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Abstract: Glacier-fed streams are one of the environments most sensitive to global climate change.
However, the effects of the freezing–thawing process on benthic macroinvertebrate communities in
different habitats of glacier-fed streams are unclear. In this paper, we investigated benthic macroin-
vertebrates in riffles and pools of a glacier-fed stream in Xinjiang, China, during the pre-freezing
period (November, 2018), freezing period (January 2019), and thawing period (April, 2019). Our
results showed that the freezing–thawing process resulted in a decline in benthic macroinvertebrate
species richness and diversity, both of which were attributed to the effects of the freezing–thawing
process on habitat stability, water quality, and cycling of the stream ecosystems. During the whole
freezing–thawing process, the indicator taxa of riffles were Rhithrogena sp. and Baetis sp., while
the only indicator taxon of pools was Chironomus sp. The species richness, Margalef diversity, and
EPT richness (Ephemeroptera, Plecoptera, and Trichoptera) of benthic macroinvertebrates in riffles
were higher than those in pools, due to the higher habitat heterogeneity in the riffles. However,
the density in riffles was significantly lower than that in pools during the freezing period (p < 0.05).
Additionally, pools were dominated by taxa with higher resilience and resistance traits, such as “bi-
or multi-voltine”, “abundant occurrence in drift”, and “small size at maturity”. This result indicated
that pools provide a temporary refuge for benthic macroinvertebrates in the extreme environment
of glacier-fed streams. The freezing–thawing process plays an essential role in the formation of the
structure and function of the stream ecosystem. Our results can help us to further understand the
winter ecological process of headwater streams, and provide a reference for stream biodiversity
conservation in cold regions.

Keywords: glacier-fed stream; benthic macroinvertebrates; freezing–thawing process; riffles; pools

1. Introduction

Glacier-fed streams are one of the environments most sensitive to global climate
change [1–3]. They are usually characterized by harsh environmental conditions, such as
low water temperature and channel stability, and high turbidity and dissolved oxygen [4].
These characteristics are related to the freezing–thawing process [5], which directly causes
changes in physical and chemical factors in the habitat. Harsh environmental conditions
may reduce the local species diversity of glacier-fed streams; however, it has been found
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that some endemic taxa have adapted to these extreme conditions [6–8]. The freezing–
thawing process includes three periods: the pre-freezing period (PP), freezing period (FP),
and thawing period (TP). Previous studies have mainly focused on the impact of floods
generated by the thawing period on river aquatic organisms [9–12]. However, less attention
has been paid to the impacts of the whole freezing–thawing process on aquatic organisms
in rivers.

Benthic macroinvertebrates are one of the most diverse groups of aquatic organisms
and are often used as bioindicators of water quality. They play an essential role in the
circulation of matter and the energy flow of aquatic ecosystems [13]. Previous studies
have mainly focused on the structure of benthic macroinvertebrate communities and
their distribution in glacier-fed streams [2,14]; however, few studies have focused on how
environmental change influences their functional traits [3,15]. Functional traits can reveal
ecological and evolutionary differences among species [16,17] and can also reflect selectivity
and adaptability among different habitats and benthic macroinvertebrates [18,19].

Sharp discontinuities often exist between channel geomorphic units, giving rise to the
characteristic riffle–pool sequences [20]. There are differences in geomorphic morphology,
hydraulic characteristics, and changes in deposition between riffles and pools [21]. This has
led to significant differences in the benthic macroinvertebrate communities found in the two
habitats [22,23]. The presence and distribution of benthic macroinvertebrates are closely
related to river habitats. For example, the ratio of lentic to lotic habitat features strongly
affects macroinvertebrate metrics in southern Europe [24]. Additionally, some disturbance
processes can also affect the benthic macroinvertebrate communities in both lentic and lotic
ecosystems [25]. Riffles and pools are the most common habitat structures in glacier-fed
streams. Freezing has different effects on the two habitats. The study of these two critical
habitats (riffles and pools) can reveal the distribution pattern and ecological influence of
benthic macroinvertebrates in glacier-fed streams during the freezing–thawing process.

We investigated the community structure and functional traits of benthic macroinver-
tebrates in the headwater of a glacier-fed stream in Xinjiang, China. We mainly focused
on the impacts of the freezing–thawing process on benthic macroinvertebrates in riffles
and pools. We hypothesized that the freezing–thawing process causes a wide range of
habitat changes, leading to significant changes in species composition, biodiversity, and
functional properties during different winter periods. The fewest changes were predicted
to occur during the freezing period. We also predicted that the diversity and density of
benthic macroinvertebrate communities in riffles would be higher than that in pools in
glacier-fed streams.

2. Materials and Methods
2.1. Study Area

The surveyed stream is located in the Banchan Nature Reserve of Tianshan Mountains,
Xinjiang Province, China (N 43◦17′ 51.229′′–43◦13′52.591′′, E 84◦51′45.844′′–84◦43′38.392′′)
(Figure 1). It is the source of the Gongnaisi River, one of the three tributaries of the Ili River,
and is mainly affected by the melting of glaciers and snow. The study area is located in the
hinterland of the western Tianshan Mountains, at an altitude of 2150–2511 m, which belongs
to the continental temperate climate zone. In this area, winter lasts nearly five months,
from November to April, and seasonal freezing–thawing characteristics are apparent.
The annual average temperature is 8–9.2 ◦C, and the annual snowfall is 300–418 mm.
We established five sampling sites along the surveyed stream (Figure 1A), to study the
impact of the freezing–thawing process on the structural and functional characteristics of
benthic macroinvertebrate communities in glacier-fed streams. Each sampling site was
approximately 2.5 km apart.
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and three replicated samples in pools were carried out in each site. The specimens were 
filtered through sieves with a 500 μm mesh size and stored temporarily in plastic bags in 
the field. Then the specimens were manually sorted from sediment on a white porcelain 
plate and preserved in 75% ethanol. In the laboratory, the benthic macroinvertebrates 
were identified to the lowest possible taxonomic level (usually genus) under a stereo-
scopic microscope (Olympus SZ × 10). 

