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Abstract: Hydrogen sulfide (H2S) is a naturally occurring, highly toxic gas that is formed from
the decomposition of sulfur compounds. H2S is a common source of concrete and metal corrosion
that results in huge economic losses in wastewater collection and treatment plants. Hence, it is
necessary to analyze H2S generation and emission. H2S concentrations were measured at the Al-Saad
wastewater treatment plant in the United Arab Emirates. Wastewater samples were collected, and
water quality parameters were characterized in the laboratory. Simultaneously, flow characteristics,
humidity, headspace airflow, and temperature were measured onsite. A neural network model to
predict H2S emissions was formulated using significant parameters. It was observed that flowrate,
velocity, sulfate, and total sulfur had a similar cyclic pattern throughout the sampling events. The
temperature, humidity, total sulfur, and depth of wastewater were identified as the most important
parameters influencing H2S emissions through correlation analysis. The neural model validation and
testing had an R value of 0.9. The training had an R value of 0.8. The model provided an accuracy of
80% for the prediction of H2S concentration in wastewater treatment plants. The accuracy can be
improved by increasing the data. The model is limited to its applicability in the prediction of H2S
emissions under conditions similar to the inlet of a wastewater treatment plant.

Keywords: wastewater; hydrogen sulfide; toxicity; concrete corrosion; statistical analysis; neural
network model

1. Introduction

Wastewater contains organic and inorganic compounds such as proteins and sulfates.
Microbial fauna in the sewer is dependent on electron acceptors such as oxygen, nitrate,
sulfate, and carbonate, which are available in wastewater. When all the dissolved oxygen
(DO) and nitrates are depleted, anaerobic conditions form inside the sewer, and thus the
sewage becomes septic. Fermentative bacteria and sulfur-reducing bacteria (SRB) will be
active at this stage [1]. SRB is the bacteria that reduce sulfur to hydrogen sulfide (H2S) in
anaerobic conditions [2]. The sulfur present in human and animal excreta and sulfate, being
the most common anion in water from rainfall, become the source of electron acceptors for
SRB [3]. The following reaction takes place in the wastewater while converting sulfate to
H2S [4]:

Organic matter + SO4
2− + SRB→ S2− + CO2 (1)

S2− + 2H+ 
 H+ + HS−
 H2S(aq) (2)

H2S(aq) 
 H2S(g) (3)

H2S produced in the wastewater is transferred to the air as H2S(g). H2S is a colorless
gas. It is highly poisonous and corrosive in wastewater applications [5]. Its generation
is associated with problems such as toxicity, odor nuisance, lethal odors, and generation
of corrosive sulfuric acid [6]. H2S occurs in nature and is also produced by numerous
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industrial activities. Therefore, it is known as an environmental and industrial pollutant.
H2S gas produced by SRB is absorbed by the bacteria in the slime layer at the wet surface.
Here, sulfur-oxidizing bacteria (SOB) partially oxidize H2S to elemental sulfur (S0) [7]. This
bacterium is responsible for oxidizing S0 and H2S to sulfate (SO4

2−).

HS− + SOB→ S0 + H+ + 2e− (Partial oxidation) (4)

HS− + 4H2O + SOB→ SO4
2− + 9H+ + 8e− (Complete oxidation) (5)

Once the SOB population develops, S0 is converted to SO4
2− or sulfuric acid (H2SO4) [8].

This biogenic acid reacts with the concrete, forming a corroding layer of gypsum (CaSO4)
and ettringite (3CaO·Al2O3·3CaSO4·32H2O) and leading to the formation of cracks and
pits [9]. These cracks provide a larger surface area for acid penetration, resulting in a further
increase in corrosion processes [10]. These materials provide little or no structural support
to the concrete pipe, leading to the loss of its mechanical strength [11].

De Belie et al. [7], while studying the corrosion of concrete, observed that corrosion
rate is directly proportional to H2S emissions. The rate of metabolic reactions in the sewer
biofilm, and thus the rate of sulfide generation, is affected by changes in sewage pH [12].
Nielsen et al. [13] noted that an increase in airflow provides better mixing of the sewer
atmosphere and reduces the thickness of the diffusive boundary layer, thus increasing the
mass transfer of H2S. According to Zuo et al. [14], H2S concentration increased with increas-
ing sewer temperature. Higher humidity has been shown to increase sulfate generation
and H2S oxidation [15]. Shypanski et al. [16] observed that the generation of sulfide mainly
occurs during and immediately after a pumping event. The dissolved oxygen concentration
of less than 0.1 to 1 ppm generally enhances sulfate reduction [17]. These studies show
the effects of various wastewater quality and flow parameters affecting H2S generation
and emission.

