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Abstract: Cyanobacteria often cause harmful algal blooms and release toxic substances that can
harm humans and animals. Accurately modeling these phytoplankton is a step towards predicting,
preventing, and controlling such blooms. Certain cyanobacteria species are known to migrate
vertically in the water column on a daily cycle. Capturing this behavior is one aspect of modeling
their dynamics. Previous studies on modeling cyanobacterial vertical migration are reviewed and
summarized. Several models of cyanobacteria vertical movement are tested using data from field
studies. These models are applied using both continuum and particle-tracking frameworks. Models
range in complexity from simple functions of time to more complicated calculations of cyanobacteria
buoyancy. Simple models were often able to predict cyanobacteria migration at low values of vertical
diffusion in both types of modeling frameworks. More complicated models of buoyancy change
performed better in the particle-tracking framework than in the continuum framework. Analysis of
the models developed and tested provides information on the applicability of these models in more
complex hydrodynamic and water quality models.

Keywords: cyanobacteria; vertical migration; hydrodynamic and water quality modeling; harmful
algae; buoyancy regulation

1. Introduction
1.1. Background

Cyanobacteria are often responsible for harmful algae blooms (HABs), which occur
when these phytoplankton grow excessively in a waterbody. Several genera of cyanobac-
teria, including Microcystis, Oscillatoria, Anabaena, and Aphanizomenon, produce toxic sub-
stances called cyanotoxins, which can cause serious health problems in humans and other
mammals [1,2]. Some are able to move vertically in the water column by their own motility,
independent of water velocity [3]. The vertical migration of species such as Microcystis
aeruginosa, Oscillatoria agardhii, and Anabaena flos-aqua can lead to HABs when colonies
accumulate on a water surface and experience increased growth, causing degradation of
water quality and environmental health [4].

Vertical migration is thought to be beneficial to cyanobacteria because it allows them
to travel between the surface layers of a waterbody, where light is abundant, and lower,
more nutrient-rich layers [5]. Some studies suggest that cyanobacteria are able to move
past the thermocline of a lake to take advantage of nutrients in the hypolimnion [6], while
others found insufficient evidence that this occurs in natural systems [7]. Nevertheless,
this movement is achieved through a process called buoyancy regulation. Cells regulate
their buoyancy either through carbohydrate ballast or gas vesicles [8]. Carbohydrates are
accumulated when cells photosynthesize, and this ballast causes a decrease in buoyancy
and subsequent sinking. Once cells have stopped photosynthesizing, the carbohydrates
are consumed, the ballast depleted, and cells rise again [9]. Chemicals accumulated dur-
ing photosynthesis also cause gas vesicles contained in cells to collapse through turgor
pressure, which decreases buoyancy. Synthesis of new gas vesicles leads to an increase in
buoyancy [10].
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Based on these mechanisms, buoyancy regulation and vertical migration are affected
by external factors such as light and nutrients. Laboratory experiments on O. agardhii
showed that carbohydrate ballast (and, therefore, density) increased with increasing irradi-
ance, then leveled off and eventually decreased after light ceased [8]. Ibelings et al. [11]
observed that Microcystis colonies in two lakes in the Netherlands decreased in buoyancy
during the day and increased at night, following a diurnal light cycle. Similar results were
found by Cui et al. [12] in the Three Gorges Reservoir. Visser et al. [13] found a positive
relationship between carbohydrate content and density of Microcystis cells in laboratory
experiments. They also found that the rate of cell density change increased with increasing
photon irradiance up to a point, then decreased as photon irradiance continued to increase.
Their experiments showed that after light ceased, the rate of density decrease was greater
when initial cell density was greater. Wallace and Hamilton [14] performed similar experi-
ments on M. aeruginosa in the laboratory and confirmed the positive relationship between
cell density and carbohydrate content found by Visser et al. [13]. They also proposed the
existence of a “response time” that occurs when cells are first exposed to light. Until the
end of the response time, cell density does not increase constantly with light. Laboratory ex-
periments on M. aeruginosa suggest that buoyancy regulation is dependent on the light and
nutrient history experienced by cells, as well as persisting light and nutrient conditions [5].

Exogenous factors besides light and nutrients have been found to affect cyanobacteria
distributions. In Lake Taihu in China, surface blooms of M. aeruginosa did not form when
wind speed and surface wave height exceeded critical values of 3.1 m/s and 0.062 m,
respectively [15]. Microcystis colonies in the Three Gorges Reservoir were observed to
migrate to greater depths in open water while those in a protected enclosure stayed closer
to the surface [12]. Zhao et al. [16] found that Microcystis spp. (mainly M. aeruginosa) in a
laboratory experiment could maintain buoyancy up to a critical value of turbulent kinetic
energy, and that this value increased with colony size. They hypothesized that larger
colonies were better able to overcome turbulent entrainment due to their greater diameter,
which increases drag force. Similar results were found by Zhu et al. [17] in Lake Taihu. In
response to the tendency of cyanobacteria species to thrive in stratified systems, artificial
mixing techniques are often used to control and prevent blooms. These include aeration
and pumping water between the hypolimnion and epilimnion to decrease stratification
and increase turbulence [3]. This disrupts the stability that allows the cyanobacteria to
stay at the water surface and can displace them to deeper parts of the water column where
growing conditions are less favorable.

Due to the serious health effects caused by HABs and their increasing frequency of
occurrence in waterbodies [18], it is desirable to be able to model the organisms responsible
for them accurately. The purpose of this study was to develop models of cyanobacteria that
are able to accurately predict their vertical migration. We first reviewed existing models
of cyanobacteria vertical migration and then selected several models that were tested and
compared to field data. These models ranged in complexity, with the simplest based on
predefined velocity equations and the more complicated dynamically predicting velocity
based on cyanobacteria buoyancy. Models were tested in two different frameworks: a
Eulerian continuum approach where concentration is assumed constant in each model cell
and a Lagrangian particle-tracking approach that followed the location of each modeled
particle. Finally, we discussed the performance of each type of model under different
scenarios and integration of these algorithms in water quality and hydrodynamic models.

1.2. Models of Vertical Migration

The first mechanistic computer model of cyanobacteria vertical migration was based
only on the influence of turgor pressure as a function of light [19,20]. Kromkamp and
Walsby [8] found this model to be over-simplified in its neglect of carbohydrate ballast as
a factor in buoyancy regulation. They created a model based on relationships found in
laboratory experiments on O. agardhii that predicted cell density as a function of irradiance
at depth.
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In Kromkamp and Walsby’s model, the rate of change in density with irradiance is
given by Equation (1) (all equations are shown in Table 1). The previous irradiance (Ia) is the
average irradiance experienced by the colony since the start of the most recent photoperiod.
When the colony does not receive any light, Equation (1) reduces to the second and third
terms and predicts that density decreases. The predicted density of a cell is used to find its
settling velocity following Stokes’ law Equation (2). This velocity is used to calculate the
new position after a timestep Equation (3). This general structure, with modifications, has
been used for later models.