2.3. Environmental Characterization 
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was measured with a LS300-A portable current analyzer, at a value that was 0.6-fold the 
water depth. The temperature, dissolved oxygen, electrical conductivity, and pH were 
measured using a portable water quality analyzer (Hanna, HI9829T). According to Cum-
mins [27], the substrate was classified as boulders, gravel, sand, and silt. The average sub-
strate score (MSUBSTD) was calculated [28] as follows (1), (2): 

Figure 1. Locations of the Ili River Basin in the People’s Republic of China, and the distribution of
the five sampling sites (A). The pre-freezing period (B). The freezing period (C). The thawing period
(D). Glacier data site from the second glacier inventory dataset of China [26].

2.2. Benthic Macroinvertebrate Collection

Benthic macroinvertebrates were sampled across three periods in winter: the pre-
freezing period (November in 2018), freezing period (January in 2019), and thawing period
(April in 2019). The sample size was n = 5. Each site was sampled using a Surber net
(30 × 30 cm, 500 µm mesh size) in a riffle–pool sequence. Three replicated samples in riffles
and three replicated samples in pools were carried out in each site. The specimens were
filtered through sieves with a 500 µm mesh size and stored temporarily in plastic bags in
the field. Then the specimens were manually sorted from sediment on a white porcelain
plate and preserved in 75% ethanol. In the laboratory, the benthic macroinvertebrates
were identified to the lowest possible taxonomic level (usually genus) under a stereoscopic
microscope (Olympus SZ × 10).

2.3. Environmental Characterization

We measured eight environmental factors, including velocity, depth, width, tempera-
ture, dissolved oxygen, electrical conductivity, pH, and substrate. Environmental factors
were measured at five sampling sites (the sample size was n = 5), and three replicated mea-
surements were made in each sampling site. The river width was measured with a meter
scale, the water depth was measured with a depth-sounding rod, and the velocity was
measured with a LS300-A portable current analyzer, at a value that was 0.6-fold the water
depth. The temperature, dissolved oxygen, electrical conductivity, and pH were measured
using a portable water quality analyzer (Hanna, HI9829T). According to Cummins [27],
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the substrate was classified as boulders, gravel, sand, and silt. The average substrate score
(MSUBSTD) was calculated [28] as follows (1) and (2):

MSUBSTD
= −7.75×BOLDCOBB−3.25×PEBBGRAV+2×SAND+8×SILTCLAY

TOTSUB
(1)

TOTSUB = BOLDCOBB + PEBBGRAV + SAND + SILTCLAY (2)

BOLDCOBB, PEBBGRAV, SAND, and SILTCLAY indicate the percentage cover of
bolder/cobble, pebble/gravel, sand, and silt/clay, respectively. A higher score indicates
higher proportions of sand and silt, whereas a lower score indicates a higher proportion of
large rocks and cobble.

2.4. Functional Traits

All benthic macroinvertebrate taxa were assigned to different functional traits. These traits
were compiled from database information published by Poff et al. [18] and Moretti et al. [29].
According to the habitat properties of the watershed, we selected ten biological traits
coded in 31 states, as follows: the life history (voltinism), mobility (occurrence in drift and
swimming ability), morphology (attachment, shape, and size at maturity), and ecology
(rheophily, thermal preference, habit, and trophic habit) (Table A1).

2.5. Data Analysis

The autocorrelation test results, regarding environmental and macroinvertebrate data
via the Mantel test, were not statistically significant (p > 0.05). The benthic macroinverte-
brate data were shown to have a normal distribution, after applying the normal distribution
test. Therefore, we used related-samples t-tests to analyze the differences in environmental
factors, species richness, biodiversity, EPT richness, density, and relative abundance of
functional traits in riffles and pools. Additionally, repeated-measures ANOVA was used
to compare the parameters mentioned above between different periods. Where signifi-
cant ANOVA results were obtained (p < 0.05), least significant difference (LSD) multiple
comparisons tests were conducted. The above analyses were performed in IBMSPSS 25.0,
and the figures were constructed in Origin 2020. The software PAST 4.01 was used to
calculate diversity.

We used indicator species analysis (ISA) to determine indicator taxa in riffles and pools.
ISA uses the indicator value (IV), which combines information regarding relative abundance
(RA) and relative frequency (RF) of the species, to reflect the intensity of the effect of the
species on the environment [30,31]. The IV calculation formula is IV = 100 × RA × RF.
RA refers to the ratio of the abundance of a particular species in a particular type of
environment to the total species in all environmental types. RF refers to the frequency at
which a species appears in a sample of a specific environment. A related-samples t-tests
was used to determine the significant differences in the indicator species of riffles and pools
in each period. Factors with p < 0.05 were considered significant. Canonical correlation
analysis (CCA) was used to analyze the relationship between benthic macroinvertebrate
community distribution and environmental factors, using CANOCO (version 5.0). A Monte-
Carlo randomization test with 499 permutations was carried out to filter key environmental
(p < 0.05) factors during the freezing–thawing period, using forward screening. All analyses
were conducted with log10(X + 1) transformed abundance data.