H2S generation must be predicted accurately throughout both the design and operating
phases of sewers. The preparation of engineering measures is important to mitigate sulfide-
related concerns. In the 1970s, several empirical models for assessing H2S generation in
sewers were established [18,19]. In these papers, parameters impacting H2S generation
were combined into a single rate expression overlooking certain other factors that made
few differences. The wastewater industries are now implementing several techniques to
reduce sulfide formation in sewage systems. Injections of chemicals such as oxygen, nitrate,
or metal ions, for example, can either prevent or eliminate sulfide from wastewater once it
has formed [20–23]. If the variation in H2S generation could be determined, a better control
strategy could be devised. Long-term monitoring of the sewer system was one option for
this concept. The collection of wastewater samples from an underground rising main was
thought to have numerous obstacles. This is due to the lack of well-established technologies
for sampling, analyzing, monitoring, and evaluating H2S generation and other influencing
parameters. Conducting such field investigations on wastewater treatment systems was
considered a hideous task. The inter-relation between parameters in sewer along with a
model to predict the generation of H2S using the most influential parameters serves as a
valuable tool for optimal odor management.

The artificial neural network (ANN) is a promising modeling tool that imitates the
human nervous system’s learning procedure. It is often used for regression, categorization,
and pattern identification, along with other applications. Although it outperforms other
methods in terms of prediction, its utility is limited since it provides only a few clues
regarding the characteristics of the underlying process that links the inputs to the result [24].
However, to overcome this drawback, statistical analysis can be used to link between
input and output. An ANN is a very versatile and powerful tool that can be used when
traditional statistical and mathematical methods fail due to boundary constraints. ANNs
are not theoretically supported, yet they are useful in practice [25]. Each layer of an ANN
is made up of nodes grouped in one level, with each neuron having a simple task defined
by an activation function. ANN models are shown to be superior to regression models [26].
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Cheng et al. [27] used an adaptive network-based fuzzy inference system (ANFIS) to predict
the influent characteristics of wastewater treatment. Heo et al. [28] established a hybrid
influent forecasting model which was based on multimodal and ensemble-based deep
learning (ME-DeepL). This model exhibited applications in fluctuating influent loads, as it
can capture the informative features and temporal patterns. In the study by Yu et al. [29],
kernel principal component analysis and extreme learning machine (KPCA-ELM) were
used for feature extraction and forecasting inlet wastewater quality. A time series analysis
model was successfully implemented by Boyd et al. [30] using autoregressive integrated
moving average (ARIMA) to forecast influent wastewater flow. Cheng et al. [31] also
constructed a model to forecast crucial parameters in a wastewater treatment plant. This
was performed using six models procured from long short-term memory (LSTM) and gated
recurrent unit (GRU). An artificial neural network (ANN) was employed by Kang et al. [32]
to predict the odor emissions at a wastewater treatment plant. Biological oxygen demand
(BOD), DO, oxidation-reduction potential (ORP), total suspended solids (TSS), and water
temperature were used to build the model. However, the accuracy of the model was 70%,
which was improved to 79% by removing DO values.

In this paper, air quality parameters, such as the temperature of headspace air, moisture
content, and headspace airflow, were measured and analyzed. The hydraulic parameters,
such as flowrate of wastewater, wastewater depth, and velocity, were examined. The water
quality parameters analyzed were temperature of wastewater, DO, chemical oxygen de-
mand (COD), sulfates, sulfides, TSS, total dissolved solids (TDS), pH, total organic carbon
(TOC), and electrical conductivity. The effect of these parameters was analyzed using corre-
lation and graphical analysis. Factors that have a significant influence on H2S generation
were identified using regression studies. These significant factors were used to build an
artificial neural network (ANN) model. The use of an ANN was not thoroughly explored to
model the generation of H2S in previous studies. However, atmospheric dispersion of H2S
gas using an ANN has been previously explored [33]. Since H2S generation is the root cause
of concrete corrosion, studying the generation of H2S under anaerobic sewer conditions
and the factors that affect its generation is important to pave the way for modeling the
generation of H2S in sewer networks, and, in turn, to control concrete corrosion.