Howard et al. [21] built upon the model of Kromkamp and Walsby [8], which they
asserted made it more appropriate for Microcystis. This included adding algorithms for
allocating carbon acquired through photosynthesis to growth, ballast, and maintenance.
Cyanobacteria photosynthetic rate as a function of light at depth was based on a photo-
synthesis/irradiance curve. An increase or decrease in cell carbohydrate ballast is based
on Equation (4). In their model, colony density is a function of cell density and water
density Equation (5). Mucilage density is estimated using density of the surrounding
water Equation (6). Changes in cell density based on changes in ballast are calculated by
Equation (7). This is translated to changes in colony density Equation (8). As in Equation (3)
from Kromkamp and Walsby [8], settling velocity based on colony density is calculated
using Stokes’ law Equation (2). Howard et al. [21] also defined a “turbulent mixed layer”
in the surface layer of the model in which colonies were assumed to move with the speed
of the surrounding water. This speed is calculated based on wind speed, and the direction
of colony movement is found with a random-walk routine.

A model developed by Visser et al. [13] was similar to the Kromkamp and Walsby [8]
model but included new treatments of photoinhibition and density change after dark.
Instead of using a Michaelis–Menten equation for the relationship between cell density
change and photon irradiance, they developed an irradiance-response curve based on
laboratory experiments to better represent photoinhibition at high irradiance values. During
periods when irradiance was higher than a compensation value, the rate of density change
is found using Equation (9). Additionally, they modeled the density decrease in the dark as
a function of cell density rather than previously experienced irradiance Equation (10).

Wallace and Hamilton [14] made a contribution to these earlier models by adding
a response time that begins after light intensity changes and lasts until the change in
density with increasing irradiance becomes constant. They modified the equation used
in Kromkamp and Walsby [8] Equation (1), by adding an exponential decay term and
neglecting the previous irradiance term Equation (11). They concluded that 20 min is
generally an appropriate response time for models. However, the change in density is very
sensitive to the length of the irradiance time relative to the response time. They calculated
density decrease using the second two terms of Equation (1) with modified coefficients
Equation (12).

Later studies made use of the buoyancy regulation equations from these earlier studies
to model cyanobacteria movement (e.g., [22–25]). Some combined cyanobacteria buoyancy
regulation with hydrodynamic models (e.g., [17,26–38]). Many models assumed a single
volume for all simulated colonies; however, some included the natural variation in colony
size in a waterbody by assuming a distribution of colony diameters (e.g., [24,38]).

The above models required knowledge of a colony’s density history and are thus
better suited for Lagrangian-type models that track simulated particles. Other models of
cyanobacteria vertical migration have been designed for a Eulerian framework that treats
plankton as a continuum.

Belov and Giles [4] developed one such model based on principles of light-dependent
buoyancy regulation. However, they used a predetermined colony velocity rather than the
dynamic settling velocity approach of the above models. Their velocity model incorporates
light changes due to the daily solar cycle as well as the depth-dependent effect of light
extinction in a waterbody Equation (13). In this way, it assumes the density change and
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movement of cyanobacteria in response to light without requiring information about actual
light or colony density.

Serizawa et al. [39] also created a model idealized for a continuum approach that
defines cyanobacteria colony velocity in time and space. Their model incorporates the light
and nutrient histories that cyanobacteria colonies would have experienced in each model
location. Changes in velocity were determined by the ballast factor, which represents the
cumulative effect of past growth rates at a particular depth Equations (14) and(15). The
exponential decay factor in Equation (15) gives less weight to growth rates experienced
further in the past. Equation (14) then assumes a relationship between cyanobacteria
growth kinetics and migration velocity based on the idea that buoyancy regulation and
growth respond to similar inputs.

PROTECH is a commonly used model of phytoplankton dynamics [40]. Up to ten
species of phytoplankton from a library of over 100 species can be modeled at one time [41].
Species that regulate their buoyancy move up or down a specified number of model cells
based on light at the depth of the colony [42]. However, the model has a minimum timestep
of one day, so it cannot simulate vertical migration within a 24 h period.

CAEDYM is a widely used numerical, water-quality model and is often coupled
with the one-dimensional lake model DYRESM [40]. In CAEDYM, vertical migration of
cyanobacteria is based on the theory and equations presented in Kromkamp and Walsby [8]
and is a function of light intensity [43]. Rate of density change with irradiance is given by
Equation (16), which is modified from Equation (1) by the addition of an exponential light
response term. Alternatively, rate of density change can be modeled as a function of internal
carbon store. Rate of density change in the dark is not a function of previous irradiance as
in Equation (1), but is based only on a constant Equation (17). In the case of dinoflagellates,
chlorophytes, and cryptophytes, migration velocity is modeled as a function of irradiance
and internal nitrogen stores. Table 1 summarizes these vertical migration approaches with
their key model parameters.

Table 1. Summary of vertical migration models.

Equations Parameters and Definitions

Kromkamp and Walsby [8]

(1) dρc
dt = c1

(
I

KI+I

)
− c2 Ia − c3 ρc, density of cyanobacteria colony

t, time
I, irradiance at depth of colony
Ia, previous irradiance
KI = 25 µmol m−2 s−1, half-saturation
irradiance
c1 = 0.132 kg m−3 min−1

c2 = 1.67×
10−5 kg m−3 min−1(µmol m−2 s−1)−1

c3 = 0.023 kg m−3 min−1

v, settling velocity

g, acceleration due to gravity
r, cyanobacteria colony radius
ρ′, density of water
n, viscosity of water
A, ratio of cell volume to colony volume
φ, form resistance
z2, depth at current timestep
z1, depth at previous timestep
P, time interval

(2) v =
2gr2(ρc−ρ′)A

9φn

(3) z2 = vP + z1

SCUM96 [21]

(4)

I f Pqi − R ≤ Cgmax , K = Pqi − R and B = 0
I f Pqi − R > Cgmax , K = Cgmax
and B = Pqi − R− K
I f Pqi − R < 0, K = 0 and B = Pqi − R

Pqi , cyanobacteria photosynthetic rate
R, respiration rate
Cgmax , maximum rate of carbon used
for growth
K, growth
B, ballast
ρcel , density of a cell
ρmuc, mucilage density
F = 0.19, ratio of cell volume to
colony volume

N = 12, 032, number of cells in a colony
Ccel , cell carbon content
Vcel , cell volume
ρc, ρ′, r, as defined above

(5) ρc = (F ∗ N ∗ ρcel) + [(1.0− F)ρmuc]

(6) ρmuc = ρ′ + 0.7 kg/m3

(7) ∆ρcel =
BgCcel

Vcel

(8) ∆ρc =
N∗Vcel∗∆ρcel

4
3 πr3
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Table 1. Cont.

