can result in central nervous disease, dermatitis, nephrosis,
skeletal dysfunction, hepatic cancer and genotoxicity, among others [1–3]. Selenium can be
classified into inorganic and organic selenium.

Primarily, the main species by which organic selenium are absorbed by plants and
aquatic organisms in the environment are SeMet and SeCys [4,5]. These exist in wastewaters,
especially those of coal fire power plants, mining sites, and oil and gas refineries [6]. These
species of selenium have higher bioavailability as they are readily absorbed in animal and
human digestive tracks; hence, they have a higher threshold of toxicity [5,7,8]. Another
concern of organoselenium is the propensity to accumulate in living organisms for a long
time, which can cause contamination of wildlife diet [9]. As a result, SeMet and SeCys are
contaminants of concern in the environment; however, there are limited studies on removal
methods [10]. Therefore, an effective treatment technology is required for the remediation
of organic selenium from wastewater.
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Currently, only a few studies have investigated the removal of organic selenium
from wastewaters and industrial effluents. In general, the removal techniques reported
include physico-chemical precipitation [11], chemical reduction [12] and adsorption [13,14].
Adsorption is one of the useful techniques of removing selenium from wastewater due to
the scientific advancement and cost advantages [15,16]. However, the key to its application
is the adsorbent’s effectiveness, which requires an adsorbent with a high density of binding
sites per unit volume and a strong affinity to the adsorbate [17].

Nanoscale zerovalent iron (nZVI) is an extensively used nanomaterial adsorbent for
reducing several organic contaminants because it has a large specific surface area and
high reactivity [18]. It is also considered a cheap and eco-friendly reducing agent for
adsorption [19–21]. NZVI has been used in treatment technologies for removing or degrad-
ing chemical contaminants such as chlorinated solvents [22], chlorinated pesticides [23],
organophosphates [24], nitrosamines [18,25], nitroaromatics [22] and metalloids [26]. How-
ever, SeMet and SeCy (organoselenium) removal using nZVI adsorbent are limited due
to the prevalent challenges that affect the adsorption performance and reactivity of nZVI
in an aqueous medium. Recently, Okonji et al. [10] reported that in spite of the numerous
advantages of nZVI, SeMet could not adsorb actively onto nZVI, while SeCys removal from
wastewater was below 45% using nZVI technology.

The implementation of the zerovalent iron technology is often confronted with several
challenges [27]. These include: (i) Easy oxidation and formation of a passivation layer,
thereby reducing its reactivity and limiting its practical use [19,28]. (ii) The nZVI forms
rapid corrosion when exposed to water, thereby passivating its surface and considerably
deteriorating its contaminant alteration capability over time [29–31]. (iii) Agglomeration of
particles [32,33]. Hence, techniques that can remove some of these limitations and enhance
nZVI performance for SeMet and SeCys removal from waters are needed.

Immobilization of nZVI onto a supporting material, such as granular activated carbon
(GAC), is a promising strategy to address some of the issues described above. Moreover,
elemental iron (Fe0) and GAC can form a Fe0/GAC microelectrolysis system capable of
enhancing the removal capacity of nZVI [34]. Though nZVI/GAC composites have been
tested for the removal of nitrosamine compounds [18], arsenic from aqueous solution [15]
and inorganic selenium treatment [35,36], no information is currently available on SeMet
and SeCys adsorption onto nZVI/GAC. As far as we know, there is no publication on
organoselenium removal using nZVI/GAC composites in the literature.

This study investigated the adsorption of SeMet and SeCys using nZVI/GAC com-
posites. The objectives of the study were: (a) prepare nZVI/GAC composite and test the
removal efficiency to adsorb SeMet and SeCys contaminants from wastewaters; (b) investi-
gate the impact that several operational parameters including the adsorbent loading, pH,
adsorbate initial concentrations and kinetics could have on the removal of organoselenium
by nZVI/GAC; and (c) evaluate the effects of coexisting ions in organoselenium remedi-
ation. As far as we are aware, this is the first study to investigate the use of nZVI/GAC
composites to remove organic selenium from wastewater.

2. Experimental Section
2.1. Chemicals

All chemicals used in this study were of analytical grade. SeMet (>98%) and SeCys
(>98%) were acquired from TCI America. Ferrous sulfate heptahydrate (FeSO4·7H2O, ≥99%)
was supplied by T.J Baker, Germany. Hydrochloric acid (HCl) (>98%), sodium borohydride
(NaBH4, ≥98.0%), polyethylene glycol-2000 (PEG-2000) and absolute alcohol (≥99.7%)
were purchased from Sigma-Aldrich Chemical Company (Burlington, MA, USA) and
utilized in the synthesis of the nZVI. Powdered coconut-shell-based activated carbon (GAC,
12 × 40 mesh) was acquired from Calgon Carbon (Moon Township, PA, USA).
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2.2. Synthesis of Iron Nanoparticle (nZVI)

The nZVI particles were synthesized following a liquid-phase reduction method
described elsewhere [27]. A total of 7.0 g of FeSO4·7H2O was dissolved in 200 mL of
an ethanol-deionized water solution (ethanol/water = 1:1 v/v), while PEG-2000 (0.52 g)
was added as a dispersant to facilitate the reduction of nZVI aggregation in the ferrous
sulfate solution. This was followed by the drop by drop addition of 100 mL of 1.0 mol/L
NaBH4 while the solution was constantly agitated at 300 r/min for 45 min with a magnetic
stirrer (VWR 200 model) at ambient temperature. The chemical reaction is represented in
Equation (1).