3. Results
3.1. Environmental Characteristics

We observed significant differences in velocity, depth, and MSUBSTD between riffles
and pools during the freezing–thawing process (p < 0.05, Table 1), with higher values
of depth and MSUBSTD observed in pools. The higher MSUBSTD value indicated that
the substrate in riffles was mostly cobble and pebble, with limited sand, whereas there
were high levels of sand and gravel in pools. The dissolved oxygen level in riffles was
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significantly higher than that in pools during the pre-freezing period and thawing period
(p < 0.05, Table 1). The electrical conductivity level in riffles was significantly higher than
that in pools in the pre-freezing period (p < 0.05, Table 1). The temperature and pH in pools
were lower than those in riffles during the thawing period (p < 0.05, Table 1).

Table 1. Summary of the differences in velocity (m·s−1), depth (m), width (m), temperature (◦C),
dissolved oxygen (mg·L−1), electrical conductivity (ms·cm−1), pH, and MSUBSTD, between riffles
and pools during the winter freezing–thawing process (mean ± SD). In each period, significant
differences between the two habitats are indicated by bold font (p < 0.05). Sample size (n = 5).

Parameters Pre-Freezing Period Freezing Period Thawing Period

Riffles Pools Riffles Pools Riffles Pools

Velocity (m·s−1) 0.35 ± 0.10 A 0.20 ± 0.05 a 0.20 ± 0.01 B 0.18 ± 0.00 a 0.50 ± 0.03 C 0.30 ± 0.04 b
Depth (m) 0.26 ± 0.03 A 0.39 ± 0.05 a 0.10 ± 0.03 B 0.31 ± 0.02 b 0.30 ± 0.05 A 0.41 ± 0.04 a
Width (m) 4.25 ± 0.30 A 5.18 ± 0.60 ab 4.19 ± 0.28 A 5.01 ± 0.53 a 5.48 ± 0.25 B 5.71 ± 0.16 b
Temperature (°C) 1.74 ± 0.04 A 1.75 ± 0.04 a 0.35 ± 0.11 B 0.36 ± 0.12 b 4.77 ± 0.09 C 4.27 ± 0.05 c
Dissolved oxygen (mg·L−1) 9.25 ± 0.03 A 9.01 ± 0.09 a 8.66 ± 0.12 B 8.62 ± 0.10 b 9.34 ± 0.03 C 9.14 ± 0.04 c
Electrical conductivity (ms·cm−1) 0.15 ± 0.05 A 0.12 ± 0.04 a 0.23 ± 0.02 B 0.22 ± 0.01 b 0.29 ± 0.03 C 0.26 ± 0.02 c
pH 7.83 ± 0.19 A 7.73 ± 0.09 a 7.86 ± 0.04 A 7.86 ± 0.03 b 8.18 ± 0.03 B 8.04 ± 0.05 c
MSUBSTD −4.14 ± 0.66 A 1.26 ± 0.88 a −4.16 ± 0.64 A 1.26 ± 0.92 a −4.16 ± 0.64 A 1.26 ± 0.92 a

3.2. Indicator Taxa in the Riffle–Pool Habitat

In total, 46 taxa were identified in the study area; of these taxa, 25 were identified in
riffles and 23 were identified in pools (Table A2). There were 12 indicator taxa for riffles
and six for pools during the pre-freezing period, 11 indicator taxa for riffles and 12 for
pools during the freezing period, and 14 indicator taxa for riffles and nine for pools during
the thawing period. During the whole freezing–thawing process, the indicator taxa were
Rhithrogena sp. and Baeits sp. in riffles and Chironomus sp. in pools. There were two
indicator taxa for different habitats at different periods. Psychodidae sp., which was an
indicator species for riffles during the pre-freezing period and thawing period, indicated
pools during the freezing period. Theliopsyche sp. was an indicator taxon for riffles during
the pre-freezing period, but it was an indicator taxon for pools during the freezing period
(Table 2).

Table 2. The indicator taxa in riffles and pools during the pre-freezing period, freezing period, and
thawing period. * denotes a significant difference between riffles and pools (p < 0.05). Sample size
(n = 5).

Taxa Indicated Habitat

Pre-Freezing Period Freezing Period Thawing Period

Turbellaria
Tricladida

Planariidae
Planaria sp. Pools *

Oligochaeta
Haplotaxida

Naididae sp. Pools *
Gastropoda

Basommatophora
Planorbidae

Anis sp. Pools *
Malacostraca

Amphipoda
Gammaridae

Gammarus sp. Pools *
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Table 2. Cont.

Taxa Indicated Habitat

Pre-Freezing Period Freezing Period Thawing Period

Insect
Ephemeroptera

Heptageniidae
Rhithrogena sp. Riffles * Riffles * Riffles *
Iron sp. Riffles * Riffles *
Heptagenia sp. Riffles *
Epeorus sp. Riffles *
Cinygmula sp. Riffles *

Baetidae
Baetis sp. Riffles * Riffles * Riffles *

Ameletidae
Ameletus sp. Riffles * Riffles *

Plecoptera
Perlodidae

Isoperla sp. Riffles *
Perlodes sp. Riffles *
Starsolus sp. Riffles *

Nemouridae
Nemoura sp. Riffles * Riffles *
Amphinemura sp. Pools *

Capniidae
Capnia sp. Riffles * Riffles *

Chloroperlidae
Suwallia sp. Riffles *

Coleoptera
Haliplidae

Haliplus sp. — — —
Trichoptera

Hydropsychidae
Homoplectra sp. — — —

Glossosomatidae
Glossosoma sp. Riffles *

Lepidostomatidae
Theliopsyche sp. Riffles * Pools *

Brachycentridae
Brachycentrus sp. Riffles * Riffles *
Amiocentrus sp. Pools *

Rhyacophilidae
Rhyacophila sp. Pools*

Limnephilidae
Desmona sp. — — —
Pseudostenophylax sp. — — —

Diptera
Tipulidae

Dicranota sp. Pools * Pools *
Cheilotrichia sp. Pools *
Tipula (Arctotipula) sp. Pools * Pools *
Tipula (Sinotipula) sp. Pools *
Hexatoma sp. Riffles *
Antocha sp. Riffles *