Equations Parameters and Definitions

Visser et al. [13]

(9) I ≥ Ic, dρc
dt =

(
N0
60

)
Ie−I/I0 + c

I, irradiance at depth of colony
Ic = 10.9 µmol m−2 s−1, compen-
sation irradiance
N0 = 0.0945 kg m−3 µmol−1 m2

ρi , cell density at end of preceding
light period
f1 = −9.49× 10−4 min−1

(10) I < Ic, dρc
dt = f1ρi + f2

I0 = 277.5 µmol m−2 s−1, light intensity at
maximum density
c = −0.0165 kg m−3 min−1, rate of density
change when I = 0

f2 = 0.984 kg m−3 min−1

ρc, t, as defined above

Wallace and Hamilton [14]

(11) I > 0, dρc
dt =

(
c1

I
KI+I − c3

)(
1− e−t/τr

) KI = 530 µmol m−2 s−1, half-
saturation irradiance
c1 = 0.0427 kg m−3 min−1

c3 = 4.6× 10−6 kg m−3 min−1

τr = 20 min, response time

(12) I = 0, dρc
dt = −c2 Ia − c3

c2 = 1.67×
10−5 kg m−3 min−1(µmol m−2 s−1)−1 ρc, t, I, Ia, as defined above

Belov and Giles [4]

(13) V(z, t) = V0e−k(h−z)cos(ωt)

V(t, z), velocity of colony
z, depth of colony
V0 = 0.408 m day−1, maximum colony
velocity
k = 0.1 m−1, light attenuation coefficien

h, depth of waterbody
ω = 2π day−1, frequency of daily light cycle
t, as defined above

Serizawa et al. [39]

(14) V(t, z) = Vm{F(t, z)− F0} F(t, z), ballast factor
Vm = 250 m day−1, velocity scale factor
F0 = 0.1, neutral buoyancy ballast factor
µ, growth rate

k = 3 day−1, reciprocol of decay time
τ, time before present
V(t, z), t, z, as defined above(15) F(t, z) =

∫ ∞
0 µ(t− τ, z)e−kτdτ

CAEDYM [43]

(16) I > 0, dρc
dt = c1

(
1− e−I/IK

)
− c3

c1 = 0.124 kg m−3 min−1a

c3 = 0.023 kg m−3 min−1a ρc, I, t, as defined above

(17) I = 0, dρc
dt = −c3 IK = 130 µmol m−2 s−1 a, half saturation constant for light-dependent density change

a Values used in Chung et al. [44].

2. Modeling Framework and Available Field Data
2.1. Continuum and Particle Transport Models

We investigated several different approaches to modeling cyanobacteria vertical mi-
gration, including predefined velocity models and dynamically calculated velocity based
on light-dependent buoyancy change. These approaches were applied in both continuum
and particle-tracking frameworks.

In the continuum framework, cyanobacteria were modeled as a mass concentra-
tion homogeneous within each model grid cell. The governing equation for transport
of cyanobacteria in a continuum framework is the advection-diffusion equation. For a
one-dimensional (vertical) model in a quiescent waterbody with constant horizontal area
with depth, the governing mass balance equation is given by

dc
dt

+
∂cvp

∂z
=

∂

∂z

[
Dz

(
∂c
∂z

)]
− r (18)

where c is cyanobacteria concentration, t is time, z is depth in the waterbody, vp is the
vertical migration velocity of the organism or colony, Dz is the vertical turbulent diffusion
coefficient, and r is a source-sink term for population growth and loss. Cyanobacteria
concentration can be solved for at each point in time and space using an appropriate
numerical scheme.
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For the continuum framework, an upwind numerical scheme with no-flux boundary
conditions was used to solve Equation (18):

cn+1
i =

Dz∆t
∆z2

(
cn

i+1 − 2cn
i + cn

i−1
)
− ∆t

∆z

(
vn

pi
cn

i − vn
pi−1

cn
i−1

)
+ (µnet∆t + 1)cn

i , vn
pi
> 0 (19)

cn+1
i =

Dz∆t
∆z2

(
cn

i+1 − 2cn
i + cn

i−1
)
− ∆t

∆z

(
vn

pi+1
cn

i+1 − vn
pi

cn
i

)
+ (µnet∆t + 1)cn

i , vn
p < 0 (20)

In Equations (19) and (20), ∆z is the model grid spacing and the subscript i refers to
the model grid cell of interest (Figure 1). The superscripts refer to time in the simulation,
where time n + 1 is one timestep in the future from time n, and ∆t is the model timestep.
The source-sink term of Equation (18) is represented by µnet and includes the effects of
population growth, mortality, excretion, and respiration.
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In a particle-tracking framework, the location of an organism or colony, represented by
a particle, is calculated at each timestep. The numerical solution for a model of cyanobacte-
ria depth for a particle, zp, was computed using

zn+1
pi

= zn
pi
+ vn

pi
∆t + R

√
6Dn

zi
∆t (21)

where the subscript i refers to the particle of interest, the superscript n refers to the time
in the simulation, and ∆t is the model timestep [45]. The third term on the right-hand
side includes a random number, R, from a uniform distribution between −1 and 1, and
represents the variation in motion among particles due to turbulent diffusion. Particles that
were predicted to move past the bed (z = H) during a displacement were instead assigned
a location equal to one half of a grid cell height above the bed. Particles that were predicted
to move past the surface (z = 0) during a displacement were assigned a location equivalent
to the surface.

2.1.1. Predefined Velocity

A simple way to model the vertical movement of cyanobacteria is to assume a velocity
function for colonies based on knowledge of their typical movement. Because cyanobacteria
vertical migration is due to buoyancy regulation, which is dependent on light, a velocity
function that represents changes in light is a logical choice.
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If cyanobacteria colonies are assumed to migrate vertically on a daily cycle, an equation
for colony velocity as a function of time can be used, i.e.,

vp(t) = A
2π

86, 400 s
cos
(

2π

86, 400 s
t + φ

)
(22)

Here, A is migration amplitude and the period is assumed to be one day (86,400 s). The
value of the phase (φ) depends on the initial location of colonies. For example, if t = 0 in
the simulation corresponds to midnight and colonies are assumed to be at the bottom at
that time, the value of the phase is π

2 with positive velocity corresponding to downward
movement (Figure 1).

A slightly more complex approach is to assume a velocity function that is dependent
on space as well as time, as in Belov and Giles [4]. Modifying Equation (13) to use the same
notation as Equation (22) gives:

vp(t, z) =

 A 2π
86,400 s cos

(
2π

86,400 s t + φ
)

e−αC(H−z), I0 > 0

A 2π
86,400 s cos

(
2π

86,400 s t + φ
)

, I0 ≤ 0
(23)

Here, α is the light attenuation coefficient and I0 is solar irradiance at the water surface.
The addition of the exponential term gives colonies deeper in the water column higher
speeds and responds to variations in water clarity when the light attenuation coefficient, α,
is variable. A calibration coefficient, C, is included in the light attenuation exponent term
because the light attenuation coefficient used in the original study was 0.1 m−1, which
is lower than values often found in lakes and reservoirs. In the original study, the light
attenuation coefficient was assumed to be constant and the exponential term was applied
whether or not there was irradiance at the water surface. Here, the exponential term is
only applied during the photoperiod so that the effects of water clarity are only included
when there is sunlight present. During dark periods, the equation reduces to Equation (22).
Tables S1 and S2 in Supplementary Materials summarize equations for continuum and
particle tracking modeling frameworks.