Fe2+ + 2BH4
− + 6H2O —> Fe0 + 2B(OH)3 + 7H2 (1)

The synthesized nZVI particle was allowed to settle and was segregated from the
liquid state using vacuum filtration apparatus. The solid particles were rinsed with water
several times and dried at 60 ◦C. The experiment was conducted with continuous N2
bubbling to prevent the synthesized nanoparticles from being passivated by oxygen.

2.3. Preparation of the nZVI/GAC Composite

Granular activated carbon was utilized as a support for nZVI particles. An amount of
10 g of dry GAC was washed and repeatedly rinsed with DI water, then soaked in 200 mL
of ferrous sulfate solution with PEG-2000 for 3 h. Before the NaBH4 solution was added
in a dropwise manner, the slurry was initially stirred up in an ultrasonic bath for 2 h and
stirred again for another 1 h under N2 purging. The GAC-supported nZVI was segregated
from the solution, labeled and vacuum dried at 60 ◦C and stored in a desiccator purged
with N2. The process was similar to that of nZVI synthesis described above.

2.4. Characterization of Adsorbents

Adsorbent samples (nZVI/GAC) characterization was before and after the adsorption
of organoselenium using SEM/EDS, XRD and BET analysis. The morphological proper-
ties of the synthesized nZVI/GAC adsorbent were obtained using a scanning electron
microscope at 10–15 kV (SEM, ThermoFisher, Waltham, MA, USA, Quanta FEG 250), as
shown in Figure 1. X-ray mapping and analysis were performed using a Bruker Quantax
micro-analysis system, consisting of a Quantax 5030 SDD-type X-ray spectrometer, SVE
III signal processing unit and Bruker Esprit v2.1 software. The XRD patterns (mineralog-
ical properties) were collected with the aid of an X-ray diffraction instrument (Rigaku
MultiFlex), and the diffraction angle 2θ in the range of 10–80◦ was used. The total pore
volume and BET surface area were derived by the N2 adsorption method at 77 K on a PMI
Automated Brunauer-Emmett-Teller (BET), Quantachrome ChemBet (3000 CB-SCL).
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Figure 1. SEM images: (a) activated carbon, (b) non-supported nZVI, (c) nZVI/GAC composite, (d) 
nZVI/GAC post-adsorption. SEM images of energy-dispersive spectrum of nZVI/GAC: (e) pre-ad-
sorption and (f) post-adsorption. (g) Energy-dispersive spectrum distribution plot of nZVI/GAC 
showing post-removal elemental composition (C, O, Fe and Se). 

Figure 1. SEM images: (a) activated carbon, (b) non-supported nZVI, (c) nZVI/GAC composite,
(d) nZVI/GAC post-adsorption. SEM images of energy-dispersive spectrum of nZVI/GAC: (e) pre-
adsorption and (f) post-adsorption. (g) Energy-dispersive spectrum distribution plot of nZVI/GAC
showing post-removal elemental composition (C, O, Fe and Se).
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2.5. Batch Adsorption Studies

A stock solution of SeCys (C3H7NO2Se) and SeMet (C5H11NO2Se) (750 mg/L each)
was prepared separately by dissolving of 0.5 g of each chemical in 250 mL of deionized
water. The test solution was prepared by diluting the stock solution as appropriate. The
concentration of SeMet and SeCys in the test solutions used for various parametric studies
was 0.5 mg/L. All batch experiments were conducted using 150 mL straight-wall glass jars.
The solutions were stirred using a magnetic stirrer (VWR 200 model), the mixtures were
constantly agitated at a speed of 180 rpm in a temperature-regulated orbital shaker, and the
experiment was performed at ambient temperature. 1 M of HCl or NaOH was added to
alter the starting pH of the solution. At different time intervals, 10 mL aliquots of samples
were periodically collected and instantly filtered using 0.22 µm PTFE syringe filter. The
influence of pH on the adsorption of SeMet and SeCys was investigated by conducting
experiments in the pH range of 3.0–12.0. For statistical reliability, the experiments were
conducted in duplicate, the samples were analyzed in triplicate and the average results
were presented. Standard deviation was used to evaluate the error bars analysis.

2.6. Analysis and Equipment

The overall selenium concentrations in the solutions were studied with an inductively
coupled plasma optical emission spectrometer (ICP-OES) (Thermo Scientific icap 7000 series,
Waltham, MA, USA). The limit of detection and quantitation for selenium was estimated as
0.005 and 0.01 mg/L, respectively. A digital pH device (VWR symphony B20PI) was used
to measure the changes in pH of the system over time.