Chironomidae
Chironominae

Tanytarsini sp. Pools * Pools *
Chironomus sp. Pools * Pools * Pools *

Orthocladiinae sp.1 Pools * Riffles *
Orthocladiinae sp.2 Pools * Pools *
Orthocladiinae sp.3 Riffles *
Tanypodinae sp. Pools * Pools *

Ceratopogonidae
Sphaeromias sp. Pools * Pools *

Psychodidae sp. Riffles * Pools * Riffles *
Blefariceridae sp. Riffles *
Tabanidae sp.1 Riffles * Riffles *
Tabanidae sp.2 Riffles *
Blephariceridae

Blepharicera sp. Riffles *
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Table 2. Cont.

Taxa Indicated Habitat

Pre-Freezing Period Freezing Period Thawing Period

Arachnida
Acariformes

Hydrachnellae sp. Riffles *

3.3. Benthic Macroinvertebrate Community Structure in the Riffle–Pool Habitat

The differences in the community structure of benthic macroinvertebrates between
riffles and pools were reflected in the observed species richness, Margalef diversity, EPT
richness (Ephemeroptera, Plecoptera, and Trichoptera), and density (Figure 2). In general,
the species richness and Margalef diversity values in riffles tended to be higher than those
in pools, and they showed a significant difference during the freezing period and thawing
period (p < 0.05, Figure 2A,B). EPT richness was significantly higher in riffles than in pools,
during the three periods (p < 0.05, Figure 2C). The density in riffles showed a significantly
higher value than in pools in the pre-freezing period, but it was significantly lower than in
pools in the freezing period (p < 0.05, Figure 2D).
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Figure 2. Differences in species richness (A), Margalef diversity (B), EPT richness (C), and density
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period (TP) (mean ± SD). Different capital and small letters indicate significant differences among
the three periods in riffles and pools, respectively. * denotes a significant difference between the two
habitats (p < 0.05). Sample size (n = 5).

3.4. Functional Traits of Benthic Macroinvertebrates

The spatial pattern of rank traits was compared and analyzed (Figure 3). When consider-
ing life history traits, the relative abundance of “univoltine” taxa was significantly higher in
riffles than in pools, whereas that of “bi- or multi-voltine” taxa showed the opposite result
(p < 0.05; Figure 3A). For mobility traits, there were more taxa with “common occurrence in
drift” and “rare occurrence in drift” in riffles than in pools. However, the relative abundance
of “abundant occurrence in drift” was higher in pools than in riffles (p < 0.05; Figure 3B). The
relative abundance of “strong swimming ability” and “weak swimming ability” was higher
in riffles, while that of “none swimming ability” accounted for the largest proportion in pools
(p < 0.05; Figure 3C). In terms of morphological traits, riffles exhibited significantly higher
abundances of taxa with the traits “both attachment”, “streamlined shape”, and “medium
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size at maturity”, whereas pools exhibited significantly higher abundances of taxa with the
traits “none attachment”, “not streamlined shape” and “small size at maturity” (p < 0.05;
Figure 3D–F). For ecology traits, pools were characterized by a significantly higher rela-
tive abundance of “depositional only” and “cool eurythermal” taxa than riffles (p < 0.05;
Figure 3G,H). In terms of habit, “burrower” had an absolute advantage in pools during the
three periods. However, the dominant taxa in riffles were “clinger” in the pre-freezing period
and “swimmer” in the freezing period and thawing period (p < 0.05; Figure 3I). The relative
abundance of “collector–gatherer” taxa was higher in pools than in riffles. In comparison, in
riffles, the relative abundance of “herbivore” and “collector–filterer” taxa were higher in the
pre-freezing period, the relative abundance of “shredder” and “predator” taxa were higher
in the freezing period, and the relative abundance of “swimmer” and “herbivore” taxa were
higher in the thawing period (p < 0.05; Figure 3J).
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3.5. Relationships between Benthic Macroinvertebrate Communities and Environmental Factors