2.1.2. Dynamic Velocity

The predefined velocity approaches can predict cyanobacteria movement based on
the observed tendency of colonies to migrate vertically on a daily cycle; however, they do
not reflect the response of colonies to variations in solar irradiance. In order to capture
this natural behavior, colony velocity was also calculated based on relationships between
sunlight and cyanobacteria growth and colony density. Using this approach, the change in
cyanobacteria colony density was computed based on the solar irradiance at the surface
of the water and the colony’s depth in the water column. This density was then used
to solve for the colony’s settling velocity via Stokes’ law Equation (2). Three different
approaches were tested to model cyanobacteria buoyancy change: a model based on
growth kinetics, the model from Visser et al. [13], and a model that incorporates light
response and calibration coefficients.

The first dynamic velocity model described here is the growth kinetics model. Because
cyanobacteria buoyancy regulation is controlled by the accumulation and depletion of
photosynthetic products, changes in cell and colony density follow similar patterns to algal
growth kinetics [39]. Assuming that the change in colony density can be calculated based
on the net growth rate (µnet), the change in cyanobacteria colony density (ρc) is given by

∂ρc

∂t
= µnetρc (24)

The net growth rate for cyanobacteria in this case is given by

µnet = µg,maxF(I)− µr − µe − µm (25)
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where µg, max is the maximum growth rate, µr is the respiration rate, µe is the excretion
rate, and µm is the mortality rate of the cyanobacteria species. A function of light, F(I),
scales the maximum growth rate and is given by the Steele equation [46], which accounts
for photoinhibition at high irradiance values, i.e.,

F(I) =
I
Is

e−
I
Is +1 (26)

Here, I is irradiance at the location of interest and Is is the saturating light intensity for the
cyanobacteria species. Irradiance at the depth of the colony is found from

I(z) = (1− β)I0e−αz (27)

where β is the fraction of solar irradiance absorbed at the water surface, and α is the light
attenuation coefficient [47].

In the particle-tracking framework, the density of each cyanobacteria colony was
calculated along with its location at each timestep. Solving Equation (24) for the density of
colony i at time n + 1 gives

ρn+1
ci

= ρn
ci

µn
neti

∆t + ρn
ci

(28)

where µn
neti

is calculated at the location of the colony at time n. The velocity of the colony
was then found using Stokes’ law Equation (2) and substituted into Equation (21) to
determine the colony’s new position.

Applying a light-driven density change to colonies in a continuum framework re-
quires a different approach than in a particle-tracking framework. In the particle-tracking
framework, colonies are followed throughout the simulation and their densities are cumu-
lative from the start of the simulation. In a continuum framework, there is no distinction
between colonies and therefore no way to track each colony’s density change over time.
To overcome this, colony density change was determined for each model grid cell using
Equation (28), with the subscript i now referring to the grid cell of interest rather than the
particle of interest. The colony velocity for each grid cell was found using Stokes’ law as in
the particle-tracking framework Equation (2).

In this case, the numerical scheme for solving Equation (18) differs from Equations (19)
and (20) because velocities in neighboring grid cells can have opposite directions. Hence,
the general form for the solution of Equation (18) is

cn+1
i =

Dz∆t
∆z2

(
cn

i+1 − 2cn
i + cn

i−1
)
− ∆t

∆z

(∣∣∣vn
pi

cn
i

∣∣∣− vn
pB

cn
i+1 − vn

pT
cn

i−1

)
+ (µnet∆t + 1)cn

i (29)

Here, vcB and vcT are the velocities of colonies entering grid cell i from above and below,
respectively, such as

vn
pB

=

{
vn

pi+1
, vn

pi+1
< 0

0, vn
pi+1
≥ 0

(30)

vn
pT

=

{
vn

pi−1
, vn

pi−1
> 0

0, vn
pi+1
≤ 0

(31)

An adjustment is required for calculating F(I) using the continuum framework be-
cause light intensity will vary across the grid cell due to light attenuation with depth. To
reflect this, the integral of light over the grid cell is used and F(I) becomes [46]:

F(I) =
e

α∆z
[
e−γ2 − e−γ1

]
(32)

where

γ1 =
(1− β)I0

Is
e−α(i−1)∆z (33)
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γ2 =
(1− β)I0

Is
e−α(i)∆z (34)

While the above continuum framework accounts for changes in colony density due
to the instantaneous growth rate, it does not include the same information about past
growth as the particle-tracking framework. To address this, an exponentially-decaying,
weighted average of past growth rates in each grid cell was applied to the same continuum
framework outlined above as

ρn+1
ci

=
∑Q

q=−1 ρ
n−q
ci Wq

∑Q
q=−1 Wq

(35)

Here, the past densities in the grid cell i are multiplied by a weight W and summed. The
total number of timesteps over which to average past densities is given by Q. The weight
decreases exponentially with time before the present, so that densities predicted at more
recent timesteps have greater weights, i.e.,

Wq = e−k(tn+1−tn−q) (36)

Here, k is the time decay constant for influence of past densities. This is similar to the
approach taken by Serizawa et al. [39], shown in Equations (14) and (15).

The equations from Visser et al. [13], Equations (9) and (10), were also applied to both
the continuum and particle-tracking frameworks using Equations (37) and (38), respectively.
A correction factor, ρ∗, was applied to Equation (10) to reflect the difference between the
buoyant density modeled here and the non-buoyant density on which the equations in that
study were based. Hence, the updated equations used were

In
i ≥ Ic, ρn+1

ci
= (c1 Ie−I/I0 + c2)∆t + ρn

ci
(37)

In
i < Ic, ρn+1

ci
= ( f1(ρ

n
ii + ρ∗) + f2)∆t + ρn

ci
(38)

It was assumed that ρi was the last density experienced by a particle or grid cell while
the irradiance was greater than Ic, the compensation irradiance. For example, at dawn ρi
for a particle or grid cell is the density of that particle or grid cell during the last timestep
at the end of the previous day during which it experienced an irradiance greater than Ic. If
a particle moves to a location where the light intensity is less than Ic, or if the light intensity
at a particle’s location or in a grid cell becomes less than Ic over time, ρi is the last density
of that particle or grid cell before light intensity changed. In the continuum framework,
light intensity was averaged across a grid cell depth using

Ii =
I0(1− β)

−k∆z
(
e−αzi − e−αzi−1

)
(39)

The parameter values used in Visser et al. [13] were converted from units of µmol photon s−1

to Watts [48] (Table S3 in Supplementary Materials).
An adjustment was made to the Visser et al. [13] model to account for adaptations

from the particle-tracking to the continuum framework. If the calculated value of ρi, the
density used to calculate density decrease in the dark, is below a minimum value, it was
increased to that minimum value. This density then varies with depth using

ρii = ρiS +
(
ρiB − ρiS

)( zi
H

)
(40)

where ρiS is the minimum allowable value of ρi at the surface and ρiB is the minimum
allowable value at the bed.