2.7. Adsorption Kinetics

Adsorption kinetics of SeMet and SeCys onto nZVI/GAC adsorbent was evaluated.
The adsorbent dose was 3 g/L, which is the optimum dose obtained from dosage studies.
The adsorption capacity qe (mg/g) was calculated using the following equation:

qe =

[
(C0 − Ce)

m

]
x V (2)

where Co represents the initial concentration (mg/L) and Ce the equilibrium concentration
(mg/L); M is the mass of the adsorbent (g); and V is the volume of the solution (L). PFO
model was evaluated using the equation below:

qt = qe

(
1− e−kt

)
(3)

where qe and qt (mg/g) represent the amount of adsorbate adsorbed at equilibrium and
at time (t), respectively, and k (min−1) is the rate constant. A pseudo-second-order kinetic
model was applied to the kinetics data using Equation (4):

t
qt

=
1

k2q2
e
+

t
qe

(4)

where k2 is pseudo-second-order kinetic rate constant (g mg−1 min−1) and adsorption time
(min). The initial adsorption rate h of the system is equal to k2q2

e (mg g−1 min−1).

2.8. Adsorption Isotherm Studies

Adsorption isotherms were obtained at various initial concentrations (0.0156 to 1 mg/L)
for SeMet and SeCys. The adsorption mechanism (multilayer versus monolayer) was
evaluated using Freundlich and Langmuir isotherm models [37,38]. The Freundlich model
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explains the relationship between the equilibrium concentration and the adsorption capacity.
This is illustrated with Equation (5) [37]:

(CO − Ce)

M
V = K f C

1
n
e (5)

where Ce is the equilibrium concentration (mg/L), CO means initial concentration (mg/L),
M represents adsorbent mass (g), V represents the volume of the solution (L), K f and n are
Freundlich parameter constants. Equation (6) presents the mathematical illustration for
Langmuir isotherm [38].

qe = qmKc
Ce

1 + KcCe
(6)

where qe represents equilibrium (mg/g) adsorption capacity, qm (mg/g) means maximum
adsorption capacity, the equilibrium adsorption constants are given as Kc (L/mg) and Ce
means equilibrium concentration (mg/L). The premise that adsorption takes place at a
limited specific localized site (monolayer) explains Langmuir isotherm [38]. Moreover, the
Langmuir model can be further evaluated using Equation (7) [17].

RL =
1

1 + KcCo
(7)

An adsorption process is said to be irreversible when RL ∼ 0, favorable when
1 > RL > 0, unfavorable when RL > 1 and linear when RL ∼ 1 [17].

2.9. Effect of Competing Ions

The effect of competing ions on the adsorption of organoselenium onto nZVI/GAC
was investigated. Some common anions (sulfate, carbonate, nitrate, phosphate) and cations
(calcium, magnesium, ferrous, potassium) which are frequently encountered in water and
wastewaters were selected for interference evaluation. The molar proportion of the added
ions to organoselenium was 200:1.0. A solution of 100 mL comprising organic selenium
and coexisting ions was mixed with 0.3 g of synthesized GAC-supported nZVI after pH
adjustment and allowed to equilibrate for a maximum contact time of 24 h.

2.10. NZVI/GAC Regeneration

Regeneration of nZVI/GAC composite was conducted to ascertain its reuse capabili-
ties. After SeCys and SeMet adsorption using 0.3 g nZVI/GAC with 100 mL solution for
6 h, the nZVI/GAC particles were separated from the treated solution by vacuum filtration
and washed with DI water to expunge any organoselenium that was not adsorbed (the
process involved mixing nZVI/GAC with NaOH and agitate in a temperature-controlled
orbital shaker). The adsorbent was then desiccated overnight under a vacuum at 25 ◦C
(room temperature) and utilized for the next experiment.

3. Results and Discussion
3.1. Pre- and Post-Adsorption Characterization of nZVI/GAC

Figure 1 presents the SEM images of GAC, synthesized non-supported nZVI and
NZVI/GAC composite pre and post organoselenium removal. It also presents the dis-
persive energy spectrum (EDS) analysis of nZVI/GAC pre and post adsorption. From
Figure 1a, there is a lack of uniformity in the pore distribution of GAC, as well as a variance
in the pore sizes. Figure 1b reveals that the synthesized non-supported nZVI particles
are spherical, with sizes ranging from 60–120 nm and clustered into irregular chain-like
shapes. The build-up of the nZVI particles is related to magnetic forces, electrostatic
interaction [39–41] and van der Waal force [42]. As depicted in Figure 1c, some obvious
spherical particles with a size of about 40 nm were visible on the surface, cracks, or inside
the GAC pores in a chain-like shape. This is an indication that the nZVI was successfully
supported or loaded onto the GAC [43]. Embedding nZVI into GAC pores is an important
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phenomenon that aids adsorbent regeneration and is reused in water treatment facilities
without losing the iron nanoparticles [15]. Compared with the SEM image of Figure 1b,
the reduction in the nZVI/GAC particle size is because GAC can stabilize and disperse
nZVI particles, thereby inhibiting aggregation of nZVI. Similar findings have previously
been reported elsewhere [43]. The reactivity of GAC-supported nZVI is an advantage that
comes from the small size of the supported nZVI particles, resulting in a higher number of
reactive regions (adsorption sites) on the surface [44]. However, the occurrence indicated
by blue circles observed in Figure 1d shows that the GAC-supported nZVI particles are
clustered and interconnected after the withdrawal of the organoselenium, which was con-
sistent for the removal of both SeCys and SeMet. Furthermore, Figure 1e shows that the
dispersive energy spectrum of nZVI/GAC consists of carbon (C), iron (Fe) and oxygen (O).
This phenomenon demonstrates that the nZVI particles are immobilized on GAC surface,
which is partially oxidized [44]. Similarly, the mapping of EDS image of nZVI/GAC after
the organoselenium removal (Figure 1f) and EDS distribution plot after organoselenium
removal (Figure 1g) demonstrated the presence of C, Fe, O and Se at the surface. The EDS
results indicate that selenium is adsorbed on the surface of nZVI/GAC composite, which
points to the adsorbent (nZVI/GAC) being oxidized after adsorption [44].