2. Materials and Methods
2.1. Sewer Field Description

The study was conducted at the Al Saad wastewater treatment plant (ASWWTP).
The plant treats direct sewage coming from Al Ain City through a network of gravity
sewers and pumping stations. Moreover, wastewater collected in tankers is mixed with the
domestic waste right upstream of the ASWWTP. The sensors and analyzers were placed in
the sewage collection unit before the screening unit. This unit resembles a large pipe, with
wastewater flowing at an average flowrate of 3270.3 m3/h. The samples were also collected
from the same unit. However, the headspace air flow was observed to be zero throughout
the sampling events. The width of the tank was 6 m with an average wastewater depth of
0.8 m. There were no treatment procedures performed for the removal of H2S before or in
this area. The location map, including the sampling location, is represented in Figure S1 in
Supplementary Materials.

2.2. Field Study

Sampling events were performed on the 8–10 October 2020 and repeated on the 16–18
June 2021 at a similar outdoor temperature, with an average temperature of 35 ◦C ± 2 ◦C.
The mobile data collection unit, installed inside the wastewater storage tank, was used to
collect data at ASWWTP, Al Ain, UAE. It consists of temperature and humidity probes,
AcruLog© H2S analyzer, and ACURITE© anemometer. The unit was placed at the head-
works of the ASWWTP right before the mechanical screens. The data was collected for
48 h in 2 h intervals, starting at 12:00 p.m. H2S concentration was recorded every 10 s in
Acrulog©. The data was retrieved using the software Acrustat in CSV format. It was later
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converted to an Excel workbook. Measurements of H2S concentrations, moisture content,
headspace airflow, the temperature of wastewater and headspace air, flowrate, and wastew-
ater depth were also recorded manually by personnel at the wastewater treatment plant in
a data entry sheet. A laser gun was used to measure the temperature of the wastewater
onsite.

2.3. Laboratory Analysis

Wastewater samples of 50 mL were collected at each sampling event, coinciding with
the 2 h recording intervals. Wastewater samples were collected in fluoropolymer containers
and stored in the fridge. Parameters such as DO, COD, TSS, TDS, TOC, pH, chloride,
sulfates, sulfides, and electrical conductivity in the wastewater samples were measured
in the laboratory. DO was measured using an EXTECH® DO probe (FLIR Commercial
Systems Inc., Nashua, NH, USA), while COD, sulfates, and sulfides were measured using
HACH kits (LCK514, LCK353, 2244500, respectively), and a spectrophotometer (HACH
DR 3900, Hach Company, Loveland, CO, USA). HORIBA EC (HORIBA Advanced Techno,
Co., Ltd., Kyoto, Japan) probes were used to measure conductivity and TDS. Sulfates and
chloride were measured using ion chromatography (Thermo Scientific©, Thermo Fisher
Scientific Inc., Waltham, MA, USA) at 1000 times dilution. TSS was measured using a
spectrophotometer (Hach DR 3900). TOC was measured using a multi N/C-TOC-/TNb
analyzer (Analytik Jena GmbH, Endress+Hauser Company, Jena, Germany). pH was
measured using an EXTECH® pH/mV/Temperature meter.

2.4. Statistical Analysis of Each Parameter

The parameters resulting from onsite observations and laboratory testing were corre-
lated using Minitab™. The relationship of the parameters with H2S and their interrelation
was studied using scatterplots and contour plots. Correlation analysis was performed for
the parameters with H2S concentrations to identify the significant parameters. Significant
parameters were observed at a 95% significance level. Multi-parameter regression anal-
ysis function was performed using Minitab. Regression analysis is used to examine the
relationship between a dependent variable (H2S concentration) and independent variables
(significant parameters). Multi-parameter regression analysis helps to predict an outcome
using multiple explanatory variables. The model with the highest R-sq value was chosen
as the model for the collected data.