A third approach to modeling light-dependent density change was based on the above
two approaches, as well as the model of Kromkamp and Walsby [8]. In both Visser et al. [13]
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and Kromkamp and Walsby [8], density increases were modeled using equations similar
to growth kinetics equations with additional calibration coefficients. In Kromkamp and
Walsby [8], a Monod-type equation was used to model density increase with light and
a linear relationship was used to model density decrease in the dark Equation (1). In
Visser et al. [13], density increases were modeled using an exponential term which accounts
for photoinhibition and density decreases were modeled with a linear term. In the light
function buoyancy model described here, density change was assumed to follow the same
response to light as growth kinetics, including photoinhibition. However, calibration
coefficients c1 and c2 are used rather than the growth rates described above, and growth is
assumed to be zero-order rather than first-order, i.e.,

∂ρ

∂t
= c1F(I)− c2 (41)

This allows density change to be calculated separately from population growth while still
representing the relationship between density change and light. In the absence of light,
density decreases at a constant rate. The numerical solution for Equation (41) is given by

ρn+1
ci

= (c1F(In
i )− c2)∆t + ρn

ci
(42)

A summary of model equations is shown in Tables S4 and S5 in Supplementary
Materials for the continuum and particle tracking frameworks, respectively.

2.2. Field Data

The models of cyanobacteria vertical migration described in Section 2.1 were tested
using data from two published field studies. The first is a study by Cui et al. [12] conducted
in Shennong Stream, a tributary of the Yangtze River in the Three Gorges Reservoir complex
in China’s Hubei Province. Water samples were taken at depth intervals of 1 m every two
hours on 10–12 July 2014, and analyzed for chlorophyll a concentration (Figure 2). Addi-
tional samples taken near the surface, at mid-depth, and near the bed were analyzed for
phytoplankton species composition, which indicated that almost 90% of the phytoplankton
in the study areas belonged to the cyanobacteria genus Microcystis. This provided a basis
for using chlorophyll a concentration to approximate Microcystis concentration. Two study
sites were sampled: an 11 m-deep site in an enclosure protected from water currents and
a 15 m-deep area in the open water. The published study includes solar irradiance mea-
surements, calculated light attenuation coefficients, chlorophyll a concentration profiles,
and calculated mean residence depth (MRD) of chlorophyll a concentration at two-hour
sampling intervals (Figure 3).

The second data set is from a study by Wang et al. [49] conducted in another part of
the Three Gorges Reservoir, Xiangxi Bay. In this study, hourly chlorophyll a measurements
were taken at depth intervals of 0.5 m from 0.5 m below the surface to a depth of 9 m on
1 July, 2–3 July, and 7 July 2008. On 3 July, water samples were taken at six different depths
and analyzed for phytoplankton species composition. The results showed that 49.0–83.2%
of phytoplankton biomass (mg/L) and 83.7–94.8% of phytoplankton density (107 cells/L)
was due to Microcystis aeruginosa. Solar irradiance measured at the surface was recorded
every hour. Calculated MRD and depth of maximum chlorophyll a concentration were also
reported in the published study (Figure 4).
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Figure 4. Mean residence depth and depth of maximum chlorophyll a calculated from chlorophyll a
measurements taken in Xiangxi Bay; data extracted from Wang et al. [49].

2.3. Model Setup

In all models, a grid cell height (∆z) of 0.2 m was used and the model timestep (∆t) was
60 s. Water current was not modeled, and water was assumed to be quiescent. Chlorophyll
a concentration was used as a proxy for Microcystis concentration. Parameter values for
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models were chosen from within reasonable ranges based on the literature (Table 2) and
calibrated for each model (Table 3).

Table 2. Literature values for biological parameters of cyanobacteria used in models.

Study Identifier Minimum
Density, kg m−3

Maximum
Density, kg m−3 Colony Radius, µm

Saturating Light
Intensity, W m−2

Maximum Growth
Rate, day−1

Reynolds [50] - - - 25–1000 - -

Reynolds et al. [51]

cyanobacteria - - - - 0.6–0.8

M. aeruginosa 985 1005 120–3200 - -

A. flos-aqua 920 1030 28–100 - -

P. agardhii 985 1085 13.7–18.3 - -

Nakamura et al. [52] Microcystis sp. - - 10–300 - -

Visser et al. [13] Microcystis sp. - - - 139 -

Long et al. [53] M. aeruginosa - - - - 1.2

Wu and Song [54] M. aeruginosa - - - 119–244 -

Wu et al. [55] M. aeruginosa - - - 65–119 -

Zhang et al. [56] M. aeruginosa - - - 75–392 -

Zhu et al. [17,57] Microcystis sp. 967 997 10–350 - -

Rowe et al. [58] Microcystis sp. - - 12.5–370, median: 58.5 - -

Table 3. Ranges of values used in model applications to field study data.

Variable Description Value Range

A, m Migration amplitude 0.2–1.23

φ, rad Phase offset π

C Light attenuation calibration coefficient 0.05–0.13

µg,max , day−1 Maximum growth rate 0.7–1.0

µm, day−1 Mortality rate 0.06–0.25

µe, day−1 Excretion rate 0.04

µr , day−1 Respiration rate 0.04

Is, W m−2 Saturating light intensity 100–150

c1, day−1 Coefficient of density increase for light function model 0.00545–0.02

c2, day−1 Coefficient of density decrease for light function model 0.00145–0.00518

rc, µm Colony radius 15–64

ρmin, kg m−3 Minimum colony density 920–980

ρmax , kg m−3 Maximum colony density 140–185

ρ0,S, kg m−3 Initial colony density at surface 930–1080 (continuum)
920–980 (particles)

ρ0,B, kg m−3 Initial colony density at bed 930–980 (continuum)
995–1010 (particles)

ρi,S, kg m−3 Minimum initial colony density at surface for
Visser et al. [13] model 980–1080

ρi,B, kg m−3 Minimum initial colony density at bed for
Visser et al. [13] model 975–980

ρ∗, kg m−3 Correction for density decrease equation for
Visser et al. [13] model 67

k, day−1 Time decay constant for averaging past densities 5

In dynamic velocity models, colonies were assumed to have a minimum and maximum
allowable density (ρmin and ρmax, respectively). When predicted densities were greater
than the maximum or less than the minimum allowed values, the value was set to ρmax
or ρmin, respectively. It was also necessary to define initial densities (ρ0) for all colonies
(particle-tracking) or colonies within a grid cell (continuum). Initial colony density, ρ0i was
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assumed to vary exponentially from the surface to the bed, following a similar pattern to
light decay with depth, as

ρ0i = ρ0S +
(
ρ0B − ρ0S

)(
1− e−zi

)
(43)

where ρ0S is the initial colony density at the surface and ρ0B is the initial colony density at
the bed. In the particle-tracking framework, the number of particles in each control volume
corresponding to a model grid cell, Pi, was determined based on the initial concentration in
the model grid cell, c0i , and initial densities of colonies in the control volume as

Pi =
c0i ∆zBx

Kρc0
4
3 πr3

c
(44)

where rc is colony radius, B and x are the lateral and longitudinal dimensions of the model
grid, respectively, and K is the number of cyanobacteria colonies represented by one model
particle. This term was included to reduce the number of particles needed and computation
time. Both rc and the total number of particles were kept constant throughout a simulation.