Textural structure and iron content analysis data of GAC and nZVI/GAC are shown
in Table 1. SBET and VBJH are 794.00 m2/g and 0.07 cm3/g, respectively. The data show that
both were significantly lower than those of the raw GAC (1078.70 m2/g and 0.10 cm3/g),
showing a significant block on GAC pores by nZVI particles. Figure 2 illustrates the N2
adsorption-desorption isotherms; clearly, the isotherm curves showed two hysteresisloops,
which indicates the presence of two-pore systems in both GAC and nZVI [17,43,45]. In
general, Table 1 and Figure 2 show that the decrease in pore volume and the centered pore
size suggest that the nZVI particles were successfully loaded inside GAC pores [17].

Table 1. Textural structure parameters of GAC and nZVI/GAC.

Sample SBET (m2/g) VBJH (cm3/g) Pore Size (nm)

GAC 1078.70 0.10 4.63
nZVI/GAC 794.00 0.07 3.42
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The XRD patterns of GAC, nZVI and nZVI/GAC are illustrated in Figure 3. As shown,
the peaks of nZVI are well indexed as ferrites, of which diffraction angle 2θ at 44.64◦ and
65.0◦ are suggestive of (110) and (200) for α-Fe0 crystal planes, correspondingly. This
observation shows that unsupported nZVI has high purity and a good crystallographic
degree [42,46]. For GAC, two broad peaks at 2θ (22.5–24.3◦ and 42.7–43.9◦) were observed,
which corresponds to the peculiarity of amorphous carbon [44,47]. For nZVI/GAC, the
recurrence of the broad peaks indicates that GAC structures are not destroyed after nZVI
immobilization [43].
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Figure 3. XRD analysis of GAC-synthesized-nonsupported nZVI and GAC-supported nZVI.

3.2. Adsorption of Organic Selenium by nZVI and nZVI/GAC Composites

The removal capacity of organoselenium by nZVI and nZVI/GAC is presented in
Figure 4. In comparison, higher capture capacity was observed with GAC-supported nZVI
particles, as opposed to the minimal uptake capacity by nZVI. Approximately 59.2% and
10.8% removal were achieved for SeCys and SeMet by nZVI after 6 h, whereas about 97.2%
and 64.9% of SeCys and SeMet were removed by nZVI/GAC composite. Significantly, a
higher removal capacity of organoselenium was observed with the synthesized composite.
The low performance of nZVI is attributed to the easy oxidation and clustering of nZVI
particles, affecting the adsorption and its reduction capability of organic contaminants
in the Fe0 system [18,29]. In an aqueous medium, when Fe0 is exposed to moisture and
oxygen, aerobic corrosion occurs and the Fe0 is oxidized to ferrous ions [12]. It is known
that ferrous ions can easily form ferric ions through oxidation and thereafter form loose
ferric hydroxide/oxide layer (film) in water as by-products of corrosion [48,49]. The oxide
layer (eg., Fe2O3) can result in passivation, reducing the reactivity of iron or its reaction
capability [50]. This phenomenon explains the nZVI adsorption process [51] as well as the
method of removal for organoselenium by nZVI [10].
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Figure 4. Compare adsorption capacity of synthesized nZVI and nZVI/GAC for removal of SeCys
and SeMet from aqueous solution: Organic selenium initial concentration 0.5 mg/L, adsorbent ratio
3 g/L, pH 7.0, at 25 ◦C for 6 h period.

The BET analysis showed that nZVI has a small surface area of relatively less than
25 m2/g. However, achieving a higher uptake capacity will require a large surface that
can necessitate more binding sites to create a stronger affinity with adsorbate [17]. In
this instance, nZVI surface area is limited and can undoubtedly contribute to low adsorp-
tion performance.

Contrarily, the higher adsorption capacity observed with nZVI/GAC composites
for the removal of SeCys and SeMet resulted from the fact that there are more avail-
able adsorption sites on nZVI/GAC due to the higher surface area (794 m2/g), which
is rich in micropores [18]. In the C–Fe0 micro-electrolysis reaction system, organosele-
nium can partition onto nZVI/GAC surface. Fe0 formed microscopic galvanic cells and
activated carbon facilitated the corrosion of Fe0, which accelerated the electron transfer
between nZVI and GAC [52]. This reaction process can enhance the removal capability of
nZVI/GAC [18,52,53].

The preferential adsorption of SeCys over SeMet is evident in Figure 4. SeCys more
readily partitions onto the adsorbent’s surface, irrespective of the adsorbent. A similar find-
ing with a detailed explanation has been reported in a previous study by Okonji et al. [10].
SeMet is an analogue of methionine, which does not interact actively with the metal sur-
face; hence, SeMet is more refractory to adsorption than SeCys, which is an analogue of
cysteine [10,54].