The relationships between benthic macroinvertebrate communities and environmental
factors were shown in Figure 4. The first ordination CCA axis (Figure 4A) explained 33.18%
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of the variation of benthic macroinvertebrate communities, and showed that velocity,
dissolved oxygen, temperature, pH, electrical conductivity, and MSUBSTD were the critical
environmental factors affecting the distribution of benthic macroinvertebrates during the
freezing–thawing periods (p < 0.05). The first ordination CCA axis was mainly correlated
with velocity and dissolved oxygen. This axis clearly distinguished the freezing period
sampling sites from those of the pre-freezing period and thawing period, and the freezing
period sampling sites had low velocity and dissolved oxygen. The second ordination axis,
which was strongly associated with MSUBSTD, pH, and electrical conductivity reflected
the amount of disturbance. All thawing period sampling sites characterized by higher
levels of disturbance were positioned near the upper section of the ordination.
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S4, Gammarus sp.; S5, Rhithrogena sp.; S6, Iron sp.; S7, Heptagenia sp.; S8, Epeorus sp.; S9, Cinygmula sp.;
S10, Baetis sp.; S11, Ameletus sp.; S12, Isoperla sp.; S13, Perlodes sp.; S14, Starsolus sp.; S15, Nemoura sp.;
S16, Amphinemura sp.; S17, Capnia sp.; S18, Suwallia sp.; S19, Haliplus sp.; S20, Homoplectra sp.; S21,
Glossosoma sp.; S22, Theliopsyche sp.; S23, Brachycentrus sp.; S24, Amiocentrus sp.; S25, Rhyacophila sp.;
S26, Desmona sp.; S27, Pseudostenophylax sp.; S28, Dicranota sp.; S29, Cheilotrichia sp.; S30, Tipula (Arc-
totipula) sp.; S31, Tipula (Sinotipula) sp.; S32, Hexatoma sp.; S33, Antocha sp.; S34, Tanytarsini sp.; S35,
Chironomus sp.; S36, Orthocladiinae sp.1; S37, Orthocladiinae sp.2; S38, Orthocladiinae sp.3; S39,
Tanypodinae sp.; S40, Sphaeromias sp.; S41, Psychodidae sp.; S42, Blefariceridae sp.; S43, Tabanidae
sp.1; S44, Tabanidae sp.2; S45, Blepharicera sp.; S46, Hydrachnellae sp.
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The riffle and pool sites were separately distributed along with the positive and
negative directions, respectively, of axis one in each period (Figure 4B–D). The first ordina-
tion CCA axis (Figure 4B) explained 71.46% of the variation of benthic macroinvertebrate
communities and was mainly correlated with dissolved oxygen, velocity, temperature,
MSUBSTD, depth, and width in the pre-freezing period (p < 0.05). Riffles were mainly
affected by dissolved oxygen and velocity, while pools were mainly affected by MSUBSTD,
depth, and width in this period. The first ordination CCA axis (Figure 4C) explained 76.44%
of the variation of benthic macroinvertebrate communities and was mainly correlated
with depth, MSUBSTD, velocity, and width in the freezing period (p < 0.05). Riffles were
primarily influenced by velocity, but pools were primarily influenced by depth, width, and
MSUBSTD in this period. The first ordination CCA axis (Figure 4D) explained 79.91% of
the variation of benthic macroinvertebrate communities and was mainly correlated with
velocity, MSUBSTD, dissolved oxygen, and depth in the thawing period (p < 0.05). Riffles
were mostly impacted by velocity, and dissolved oxygen; however, pools were mostly
impacted by depth in this period.

4. Discussion
4.1. Habitat Characteristics of Riffles and Pools during the Freezing–Thawing Process

The habitat environmental characteristics showed a decreasing trend, followed by
an increasing trend during the freezing–thawing process. The ice surface prevented air
exchange between the aquatic ecosystem and the atmosphere, resulting in the lowest
dissolved oxygen and temperature being during the freezing period. Low precipitation also
leads to lower dissolved oxygen values during the winter months [32]. Our results showed
that the water temperature, velocity, dissolved oxygen, and pH significantly increased in
the thawing period (p < 0.05). This is due to the fact that melting glacial ice contributes
significantly to the harsh environmental key conditions (low water temperature, increased
discharge dynamics, unstable substrate and riverbed, increased turbidity, and sediment
load) in glacier-fed streams [33]. The CCA tri-plot (Figure 4A) indicated that the pH had
the strongest correlation with the thawing period sampling sites. This is explained by the
melting and leaching of glaciers and moraine. Glacial meltwater runoff is mainly affected
by rock weathering, water–rock interaction is widespread, and the erosion and uplift of
bedrock caused by glacial movement enhance the hydrolysis capacity of minerals [34].
Water temperature is an important environmental variable that determines the metabolic
rate, spatial distribution, and population succession of aquatic organisms, especially for
highlands [35]. Our results showed that the water temperature had a greater effect on
benthic macroinvertebrate communities during the melting period.

The water quality conditions between riffles and pools differed slightly, due to the
rapid flow and short water residence time in the river channel. Nevertheless, the difference
in hydrological conditions in the two habitats was more prominent, consistent with Wang’s
results [31]. The substrate of riffles was dominated by cobble and gravels, while the
substrate of pools was dominated by silt and sand; previous studies found the same
results [36]. Pools were slow enough to allow some sediment to be deposited, and this
habitat was suitable for feeding on organic matter in the mud or for burrowing species
to survive. However, heavy sediment deposition can negatively affect the inhabitants by
reducing matrix porosity, reducing matrix heterogeneity, and enveloping organisms [37].

4.2. Insights on Indicator Taxa

Indicator taxa are sensitive and responsive to certain ecological disturbances and
can provide information on the biological and environmental aspects of a watershed or
ecosystem; thus, they can be used to monitor the environment [38]. By monitoring indicator
taxa, we can gain a better understanding of the ecological situation of glacier-fed streams.
In our study, the freezing–thawing process changed the indicator taxa in the riffles and
pools of glacier-fed streams.
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Diptera is often considered an indicator of glacier-fed streams [39–41]. Our results also
showed that Diptera had the most species among the indicator taxa and showed strong
habitat selectivity. Among the 18 genera of Diptera, there were seven indicator taxa of riffles
and nine indicator taxa of pools. The body color of the Psychodidae in our results was
primarily brown or black, and they were the indicator taxa in riffles during the pre-freezing
and thawing period. This is consistent with Tanchet’s findings, that brown or black genera
of Psychodidae are distributed in flowing water habitats [42]. During the freezing period,
the stream surface froze and there was more flowing water under pools than riffles. At
this time, Psychodidae was the indicator of pools, and it seems that pools become their
temporary refuge in the freezing period.