2.5. H2S Prediction Modeling

MATLAB© 2022 a software was used to quantitate the amount of H2S generated at
the headworks of the wastewater treatment plant. It was developed using a neural net
fitting application. In fitting problems, a neural network will map between the dataset
with numeric input and target values. The neural net fitting application will assist in data
selection and creating and training networks. It will also help in evaluating the performance
using mean square error and regression analysis. A two-layer, feed-forward network was
employed with sigmoid hidden neurons and linear output neurons (fitnet). This can fit
multi-dimensional mapping problems subjectively well, provided there is a reliable dataset.
The artificial neural networks consist of three layers: input, hidden, and target layer. The
modeling process is comprised of three steps: (i) training, (ii) validation, and (iii) testing. A
total of 42 datasets were collected from the treatment plant throughout the two sampling
events. The collected data of the significant parameters were divided into 70%, 15%, and
15% for training, validation, and testing, respectively. The model was trained using the
training network. The network was adjusted according to the error of the training dataset.
The validation dataset was combined with the training dataset to decide when the training
process should be stopped for the model to have good generalization properties. The
testing dataset allowed us to evaluate the network performance during and after training.
The number of significant parameters corresponding to the number of input layers. In
this case, there were 4 input layers based on the analysis. The desired output from the
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model was H2S concentration, and hence the number of target layers was 1. The number of
neurons in the hidden layers was chosen to be four by using the trial and error method. The
network was trained with the Levenberg–Marquardt backpropagation algorithm (trainlm).
This algorithm generally entails more memory, but less time. Training of the network
automatically ends when generalization stops improving, as indicated by an increase in the
mean square error of the validation samples. The model performance was evaluated using
regression coefficient R, number of epochs, Mean Squared Error, and training time.

3. Results and Discussion
3.1. Wastewater Quantity

Wastewater quantity is expressed in terms of flowrate and velocity. Two sampling
events were performed at the wastewater treatment plant. The flowrate of both events
agrees mostly on the pattern; however, the first sample showed a higher magnitude than
the second sample, as shown in Figure 1a. The first and second samples represent the
average flowrate during the day and night of the first and second sampling events, respec-
tively. During the sampling events, flowrates rose during the day to reach a maximum of
4338 m3/h and 3694 m3/h at around 8:00 p.m. in the first and second sampling events,
respectively. Flowrate decreased during nighttime to reach the lowest of 2246 m3/h in the
first sample and 2133 m3/h in the second sample at around 8:00 a.m. A spike in flowrate
was observed at 6:00 a.m. for both sampling events. The percentage difference between the
lowest and highest average flowrate is 48.2% and 42.2% in the first and second sampling
events, respectively. The variation in flowrate was influenced by the working pattern of the
inhabitants [34]. It was observed that flowrate and wastewater depth followed a similar
pattern. Average wastewater depth was observed to be 0.8 m and maximum and minimum
levels were 1.1 m and 0.7 m, respectively. In the first sampling event, H2S concentration was
increasing steadily from 8:00 p.m. until it reached a peak value of 250 ppm at 4:00 a.m. H2S
concentration then decreased to reach a minimum of 69 ppm at 8:00 p.m. However, on day
2 of the first sampling event, H2S concentration reached a peak several times. This pattern
was not seen on any other sampling days. In the second sampling event, H2S concentration
was at its peak (233 ppm and 280 ppm on day 1 and day 2, respectively) around 12:00 a.m.
and at the lowest concentration (15 ppm and 13 ppm on day 1 and day 2, respectively) at
12:00 p.m. on both days.

Figure 1. Variation of wastewater quantity throughout the sampling event. (a) Average flowrate
during the first and second sampling events. (b) Scatterplot showing the velocity of wastewater at
different times of the day.