3.3. Adsorbent Dosage

Figure 5a,b shows the result of nZVI/GAC dosage studies for removing organosele-
nium from wastewater via batch experiment at pH 7.0 and initial concentration of 0.5 mg/L.
The removal rate of both SeCys and SeMet appears to increase with an increase in the
nZVI/GAC dosage. This is because a positive effect is exerted on nZVI/GAC adsorption
capacity due to the corresponding rise in the number of active sites and the reactive surface
area [55]. For an adsorbent dose of 2–7 g/L, more than 97% of SeCys was swiftly removed



Water 2022, 14, 987 10 of 21

within 4 h, and equilibrium was achieved in 3 h. SeMet adsorption increased from 50.6%
to 68.1% when the nZVI/GAC dosage applied increased from 1 to 7 g/L. However, the
rate of removal between 3–7 g/L was less than 5% for SeMet adsorption; for SeCys, no
change in adsorption was observed between 3 and 7 g/L after 4 h, indicating that 3 g/L
is an optimum dosage for organoselenium removal by nZVI/GAC. Clearly, for a dose
of 1 g/L, adsorption of SeCys and SeMet was progressive; however, the solution did not
attend equilibrium in 6 h, indicating that the uptake was slower. Overall, the adsorbent
large surface area enhanced the adsorption capacity of the adsorbent as a result of more
active adsorption sites, which consequently leads to a higher removal rate [10,21,56].
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Figure 5. Dosage studies on removal of organic selenium by nZVI/GAC: (a) SeCys and (b) SeMet:
(initial concentration of 0.5 mg/L, pH 7.0, at 25 ◦C). Contact time 6 h.

3.4. Effect of pH

The pH of a solution is an important factor that can influence the adsorption process,
surface functional groups and the interaction between the adsorbent and adsorbate. In this
research, the effect of pH on the removal of organoselenium by nZVI/GAC was investigated
by changing the pH of the solution over a range of 3–12 (see Figure 6). As observed in
Figure 6, the concentration of SeCys and SeMet adsorbed by nZVI/GAC increased slowly
with an increase in the pH from 3.0 to 7.0. A decrease in the removal efficiency from 92.0%
to 46.0% for SeCys, and 59.4% to 22.0% for SeMet, was observed when pH was further
increased from 8.0 to 12. These shifts are due to the formation of oxide coatings at greater
pH values (>8), which hinders the oxidization of Fe0 to Fe2+ [57] and the electro-repulsion
effect. These factors can result in a reduction of the adsorption capacity of nZVI/GAC.

The point of zero charges (pHpzc) of nZVI/GAC is reported as 3.2 [58], which indi-
cated that the surface carries a positive charge at pH values below pHpzc (attracts anions)
and carries a negative charge at high pH (repels anions) [58]. This interdependence between
the surface charge and molecular charge facilitates the adsorption of molecules to take
place on the surface of nZVI/GAC. Moreover, SeCys and SeMet are zwitterions (with
carboxyl groups and amino groups). The isoelectric points (Ip) are 5.54 for SeCys and 5.75
for SeMet [59,60]. Hence, it is expected that SeMet is protonated at lower pH (i.e., <5.75)
which means positively charged and deprotonated at higher pH (i.e., >5.75) negatively
charged [61]. The same phenomenon applies to SeCys.
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Figure 6. Adsorption envelopes of SeMet and SeCys on nZVI/GAC at initial organoselenium
concentration of 0.5 mg/L and adsorbent ratio of 3 g/L. Contact time: 24 h at 25 ◦C.

Conversely, at the pH < 3.2, the surface charge of nZVI/GAC would behave as a posi-
tive charge and that of organoselenium species would also carry a positive charge [61,62].
Therefore, because of forces of repulsion between similarly charged molecules, the removal
efficiency was reduced (not as high as that of a near-neutral pH range). Similarly, when
the solution pH is higher than 5.75 (or 5.54 for SeCys), then the organoselenium species
and nZVI/GAC will be negatively charged, resulting in a repulsion effect. Between pH 3.2
and 5.75, organoselenium would be positively charged and nZVI/GAC negatively charged.
This will lead to electrostatic interaction between organoselenium species and nZVI/GAC;
hence, substantial removal was achieved [61]. However, at near-neutral pH, higher attrac-
tion occurred which resulted in maximum removal. Two factors may be responsible for the
high adsorption: (i) the prompt dissolution of the oxides on the surfaces of nanoparticles
and (ii) the unlocking of the active sites which can accelerate iron corrosion reaction [61,62].
Overall, electrostatic force controls SeCys and SeMet adsorption by nZVI/GAC.