In the continuum framework, population growth and decay were represented by
the source-sink term from Equation (18). In the particle-tracking framework, the growth
equations were applied to the population density of each particle. This was computed
separately from the buoyant density of colonies so that minimum and maximum allowable
colony densities used in velocity calculations did not affect population values.

In order to compare results from models in the particle-tracking framework to those
from models in the continuum framework, concentration predicted in the particle-tracking
framework was computed for control volumes corresponding to each model grid cell as

cn
i =

4
3 πr3

c ∑ ρc

∆zBx
(45)

where ∑ ρc is the sum of population densities of colonies within the control volume.
Input data for the Shennong Stream models included solar irradiance at the water

surface and light attenuation coefficients calculated in the original study. Initial conditions
were assumed to be the first recorded field measurement at each depth, taken at 08:00 a.m.
on the first day of the study. This also determined the simulation start time. The verti-
cal diffusion coefficient (Dz) was set to a constant 10−5 m2s−1 in the enclosure site and
10−4 m2s−1 in the open water site in order to represent the differences in turbulent mixing
between the two sites.

Absolute mean errors (AMEs) of all models compared to field data were calculated
for each of the metrics. Predictions of chlorophyll a concentration were prioritized over
predictions of MRD during calibration. The amount of cyanobacteria (represented by
chlorophyll a) at each depth in the water column is of interest here because it is a primary
measurement of cyanobacteria distribution, while MRD is a derived metric. Chlorophyll a
concentration errors are averages of AMEs from chlorophyll a concentration profiles. Inputs
for the Xiangxi Bay field study application were solar irradiance measured at the water
surface and initial chlorophyll a concentrations at 0.5 m depth intervals (Figure 4), both
reported in the study published by Wang et al. [49]. Quantitative model-data comparisons
were made with hourly MRD and depth of maximum chlorophyll a concentration reported
in the study. Similar to the Shennong Stream study, predictions of depth of maximum
chlorophyll a concentration were prioritized over predictions of MRD.

The light attenuation coefficient was set to 0.5 m−1 for all models of Xiangxi Bay. This
was done in part to test the models with a lower light attenuation coefficient value, as the
values in the Shennong Stream study were relatively high. Each model was run with two
different values of Dz, 10−5 m2s−1 and 10−4 m2s−1.
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3. Modeling Results
3.1. Shennong Stream Enclosure

The chlorophyll a profiles measured in the enclosure site in Shennong Stream show
subtle changes in shape throughout the study period (Figure 2). A subsurface peak can be
seen on the morning of the first day; after that, the profile becomes more uniform and then
develops a surface maximum on the morning of the second day. The MRD shows a distinct
diurnal sinusoidal pattern over time with an amplitude of approximately 1.5 m (Figure 3).

In the continuum modeling framework, the two predefined velocity models resulted
in the lowest AME values for both MRD and chlorophyll a concentration for the enclosure
site (Table 4). These models were able to represent the sinusoidal pattern of the MRD seen
in the field data (Figure 5). The dynamic velocity models did not predict MRD as well as the
predefined velocity models. In most of the dynamic velocity models, the MRD did not show
the distinct sinusoidal pattern seen in the data and instead showed little variation over
time (Figure S2 in Supplementary Materials). The predefined velocity models also captured
chlorophyll a concentration profiles better than the dynamic velocity models at this site
(Figures S3 and S4 in Supplementary Materials). Most of the dynamic velocity models failed
to predict concentration deeper in the water column the second day, with the exception of
the light function model with time decay (Figure S4 in Supplementary Materials).

Table 4. Error statistics for models of Shennong Stream enclosure site.

Mean Residence Depth AME, m
Chlorophyll a Concentration

(Profile Average) AME, mg m3

Model Continuum Particle Tracking Continuum Particle Tracking

Time-varying velocity 1.074 1.127 2.871 3.176

Belov and Giles [4] 0.799 0.795 2.549 2.796

Growth kinetics 1.348 0.613 3.446 3.925

Growth kinetics with
time decay 1.318 - 3.271 -

Visser et al. [13] 1.338 0.772 3.378 3.205

Light function 1.359 0.599 3.522 3.273

Light function with time decay 1.252 - 3.201 -

1 
 

 
  Figure 5. Time series of observed and predicted mean residence depth of chlorophyll a concentration

in the Shennong Stream enclosure site using predefined velocity models (continuum) [4].

Somewhat different results were obtained from models applied to the Shennong
Stream enclosure site using the particle-tracking framework. Among these models, MRD
was best predicted by the dynamic velocity models, especially the light function and
growth kinetics models (Table 4). However, the predefined velocity models still follow
the correct shape of the MRD over the entire study period (Figure S5 in Supplementary
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Materials), while the dynamic velocity models tend to under-predict the MRD during
the final several hours (Figure S6 in Supplementary Materials). As with models in the
continuum framework, chlorophyll a was best predicted by the Belov and Giles [4] model.
In the vertical concentration time-series plots, the predefined velocity models show more
diffusion than the dynamic velocity models (Figures S7 and S8 in Supplementary Materials).

The most notable difference between the continuum and particle-tracking frameworks
for this study can be seen in the dynamic velocity models. These models resulted in AMEs of
1.25–1.36 m for MRD in the continuum framework and 0.60–0.77 m in the particle-tracking
framework (Table 4). Little change was seen in chlorophyll a concentration predictions by
dynamic velocity models or MRD predictions by predefined velocity models. However,
AMEs for chlorophyll a concentration predictions by predefined velocity models increased
from 2.55 and 2.87 mg/m3 in the continuum framework to 2.80 and 3.18 mg/m3 in the
particle-tracking framework.

3.2. Shennong Stream Open Water

In the open water site in Shennong Stream, concentration profile plots showed a more
distinct shape, alternating between a subsurface peak and a surface maximum (Figure 2).
As in the enclosure site, MRD generally followed a sinusoidal pattern. However, in the
open water MRD moved closer to the surface on the second morning and continued to
move downward at the end of the study period when the MRD in the enclosure had begun
moving upward (Figure 3).

Of the models in the continuum framework, the dynamic velocity models predicted
both MRD and chlorophyll a profiles better than the predefined velocity models, though
only slightly (Table 5). However, a visual inspection of the MRD predictions shows that the
dynamic velocity models predict an almost constant MRD, while the predefined velocity
models perform better at capturing the shape of the MRD over time (Figures S9 and S10
in Supplementary Materials). The concentration time-series plots of chlorophyll a show
that concentration predictions are less diffuse than in the enclosure site, and the predefined
velocity models predict that chlorophyll a is more diffuse than the field data (Figure S11
in Supplementary Materials). The dynamic velocity models do not show as much of a
change in diffusion after adjusting the vertical diffusion coefficient for the open water site,
resulting in more accurate profile predictions (Figure S12 in Supplementary Materials).