In addition to Diptera, EPT species (Ephemeroptera, Plecoptera, and Trichoptera)
accounted for a large proportion of indicator taxa. Ephemeroptera was an indicator group
in riffles of glacier-fed streams. Most of them have flat bodies (such as Heptagenia) with
fixed suckers (such as Rhithrogena) or are small and fish-like (such as Baetis), which are
adapted to a flowing water environment. Plecoptera originated in cold water rivers at
high latitudes [43]. Our results showed that Plecoptera is an indicator taxa of both riffles
and pools in glacier-fed streams. Additionally, the Nemouridae (Plecoptera) has a wide
diversification, being distributed in running waters [44] and still water [42]. Although
Amphinemura was an indicator of pools during the freezing period, which had the lowest
temperature, another study showed that it can live in a high-flow and high-temperature
habitat [2]. This is related to geographical location and natural conditions.

Food source is one of the critical criteria for the habitat selection of benthic macroin-
vertebrates. Glossosoma (Trichoptera) mainly feeds on diatoms and organic particles [45]
that are primarily distributed on the surface of riffles due to the size, stability, and velocity
of sediment particles [46]. Therefore, Glossosoma was the indicator taxon for riffles during
the freezing period when environmental conditions were stable. Brachycentrus (Trichoptera)
larvae like to gather on the surface of rocks, branches, or submerged plants facing the
water [47]; thus, this was the indicator taxon for riffles during the pre-freezing period and
thawing period when the water was flowing. Theliopsyche (Trichoptera) indicated riffles
in the pre-freezing period, but indicated pools in the freezing period. This means that it
moves to a more suitable location as the environment changes. It can swim between riffles
and pools, choosing a habitat to settle in, according to its environment.

Generally, during the pre-freezing period in glacier-fed streams, the indicator taxa of
riffles were Ephemeroptera, Plecoptera, Diptera, and Trichoptera. These taxa have a flat
body (Ephemeroptera), wide and flat hocks (Plecoptera), a small tail with rows of hooks
(Diptera), or gravel nests (Trichoptera). These structures give them a strong attachment
to stone. The indicator taxa of pools were Diptera (Tipulidae and Chironomidae), which
were both burrowers. The dissolved oxygen level was lowest during the freezing period.
Lower oxygen availability should promote the presence of taxa with gills that help them
increase their rates of oxygen uptake. Therefore, the dominant groups at this time were
Amphinemura, Theliopsyche, and Amiocentrus, which breathe through gills. In addition to
Diptera, the indicator taxa of pools were Trichoptera and Basommatophora. The indicator
taxa of riffles were Ephemeroptera, Plecoptera, Diptera, and Trichoptera in the thawing
period, but the prevalence of some Diptera species increased. This increase may have been
because glacier and snow meltwater washed them out of pools into riffles. Meanwhile,
the indicator taxa of pools increased during the thawing period, including Rhyacophila,
Gammarus, Naididae, and Planaria. This is because they bred in large numbers at this time.

4.3. Benthic Macroinvertebrate Community Structure in Riffles and Pools during the
Freezing–Thawing Process

Our research confirmed the benthic macroinvertebrate community structure in a
glacier-fed stream in the Tianshan mountains in China, during the snow-covered period.
The seasonal glacial melt led to high flow, high turbidity, the destruction of food sources,
and changes in the original habitat conditions. This glacial melt strongly influenced the
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dynamics of the benthic macroinvertebrate communities. Similar results have been reported
in Europe and South America [2,48,49].

During the freezing–thawing process, the species richness and diversity of benthic
macroinvertebrates in riffles and pools showed a decreasing trend. Our results showed
that these values were significantly higher in riffles than in pools in the thawing period
(p < 0.05). CCA analysis (Figure 4D) also showed that the influence of “melting glacier and
snow” on riffles was more significant than on pools. This allows riffles to provide varied
environmental conditions for aquatic organisms, due to their increasing flow, velocity,
and oxygen cycle. Therefore, riffles were more suitable for different kinds of benthic
macroinvertebrates than pools. Previous studies only obtained higher EPT taxa abundance
in riffles than in pools [23], and did not measure these during the freezing–thawing process.
The EPT taxa in both habitats were the most abundant in the freezing period. The taxa
usually possess the functional trait “large size at maturity.” Benthic macroinvertebrates with
a large body size are more likely to maintain their regulatory function in a heterogeneous
environment, and, thus, have advantages in cold habitats [50].

The densities of the benthic macroinvertebrate communities during the pre-freezing
period and thawing period were consistent with most research, which showed that riffles
had significantly higher densities than pools [51,52]. However, the results obtained in the
freezing period contradicted this, and these findings were also different from our second
hypothesis regarding density. This contradiction may be due to the low temperature
in the freezing period, leading to the higher stability of pools than riffles. As organic
debris was easy to deposit in pools during the pre-freezing period, the food source was
sufficient in pools, and their overwintering environment was more suitable for benthic
macroinvertebrate survival; thus, there were more aquatic organisms in pools.

4.4. Benthic Macroinvertebrate Functional Traits in Riffles and Pools during the
Freezing–Thawing Process

Functional traits affect the species coexistence pattern of the entire community by
impacting the arrangement of species along the environmental gradient, interspecific com-
petition, and resource allocation within the community [53]. The difference in the relative
abundance of traits is the result of habitat filtering; that is, hierarchical traits with a higher
relative abundance can be regarded as better adapted to the regional environment [54].
Given the imminent threat of glacier retreat to aquatic communities in these catchments [10]
due to global warming, more information is needed to clarify the functional consequences
of species loss and community changes [55,56].