3.5. Initial Concentration Studies

The effects of initial concentration (Co) on organoselenium removal from contaminated
water by nZVI/GAC are shown in Figure 7. Initial concentrations of 0.25, 0.4 and 1 mg/L
at pH 7.0 were used for this study. As summarized in Table 2, nZVI/GAC adsorption
capacity (qe) increased with higher Co, irrespective of the contaminant. It stands to reason
that the increase in Co provided the required energy needed to overcome the mass transfer
resistance between the adsorbate and adsorbent [18]. The removal efficiency obtained for
SeCys were 99.6, 98.3, 90.3 and 72.8%, 69.5%, 60.2% for SeMet, corresponding to Co defined
above, respectively. Because nZVI/GAC amount (quantity) was fixed and the available
adsorption sites were unchanged, the reaction of the composites reduces with time [18].
This explains the reduction in removal efficiency observed at higher concentrations [18];
another study ascribed the same phenomenon to reaction and surface-mediated action
(higher concentration hindered the reaction) [63].
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Figure 7. Effect of initial concentration: (a) SeCys and (b) SeMet: Initial concentration 1.0, 0.4 and
0.25 mg/L (all experiments were conducted at pH 7.0, 3 g/L of nZVI/GAC and 25 ◦C).
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Table 2. Key parameters on effects of initial SeCys and SeMet concentration adsorption onto
nZVI/GAC.

Parameter SeCys SeMet

Co (mg/L) 0.25 0.4 1 0.25 0.4 1
qe (mg.g−1) 0.085 0.138 0.323 0.0607 0.101 0.224

K2 (g mg−1 min−1) 1.059 0.441 0.137 1.726 0.370 0.134
R2 0.998 0.998 0.995 0.999 0.992 0.989

The kinetic equations were employed to validate the experimental data to evaluate the
potential rate-limiting steps associated with the adsorption processes. PSO kinetic model
describes the data depicted in Table 2 adequately; the inset of Figure 7 (linearization plot)
shows the fitted data. The correlation coefficients (R2) obtained were higher than 0.99 for all
the concentrations studied. The rate constant (K2) ranges from 1.059 to 0.137 g mg−1 min−1

for SeCys and 1.726 to 0.134 g.mg−1.min−1 for SeMet, respectively. Furthermore, the results
show a decrease in K2 with increasing organoselenium concentration. The corresponding
decrease in K2 was due to the longer duration and the solution required to reach equilibrium;
a similar occurrence has been described in previous research [10,14,64,65].

3.6. Adsorption Isotherm

The equilibrium adsorption isotherms of organoselenium removal by nZVI/GAC
are presented in Figure 8. Langmuir and Freundlich isotherm models describe the results
summarized in Table 3. Figure 8a illustrates the adsorption isotherm for SeCys removal,
which is best characterized by the Langmuir model. As stated in Table 3, the correlation
coefficient corresponding to (R2 > 0.990) explains that the Langmuir model is a better fit,
which suggests that the uptake of SeCys is monolayer and it occurred at specific sites [66,67].
The maximum uptake capacity for Langmuir parameter qm is 1.02 mg/g. The dimensionless
constant is RL = 0.052, which implies favorable adsorption isotherm and suitability of
nZVI/GAC for SeCys removal [17,53].
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Table 3. Adsorption isotherm parameters for organoselenium removal.

Langmuir Model Freundlich Model

qm (mg/g) Kc (L/mg) R2 Kf n R2

SeMet 0.45 18.37 0.919 0.67 2.46 0.994
SeCys 1.02 6.55 0.990 1.49 1.69 0.976

On the other hand, Figure 8b suggests that Freundlich model was a better fit than the
Langmuir model for analyzing SeMet adsorption data. A higher correlation coefficient
(R2 > 0.994) for the Freundlich model indicates multi-layered adsorption of SeMet [10].
The Freundlich constant K f relates to the adsorption capacity, which was evaluated to be
0.67. As depicted in Table 3, the adsorption intensity (n) was obtained as 2.46, implying a
mildly rising isotherm curve and favorable adsorption [68], which is far greater than that
previously reported [10].

3.7. Kinetics Studies

Figure 9 shows the adsorption kinetics study of SeCys and SeMet removal by nZVI/GAC.
The result illustrates a two-step adsorption process: a fast initial adsorption stage (as ad-
sorption occurs at the sites in the macropores), followed by a much slower process as
the organoselenium adsorption approached equilibrium. The slow adsorption process
observed after about 1 h into the experiment was caused by the reduced number of GAC
surface sites around the nZVI particle [18] and due to the slower diffusion into the micro-
pores in the composite. Approximately 97.6 and 64.9% of SeCys and SeMet, respectively,
were removed in 6 h, and adsorption equilibrium was reached in 3 h. Pseudo-first-order
(PFO) and pseudo-second-order (PSO) kinetics models (inset of Figure 9) were employed
in evaluating the kinetics data. The rate constant (K1 and K2 ) values and the maximum
adsorption capacity (qe) for SeMet and SeCys are depicted in Table 4. The PSO model was a
good fit for the kinetic data corresponding to correlation coefficients for SeCys (R2 > 0.998)
and SeMet (R2 > 0.999). The adsorption capacity (qe) values calculated by PSO forecasted
that the removal process of organoselenium followed the PSO kinetic equation, proposing
the dominance of chemical adsorption [53].
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Figure 9. Organic selenium adsorption kinetics onto nZVI/GAC: (a) PSO and (b) PFO. Initial concen-
tration 0.5 mg/L, 3 g/L, pH 7.0. (The solid lines illustrate model fits; inset shows linearization fits.)
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Table 4. PSO and PFO kinetic data for SeCys and SeMet adsorption by nZVI/GAC.