Table 5. Error statistics for models of the Shennong Stream open water site.

Mean Residence Depth AME, m
Chlorophyll a Concentration

(Profile Average) AME, mg m3

Model Continuum Particle Tracking Continuum Particle Tracking

Time-varying velocity 1.129 1.097 8.589 8.654

Belov and Giles [4] 1.113 1.100 8.645 8.716

Growth kinetics 1.096 0.986 7.735 8.498

Growth kinetics with
time decay 1.064 - 7.193 -

Visser et al. [13] 1.093 0.993 7.589 8.670

Light function 1.087 0.964 7.425 8.654

Light function with time decay 1.087 - 7.253 -

Results for the open water site using the particle-tracking framework did not show
much variation across models. Dynamic velocity models resulted in lower error statistics
than predefined velocity models, though only slightly (Table 5). Results were mixed for
chlorophyll a concentration error statistics; the growth kinetics model gave the lowest
error, while the light function model gave the highest. Visual inspection of the MRD
plots suggest that all models captured the general shape of the sinusoid curve, although
on the second day the predefined velocity models start to predict a deeper MRD than
observed while the dynamic velocity models predict too shallow an MRD (Figure 6 and
Figure S13 in Supplementary Materials). The dynamic velocity models better reflect the
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level of chlorophyll a diffusion seen in the observed data than do the predefined velocity
models (Figures S15 and S16 in Supplementary Materials). 

2 

 

  Figure 6. Time series of observed and predicted mean residence depth of chlorophyll a concentration
in the Shennong Stream open water site using dynamic velocity models (particle-tracking) [13].

Error statistics for MRD were again lower for dynamic velocity models in the particle-
tracking framework compared to the continuum framework. However, the difference was
not as much as seen in the models of the enclosure site, decreasing from 1.06–1.10 m to
0.96–0.99 m (Table 5). Errors in chlorophyll a concentration predictions by dynamic velocity
models increased from 7.19–7.73 mg/m3 in the continuum framework to 8.50–8.67 mg/m3

in the particle-tracking framework. Differences between frameworks were smaller for both
metrics in predefined velocity models.

3.3. Xiangxi Bay

Chlorophyll a contours from Xiangxi Bay show steep concentration gradients during
the late morning and afternoon and more vertical diffusion in the middle of the night,
possibly from convective night-time cooling [49]. The depth of maximum chlorophyll a
concentration is near the surface on 1 July and 7 July and during the middle of the day on
2–3 July. It moves down to approximately 5 m deep on the early morning on 3 July. MRD
shows a sinusoidal pattern over time that reaches maximum depths in the middle of the
night and shallow depths in the afternoon (Figure 4).

Within the continuum framework, the predefined velocity models resulted in better
error statistics than did the dynamic velocity models using a Dz value of 10−5 m2 s−1

(Table 6). In plots of MRD, these models reproduced the pattern seen in the field data
(Figure S17 in Supplementary Materials), while the dynamic velocity models predicted a
more shallow MRD than that seen in the data (Figure S18 in Supplementary Materials).
The predefined velocity models also show more accurate predictions of depth of maximum
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chlorophyll a concentration when it is at its deepest between July 2 and 3 (Figure S19 in
Supplementary Materials). Most of the dynamic velocity models do not correctly predict
this, with the exception being the growth kinetics model (Figure 7).

Table 6. Error statistics for models of Xiangxi Bay.

Mean Residence Depth AME, m Depth of Maximum Chlorophyll a Concentration AME, m

Dz = 10−5 m2 s−1 Dz = 10−4 m2 s−1 Dz = 10−5 m2 s−1 Dz = 10−4 m2 s−1

Model Continuum Particle
Tracking Continuum Particle

Tracking Continuum Particle
Tracking Continuum Particle

Tracking

Time-varying
velocity 0.351 0.509 0.422 0.415 0.557 0.609 0.696 0.846

Belov and
Giles [4] 0.380 0.585 0.409 0.413 0.561 0.554 0.680 0.844

Growth kinetics 1.201 0.595 0.672 0.461 0.641 1.598 0.744 1.373

Growth kinetics
with time decay 1.299 - 0.395 - 0.730 - 0.667 -

Visser et al. [13] 1.287 1.001 0.374 0.392 0.877 2.800 0.754 1.598

Light function 1.410 0.887 0.629 0.371 0.693 1.837 0.802 1.454

Light function
with time decay 1.650 - 0.426 - 0.725 - 0.687 -
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  Figure 7. Time series of observed and predicted depth of maximum chlorophyll a concentration in

Xiangxi Bay using dynamic velocity models (continuum) [13].
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In scenarios using a Dz value of 10−4 m2 s−1, there was not a clear distinction be-
tween the predefined and dynamic velocity models. The highest errors resulted from
the growth kinetics and light function models without time decay (Table 6). Visually, the
predefined velocity models seem to capture the shape of the MRD sinusoidal curve, but the
dynamic velocity models predict the average depth more accurately (Figures S17 and S18
in Supplementary Materials). The dynamic models show more daily variation in depth of
maximum chlorophyll a concentration for both scenarios but only the growth kinetics and
light function models with time decay approximate the correct depth on the second day
(Figure 7 and Figure S19 in Supplementary Materials).

Within the particle-tracking framework, the predefined velocity models gave the
lowest error statistics when using the lower value of Dz, although the growth kinetics model
predicted MRD relatively well (Table 6). Plots of MRD show these models reproducing the
general pattern seen in the data throughout the study period (Figure 8). Dynamic velocity
models over-predicted MRD amplitude or under-predicted MRD depth (Figure 9). The
predefined velocity models in the particle-tracking framework also reproduced the general
pattern of depth of maximum chlorophyll a concentration (Figure S23 in Supplementary
Materials), which was often over-predicted by the dynamic velocity models (Figure S24 in
Supplementary Materials). 

4 

 
  Figure 8. Time series of observed and predicted mean residence depth of chlorophyll a concentration

in Xiangxi Bay using predefined velocity models (particle-tracking) [4].

In the higher diffusion scenario, the dynamic velocity models resulted in better error
statistics than the predefined velocity models for MRD (Table 6). Plots show that these
models reproduced the general pattern of MRD, while the predefined velocity models
under-predicted MRD amplitude (Figures 8 and 9). While the error statistics show better
results for depth of maximum chlorophyll a concentration in predefined velocity models,
inspection of the plots suggests that the dynamic velocity models actually perform better
in this scenario. The predefined velocity models predict a depth of maximum chloro-
phyll a concentration that oscillates up and down at a high frequency in the evening,
while the dynamic velocity models seem to better reproduce the pattern seen in the data
(Figures S23 and S24 in Supplementary Materials).
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5 

 
Figure 9. Time series of observed and predicted mean residence depth of chlorophyll a concentration
in Xiangxi Bay using dynamic velocity models (particle-tracking) [13].