In our study, the higher relative abundance of “uni-voltine” and “bi- or multi-voltine”
taxa indicated that there were apparent seasonal rhythms and hydrology conditions at
the source of the Tianshan Mountain glacier-fed stream [57,58]. Furthermore, the “bi- or
multi-voltine” taxa had a higher relative abundance in pools, and these taxa can maintain
populations in constantly changing habitats [59]. The “swimming ability”, “attachment”,
and “shape” traits reflect the ability of benthic macroinvertebrates to avoid adverse habitats
to a certain extent. The relative abundance of “none swimming ability”, “none attachment”,
and “not streamlined” taxa in pools were significantly higher than those in riffles (p < 0.05),
demonstrating that riffle taxa are more susceptible to hydrological disturbance. In contrast,
pools provide a crucial mobile refuge for benthic macroinvertebrates, including rheophilic
taxa [60]. The relative abundance of “large size at maturity” taxa during the freezing
period was greater than that during the other two periods in glacier-fed streams, which is
consistent with the results observed in forest streams [61]. However, the overall proportion
of “large size at maturity” was deficient in riffles and pools during the freezing–thawing
process. Our results showed that the relative abundance of “small size at maturity” taxa
was the highest, and in pools the relative abundance was significantly larger than that in
riffles (p < 0.05). This result supports the hypothesis that being small may offer resilience
to environmental conditions. Clinging or attaching to a substrate may provide resistance
to the high hydraulic stress experienced by invertebrates in glacier-fed streams [62,63].
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Furthermore, small individuals usually have a shorter life cycle (r-selection), so the com-
munity can recover faster after being disturbed [64]. These results also show that pools in
the glacier-fed streams are more suitable than riffles for benthic macroinvertebrates to deal
with extreme environments.

In terms of rheophily, the relative abundance of “erosional” benthic macroinvertebrates
in riffles was higher than that in pools, indicating the high heterogeneity of the riffle
habitat. Owing to greater depths and slower currents, organic matter and sediments
tend to accumulate in pools. The winter freezing–thawing process was mainly based on
“cool/warm eurythermal” thermal preference. As the snow continued to melt, there was
an increase in “cool/warm eurythermal” benthic macroinvertebrates in pools, reflecting
slower temperature changes in pools. Concordant with the results of streams in the
Smith River Basin (northern California) and the Sierra Nevada (California), we found
that the abundances of clinger taxa dominated in riffles, whereas burrowers dominated
in pools [23,65]. Differences in habitats are related to the type of substrate present. Riffles
mainly consist of boulders, which provide living conditions suitable for “clinger” benthic
macroinvertebrates. Meanwhile, pools mainly consist of gravels, which is suitable for
supporting burrowing benthic macroinvertebrates. As such, the trait “clinger” was the
dominant group in riffles in the pre-freezing period in our study. At this time, the river is
not frozen, and the water in riffles is more fluid. Sessile benthic macroinvertebrates usually
attach to the substrate surface of the riverbed. They generally have abdominal suckers,
powerful tarsal claws, a fixed nest, and a flat dorsal surface and abdomen to avoid or
withstand hydraulic impact. In the thawing period, the trait “swimmer” had an advantage
in riffles, owing to glacier and snow melting, because taxa with this trait can control the
direction and speed of their motion.

Nutritional habits reflect circulation of matter and energy flow in the ecosystem where
communities are located. Changes in the composition of functional feeding groups indi-
cated that the winter freezing–thawing process affected the structure of the benthic macroin-
vertebrate food web [66]. The relative abundance of collectors in riffles and pools was the
highest, indicating that the benthic macroinvertebrates in the Tianshan Mountains glacier-
fed stream mainly played the role of secondary producers in the water ecosystem [67]. We
found that filterers were more common in riffles and gatherers were more common in
pools, which was in agreement with the results obtained regarding Arizona streams [68].
Although leaves and wood chips are deposited in pools, they are also intercepted and
accumulated by gravel or pebbles in riffles. The relative abundance of herbivores and
shredders in riffles was more significant than in pools (p < 0.05). Conversely, some stonefly
taxa classified as shredders consume a large amount of algae; thus, their abundances may
not depend on allochthonous detritus alone [69]. Overall, there were more taxa with re-
silience and resistance traits in pools than in riffles, and the same results were shown in
other disturbed streams [70].

5. Conclusions

We investigated the effects of the freezing–thawing process on benthic macroinverte-
brates based on the analysis of their community structure and functional traits in riffles
and pools of a glacier-fed stream in Xinjiang, China. The freezing–thawing process re-
sulted in declines in benthic macroinvertebrate species richness and diversity, but the
functional traits adapted to adverse habitat increased. These findings indicated that the
freezing–thawing process affected the natural habitat conditions and diversification of the
benthic macroinvertebrate communities, suggesting that freezing and thawing play an
essential role in forming the structure and function of the stream ecosystem. The levels of
species richness, EPT richness, and biodiversity in riffles were higher than those in pools
of the glacier-fed stream, but the species density was lower in riffles than in pools in the
freezing period. The groups of benthic macroinvertebrates with resilience and resistance
were greater in number in pools than in riffles. The disturbance of meltwater during the
thawing period is the critical factor that affects the survival of benthic macroinvertebrates.
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Riffles are more disturbed by meltwater and, despite increasing habitat heterogeneity, pools
provide a temporary refuge for benthic macroinvertebrates. The results of our study are
limited in some respects, due to the natural environment and geographical location, and
conclusions about changes in biodiversity in changing habitats must be made cautiously.
The study of benthic macroinvertebrates can allow us to better evaluate the ecological
process and habitat status of glacier-fed streams. Furthermore, our results can also be used
as an indicator to assess the impact of glacier and snow line retreat on river ecosystems in
the future.
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Appendix A

Table A1. The functional traits and trait state of benthic macroinvertebrates.