Kinetic Parameter SeCys SeMet

nZVI/GAC

Pseudo first order

qe (mg g−1) 0.161 0.110
K1 (min) 0.030 0.022

R2 0.995 0.996

Pseudo second order

qe (mg g−1) 0.173 0.122
K2 (g mg−1 min−1) 0.314 0.252
h (mg g−1 min−1) 0.008 0.004

R2 0.998 0.999

Conversely, the initial adsorption rate (h) data, displayed in Table 4, revealed a faster
adsorption rate in SeCys compared to SeMet. The h value of SeCys is about twice that of
SeMet, indicating SeCys has a much faster removal rate. The observance of a faster removal
rate of SeCys as compared to SeMet in this research was consistent with earlier studies [10].

3.8. Effect of Ions Present in Water

The effects of some common anions (SO2−
4 , CO2−

3 , NO−3 , PO3−
4 ) and cations (Ca2+,

Mg2+, Fe2+, K+) on organoselenium removal by nZVI/GAC were investigated. As shown
in Figure 10, each ion competed distinctively with SeMet and SeCys adsorption to various
degrees. Among the oxyanions investigated in this study, carbonate and phosphate were the
most competitive oxyanions that reduced SeMet (40.7%, 53.0%) and SeCys (41.9%, 55.3%)
removal efficiency, respectively. Sulfate ion also significantly decreased organoselenium
removal by approximately 55.7% for SeMet and 88.9% for SeCys. These anions tend to form
inner-sphere complex and weak bonds with iron oxides surfaces [15,69] and can easily
be released [36,70]. Therefore, the oxyanions would compete for similar binding sites,
thereby decreasing the adsorption of organoselenium. Nevertheless, the result shows that
the existence of nitrate did not substantially impact SeMet and SeCys removal.

Water 2021, 13, x FOR PEER REVIEW 15 of 21 
 

 

Table 4. PSO and PFO kinetic data for SeCys and SeMet adsorption by nZVI/GAC. 

Kinetic Parameter SeCys SeMet 
 nZVI/GAC 

Pseudo first order  

qe (mg g−1) 0.161 0.110 
K1 (min) 0.030 0.022 

R2 0.995 0.996 
Pseudo second order  

qe (mg g−1) 0.173 0.122 
K2 (g mg−1 min−1) 0.314 0.252 
h (mg g−1 min−1) 0.008 0.004 

R2 0.998 0.999 

Conversely, the initial adsorption rate (ℎ) data, displayed in Table 4, revealed a faster 
adsorption rate in SeCys compared to SeMet. The ℎ value of SeCys is about twice that of 
SeMet, indicating SeCys has a much faster removal rate. The observance of a faster re-
moval rate of SeCys as compared to SeMet in this research was consistent with earlier 
studies [10]. 

3.8. Effect of Ions Present in Water 
The effects of some common anions (S푂 , C푂 , N푂 , P푂 ) and cations (퐶푎 , 

푀푔 , 퐹푒 , 퐾 ) on organoselenium removal by nZVI/GAC were investigated. As shown 
in Figure 10, each ion competed distinctively with SeMet and SeCys adsorption to various 
degrees. Among the oxyanions investigated in this study, carbonate and phosphate were 
the most competitive oxyanions that reduced SeMet (40.7%, 53.0%) and SeCys (41.9%, 
55.3%) removal efficiency, respectively. Sulfate ion also significantly decreased orga-
noselenium removal by approximately 55.7% for SeMet and 88.9% for SeCys. These ani-
ons tend to form inner-sphere complex and weak bonds with iron oxides surfaces [15,69] 
and can easily be released [36,70]. Therefore, the oxyanions would compete for similar 
binding sites, thereby decreasing the adsorption of organoselenium. Nevertheless, the re-
sult shows that the existence of nitrate did not substantially impact SeMet and SeCys re-
moval. 

 

0

10

20

30

40

50

60

70

80

90

100

110

SO
₄

C
O

₃

N
O

₃-

PO
₄

C
a²

⁺

M
g²

⁺

Fe
²⁺ K
⁺

SO
₄

C
O

₃

N
O

₃-

PO
₄

C
a²

⁺

M
g²

⁺

Fe
²⁺ K
⁺

SeMet SeCys

O
rg

an
ic

 se
le

ni
um

 r
em

ov
al

  (
%

)

Ions

Figure 10. Effects of ions competing individually on organoselenium removal by nZVI/GAC with
initial concentration of 0.5 mg/L, 3 g/L, pH 7.0 at 25 ◦C. The concentration of ions in the solution is
100 mg/L and contact time of 24 h.
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Divalent metal cations such as Ca2+, Mg2+, Fe2+ and K+ have been reported to
improve nZVI performance because these cations can serve as electron donors, enhance
electron transfer, form bimetallic systems and de-passivate aged Fe0 [18,19,71–73]. In this
study, while Ca2+ and K+ increased the adsorption of SeMet (70.4%, 78.2%) and SeCys
(98.9%, 99.9%) by nZVI/GAC, respectively, Mg2+ and Fe2+ were found to substantially
suppress the removal efficiency of both SeMet (55.8%, 23.5%) and SeCys (92.3%, 80.7%).
The weak adsorption experienced due to the presence of Mg2+ is because magnesium
ions deteriorated the nZVI performance by shielding the reactive sites on the Fe0 surface
through precipitation [18]. On the other hand, the unfavorable effect of ferrous iron can
be credited to the formation of complexes with organoselenium; consequently, the level of
deprotonation/dissociation is suppressed and adsorption is decreased [15].