Similar to the Shennong Stream models, dynamic velocity models applied to the
Xiangxi Bay study resulted in better MRD error statistics in the particle-tracking framework
compared to the continuum framework for the lower diffusion scenario. In the continuum
framework, AMEs ranged from 1.20 m to 1.65 m, while in the particle-tracking framework
they were between 0.59 m and 1.00 m (Table 6). The opposite was true for predefined
velocity models, which resulted in MRD AMEs of 0.35 m and 0.38 m in the continuum
framework and 0.51 m and 0.58 m in the particle-tracking framework. Dynamic velocity
models predicted depth of maximum chlorophyll a concentration better in the continuum
framework than in the particle-tracking framework, with AMEs of 0.64–0.88 m versus
1.60–2.80 m. Little change was seen between frameworks for predefined velocity models in
depth of maximum chlorophyll a concentration.

There was less of a distinct difference between continuum and particle-tracking frame-
works in predictions of MRD for the higher diffusion scenario in Xiangxi Bay. AMEs did
not change in predefined velocity models and were similar for dynamic velocity models
(Table 6). Errors were higher for depth of maximum chlorophyll a concentration in both
predefined and dynamic velocity models in the particle-tracking framework compared to
the continuum framework.

4. Discussion

Typically, predefined velocity models performed better than dynamic velocity models
at lower values of Dz. At higher values, predefined velocity models under-predicted
concentrations. This is likely due to all particles or model grid cells having the same velocity
direction at the same time. The dynamic velocity models in the continuum framework
generally made better predictions at higher values of Dz. In these models, there is a
region below the water surface where downward velocities meet upward velocities. With
less diffusion, a high concentration peak tends to develop in these areas. More diffusion
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spreads out this high concentration; however, these models often under-predicted the
depth of cyanobacteria excursion. It is not surprising that predefined velocity models
in particle-tracking and continuum frameworks had similar results, since the migration
velocity is the same in both frameworks. The biggest difference was that concentrations in
the continuum framework became more spatially uniform from diffusion compared to the
particle-tracking framework.

In models using dynamic velocity equations, predicted migration timing and depth
varied between the two frameworks. A particle-tracking framework is better suited for
dynamic velocity models, since these are based on tracking a specific colony though time
and space as its density changes. This is not possible in a continuum framework, but
the approximation made by solving for density in time and space was able to reproduce
the expected pattern seen in field data. The addition of a time decay term generally
improved model results in these cases. Predictions of MRD by dynamic velocity models
were generally better in the particle-tracking framework than in continuum framework,
while predictions of chlorophyll a concentration or depth of maximum chlorophyll a
concentration were better in the continuum framework. This suggests that the particle-
tracking framework better captures the overall shape of the concentration distribution when
dynamic velocity equations are used. However, predictions of concentration at a specific
depth are more erroneous. This could be due to many factors including the assumption of
no vertical water velocities.

One potential shortcoming of the models presented here is that cyanobacteria density
change and movement were assumed to only be dependent on light intensity. Nutrients in
the waterbody also play a role in density change [5]. Additionally, turbulence and vertical
water velocities can influence vertical migration in cyanobacteria [16].

Particles representing cyanobacteria colonies were assumed to be spherical and to
have constant volume, and particle-particle interactions were not considered. In reality,
some cyanobacteria species form colonies or filaments that grow over time and do not
remain spherical. Velocity of these colonies can deviate from the velocity predicted by
Stokes’ law for a sphere due to irregular shapes [59]. Cyanobacteria that has formed a
surface scum would also not fit the assumptions of a spherical particle if colonies are stuck
together in a mat formation.

Some of the error in the model predictions could also be due to the assumption
that the measured chlorophyll a concentration was entirely due to cyanobacteria. While
Microcystis species were responsible for the majority of the phytoplankton concentration in
both studies, other forms of non-migrating phytoplankton were present. The assumption
that chlorophyll a concentration was only due to cyanobacteria could be addressed by
modeling all algal species or using a correction factor that accounts for the chlorophyll
a contributed by other species. This would require comparison of species analysis to
chlorophyll a concentration, such as was reported by Wang et al. [49] and Cui et al. [12],
and incorporation of other algae groups.

In the Shennong Stream open water site, field data show MRD continuing to move
downward from 04:00 p.m. until sampling stopped at 06:00 a.m., while the models predict
it beginning to move upward just after midnight. The pattern seen in the data is unusual
compared to data from the Shennong Stream enclosure site as well as Xiangxi Bay, where
the MRD consistently begins to move upward around midnight. It is possible that the
continued downward trajectory seen in the Shennong Stream open water data was caused
by a hydrodynamic event and not cyanobacterial buoyancy regulation. This could explain
why the vertical migration models presented here did not capture it, since vertical water
velocity was not included and vertical diffusion was assumed to be constant.

Models from this study could be incorporated into a larger water quality model where
model predictions of vertical water velocities and other algal species could be predicted.
The time-varying, predefined velocity model and the light function model with time decay
are good candidates for this. The predefined velocity model is attractive because it is simple
while still being able to reproduce vertical migration patterns seen in field studies. The light
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function model with a time decay term is attractive because it generally gave reasonable
results in applications to field studies. This model is preferable to the model based on
Visser et al. [13] because it involves fewer calibration variables and often gave better results.
It is preferable to the growth kinetics model because it is not dependent on population
growth and decay rates. Separating the rate of density change from these variables gives
more freedom in calibrating the vertical migration model. Including the decay term almost
always led to better model results than when it was not included.

Results from this study show that aspects of cyanobacteria diurnal vertical migration
can be simulated using simple input variables such as solar irradiance. The models pre-
sented here serve as a foundation for further study and improvement, or incorporation
into larger water quality models. Making advances toward more accurately modeling
cyanobacteria movement and behavior will allow for better models of lakes and reservoirs
and better predictions of HABs, helping with prevention and management of blooms and
making waterbodies safer and cleaner.

5. Conclusions

In this study, we reviewed the existing literature on models of cyanobacteria vertical
migration. We developed several new models and adaptations of existing models and tested
them using field data from published studies. The models tested here were based on either
sinusoidal, diurnal vertical movement or buoyancy change as a result of photosynthesis.
Models were applied using both continuum and particle-tracking frameworks.

The models of density change showed more daily variation and often made realistic
predictions. However, these models included more variables that could be adjusted for
calibration, making them more complicated to implement. The density-change models
represent a complex biological system reduced to several equations, so simplifications
and assumptions have to be made. These models capture the natural process of vertical
migration, but erroneous predictions can result from improper calibration especially if
necessary data are lacking. The predefined velocity models based on sinusoidal motion
were simple to implement and often gave good results, especially at lower values of
vertical diffusion.

In tests on field data, models using both continuum and particle tracking frameworks
made accurate predictions even while neglecting vertical water motion. Results were not
clearly improved by using the particle-tracking framework for predefined velocity models,
and the added complexity of such a framework may not be worthwhile for these types of
models. Use of a particle-tracking framework improved results from dynamic velocity mod-
els because these models are based on density changes and histories of individual colonies.
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