Trait Trait State Trait Trait State

Life history Ecology
Voltinism Semi-voltine Rheophily Depositional only

Uni-voltine Depositional and
erosional

Bi- or multi-voltine Erosional
Mobility Thermal preference Cool eurythermal

Occurrence in drift Rare Cool/warm
eurythermal

Common Warm eurythermal
Abundant Habit Burrower

Swimming ability None Climber
Weak Sprawler
Strong Clinger

Morphology Swimmer
Attachment None Trophic habit Collector-gatherer

Some Collector-filterer
Both Herbivore

Shape Streamlined Predator
Not streamlined Shredder

Size at maturity Small (<9 mm)
Medium (9−16 mm)
Large (>16 mm)
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Table A2. Density compositions of benthic macroinvertebrates (individuals/m2, n = 5).

Code Taxa

Pre-Freezing Period Freezing Period Thawing Period

Riffle Pool Riffle Pool Riffle Pool

Mean SD Mean SD Mean SD Mean SD mean SD Mean SD

S1 Planaria sp. 0 0 0 0 0 0 0 0 0 0 6 4
S2 Naididae sp. 10 2 11 7 12 5 16 7 2 2 27 15
S3 Anis sp. 0 0 0 0 0 0 8 9 0 0 0 0
S4 Gammarus sp. 2 2 0 0 0 0 0 0 0 0 34 19
S5 Rhithrogena sp. 384 27 87 17 127 34 47 4 24 6 0 0
S6 Iron sp. 24 10 4 1 0 0 0 0 366 60 7 4
S7 Heptagenia sp. 0 0 0 0 10 6 0 0 0 0 0 0
S8 Epeorus sp. 0 0 0 0 23 5 7 1 0 0 0 0
S9 Cinygmula sp. 0 0 0 0 0 0 0 0 41 23 0 0
S10 Baetis sp. 387 25 84 15 656 32 232 20 1422 103 4 9
S11 Ameletus sp. 40 8 33 13 185 22 23 8 339 57 8 4
S12 Isoperla sp. 27 4 16 6 0 0 0 0 0 0 0 0
S13 Perlodes sp. 0 0 0 0 22 2 7 6 0 0 0 0
S14 Starsolus sp. 12 8 0 0 0 0 0 0 0 0 0 0
S15 Nemoura sp. 13 2 0 0 0 0 0 0 693 27 13 9
S16 Amphinemura sp. 0 0 0 0 0 0 7 7 0 0 0 0
S17 Capnia sp. 0 0 0 0 333 44 32 10 34 22 0 0
S18 Suwallia sp. 0 0 0 0 79 13 0 0 0 0 0 0
S19 Haliplus sp. 0 0 2 2 0 0 0 0 0 0 0 0
S20 Homoplectra sp. 5 6 0 0 0 0 0 0 0 0 0 0
S21 Glossosoma sp. 220 15 143 25 17 10 0 0 0 0 0 0
S22 Theliopsyche sp. 82 14 14 5 0 0 7 4 0 0 0 0
S23 Brachycentrus sp. 345 23 96 25 12 5 12 4 74 24 7 6
S24 Amiocentrus sp. 0 0 0 0 0 0 16 7 0 0 0 0
S25 Rhyacophila sp. 0 0 0 0 0 0 0 0 0 0 4 0
S26 Desmona sp. 0 0 0 0 27 8 25 7 0 0 0 0
S27 Pseudostenophylax sp. 0 0 0 0 0 0 0 0 15 15 0 0
S28 Dicranota sp. 35 4 74 9 59 9 70 13 12 8 15 9
S29 Cheilotrichia sp. 9 4 7 3 11 5 58 8 7 9 0 0
S30 Tipula (Arctotipula) sp. 8 3 18 12 7 3 4 0 0 0 19 11
S31 Tipula (Sinotipula) sp. 5 2 5 7 0 0 19 3 0 0 0 0
S32 Hexatoma sp. 21 11 16 7 0 0 0 0 22 14 0 0
S33 Antocha sp. 73 25 25 8 0 0 0 0 0 0 0 0
S34 Tanytarsini sp. 216 24 1198 64 0 0 0 0 206 47 2526 139
S35 Chironomus sp. 0 0 16 6 519 51 1454 39 22 15 550 61
S36 Orthocladiinae sp.1 26 7 21 9 246 35 776 72 295 31 59 8
S37 Orthocladiinae sp.2 12 1 219 23 0 0 0 0 72 21 603 66
S38 Orthocladiinae sp.3 257 22 90 17 0 0 0 0 438 66 24 12
S39 Tanypodinae sp. 3 4 77 10 17 7 37 8 0 0 0 0
S40 Sphaeromias sp. 0 0 0 0 0 0 4 0 0 0 16 14
S41 Psychodidae sp. 593 34 94 23 0 0 4 0 17 8 0 0
S42 Blefariceridae sp. 61 9 8 7 10 6 8 9 0 0 0 0
S43 Tabanidae sp.1 79 18 13 4 20 5 23 8 17 4 7 5
S44 Tabanidae sp.2 0 0 0 0 8 9 0 0 7 8 4 1
S45 Blepharicera sp. 0 0 0 0 0 0 0 0 24 11 0 0
S46 Hydrachnellae sp. 0 0 0 0 99 23 10 3 0 0 0 0
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