To further understand the effect of competing ions on organoselenium removal by
nZVI/GAC, a comparative study of SeCys and SeMet removal in the presence of a group
of cations and anions was evaluated. As shown in Figure 11a,b, anions (comprising SO2−

4 ,
CO2−

3 , NO−3 , PO3−
4 , competing together) were observed to have more adverse effects on

both SeMet and SeCys removal by nZVI/GAC compared to cations (Ca2+, Mg2+, Fe2+, K+,
competing together in water). The result shows that the nZVI/GAC adsorption capacity for
SeCys removal decreased from 0.159 mg/g to 0.104 mg/g because of the competing effect of
the cations and 0.077 mg/g as a result of anions competing effect, after 3 h. The adsorption
capacity also decreased from 0.106 mg/g to 0.084 mg/g (cations) and 0.037 mg/g (anions)
for SeMet removal. The inhibitory effects of the cations were less compared to the anion.
This is because metal cations in the solution would increase the surface charge of the
adsorbent (nZVI/GAC). As a result, the cations have less inhibition and the removal
efficiency is better [15].
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Figure 11. Comparative study on the influence of cations (competing together) and anions (competing
together) on organoselenium removal by nZVI/GAC. (a) SeCys, (b) SeMet; initial concentration of
0.5 mg/L, 3 g/L, pH 7.0 at 25 ◦C. Contact time is 3 h; ion concentration is 100 mg/L.

3.9. NZVI/GAC Composite Regeneration and Reusability

The use of nZVI/GAC for organoselenium removal from wastewater is dependent
on both its adsorptive capacity and regeneration for further use; hence, reusability of the
as-synthesized nZVI/GAC was investigated. The results in Figure 12 show that nZVI/GAC
could be regenerated, retaining a promising 92.8% of SeCys and 57.7% of SeMet removal
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efficiency after six cycles. NZVI/GAC adsorption performance did not reduce substantially
at the end of the last cycle, showing that the synthesized nZVI/GAC was mechanically and
chemically robust [15] and can treat SeCys and SeMet effectively. Some of the advantages
of regeneration include: (a) the ability to reuse adsorbent; (b) it is cheaper compared to the
cost of producing, procuring or synthesizing new adsorbent; and (c) it helps in selenium
recovery and post-treatment sludge management to avoid secondary re-contamination of
selenium in the environment.
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concentration of 0.5 mg/L, 3 g/L, pH 7.0 at 25 ◦C for 6 h.

4. Mechanism of Removing Organoselenium by nZVI/GAC

The removal mechanism of organoselenium and the changes that occurred during
adsorption and post adsorption by nZVI/GAC were analyzed with SEM-EDS as discussed
previous sections. Hence, the process of organoselenium adsorption using nZVI/GAC
composite is summarized as follows: (i) organoselenium contaminant in the solution was
actioned by the adsorption potential on GAC surface and in the pores, (ii) which resulted
in the partitioning of organoselenium onto the surface of the adsorbent via adsorption
or reduction by the concurrent reaction of the oxide’s scale (such as, Fe3O4, Fe(OH)2 and
Fe(OH)3) that takes place on the adsorbent surface; (iii) overall, organoselenium is adsorbed
onto the nZVI/GAC surface.

5. Conclusions

In this study, nZVI/GAC composite was synthesized with the view to explore the
advantages of GAC adsorption material and nZVI reductive material to produce a more
effective adsorbent to remove organoselenium from wastewater. XRD, BET and SEM
imaging results demonstrated that nZVI particles were successfully supported/loaded
inside GAC pores. Batch experiments were performed for adsorption of SeMet and SeCys
under various conditions—adsorbent dosage studies, pH effects, adsorption kinetics and
adsorbate initial concentration studies. NZVI/GAC composite showed a strong affinity to
remove organoselenium from wastewater with an optimal dose of 3 g/L. Under various
conditions tested, SeCys adsorbed more actively onto nZVI/GAC composite than SeMet,
with a maximum removal efficiency of 99.9% and 78.2%, respectively. Change in pH
had a remarkable effect on SeCys and SeMet removal by nZVI/GAC; near-neutral and
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neutral pH appears to be the most favorable conditions for higher removal efficiency. The
results of the initial adsorbate concentration demonstrated that the K2 decreased with
an increase in organoselenium concentration, and in contrast, adsorption capacity (qe)
increased with higher Co, irrespective of the adsorbate. The kinetics studies revealed a two-
step adsorption process for organoselenium using nZVI/GAC composite. The adsorption
process was characterized by PSO model. Langmuir and Freundlich models fitted well
with the experimental data. Other than nitrate ions, oxyanions were observed to decrease
organoselenium removal efficiency substantially. It was observed that some cations (Ca2+

K+) significantly increased organoselenium removal, under which the maximum removal
efficiency was achieved for both SeCys and SeMet. Overall, nZVI/GAC composite can be
considered a promising and efficient technology for the removal of organoselenium from
wastewater. Advantages of this technology include but are not limited to cost-effectiveness,
environmentally friendly, and the swift kinetics in treating organoselenium which can be
adapted and utilized in wastewater treatment facilities.
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