It was observed that variation of velocity throughout the day had a diurnal pattern
for both sampling events, as shown in Figure 1b. The scatter plot shows velocity in m/h
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on the x-axis against time in hours in increments of 10 on the y-axis. The blue symbols
represent day 1 and day 2 of the first sampling event. The red symbols represent day 1 and
day 2 of the second sampling event. The velocity shows high and low patterns within each
day. Velocity is highest at 8:00 p.m. and lowest between 8:00 a.m. and 10:00 a.m. every
day. In addition, the first sample had a wider range of velocity compared to the second
sample. The variation in velocity with H2S had a cyclic pattern. This pattern was also
repeated in the second sampling event. The first sampling event had a longer cyclic pattern
because of the broader range of velocity. However, in terms of H2S concentration, the range
was broader in the second sample. During the day of the first sampling event, there were
higher H2S concentration values, resulting in an elevated cycle. The velocity decreased
throughout the night and increased during the day for both samples. This resulted in
a higher retention time at night, giving more time for the micro-organisms to convert
sulfur-containing compounds to H2S. Hence, H2S concentration increased at night. An
opposite phenomenon occurred during the day, as there was more volume of incoming
wastewater, resulting in increased velocity. Both the cycles had 8:00 p.m. on one end and
8:00 a.m. on the other, depicting the beginning and end of the cycle. The highest point of
the first and second cycles was at 4:00 a.m., where the H2S concentrations were 232 ppm
for both cycles. The lowest point was different for both samples.

3.2. Wastewater Quality

The quality of wastewater was determined by studying the pH, COD, TSS, TDS, DO,
temperature of wastewater, electrical conductivity, sulfide, chloride, total sulfur, TOC,
and sulfate of wastewater. The maximum, minimum, and average values observed of
each parameter are listed in Table 1. However, only pH, COD, sulfide, sulfate, and total
sulfur exhibited a pertinent pattern throughout the sampling period. These variations are
explained in detail in Section 3.4.

Table 1. The maximum, minimum, and average values of wastewater characteristics.

Parameter Maximum Value Minimum Value Average

pH 7.3 6.9 7.1
COD (ppm) 546 79.6 279.2
TOC (ppm) 430.5 215 306.3
DO (ppm) 1.2 0.05 0.5
Temperature of wastewater (◦C) 32.7 31.8 32.5
Temperature of air (◦C) 42 32 35.5
EC (µS/cm) 1929 839.1 1271.9
Sulfate (ppm) 260 153 202
TDS (ppm) 738 323 491.7
TSS (ppm) 584 73 160.4
Sulfide (ppm) 0.4 0.05 0.1
Chloride (ppm) 2281.2 167.5 1098.2

Sharma et al. [35] stated that solid sedimentation has a significant impact on H2S
generation. The average TDS level was 491.7 ppm and maximum and minimum levels
were 738 ppm and 323 ppm, respectively. The average TSS level was 160.4 ppm, and the
maximum and minimum levels were 584 ppm and 73 ppm, respectively (Table 1). The
level of dissolved oxygen in wastewater determines the amount of carbonaceous matter
that can be broken down. An increase in DO level will result in lower sulfide generation
by restricting the supply of food to the anaerobic bacteria [36]. However, a low DO level
favors the generation of sulfide by enhancing the growth of anaerobic micro-organisms [36].
The typical DO level of wastewater is around 1 ppm [37]. In our case, the average DO
level was 0.4 ppm and the maximum and minimum DO levels were 1.2 ppm and 0.05 ppm,
respectively (Table 1).

A high temperature of wastewater is reported to increase biological activity and oxygen
consumption. It also increases the sulfide generation in gravity sewers. The increase in
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temperature by one degree corresponds to a 7% increase in the activity of SRB until it reaches
30 ◦C [36]. It was observed that the temperature of wastewater is higher during the night,
and lower during the day. This is because water has higher specific heat and it takes time
to heat, hence temperature is lower during the day. The higher specific heat also prevents
rapid temperature changes, and thus takes more time to cool at night [38]. The higher
concentration of H2S during the night (between 12:00 a.m. and 6:00 a.m.) is in accordance
with our discussion in the literature review that H2S concentration increases with increasing
sewer temperature due to enhanced microbial activity with increasing temperature [39,40].
This pattern is similar for both sampling events. The average wastewater temperature was
around 32.5 ◦C and the maximum and minimum were 31.8 ◦C and 32.7 ◦C, respectively
(Table 1). The differences in wastewater temperature were not huge. Regardless of the
temperature of headspace air, the wastewater temperature could not reflect the impact of
the ambient temperature. Electrical conductivity (EC) has a significantly small effect on H2S
in the aqueous phase [11]. According to US EPA [41], the effect of EC on H2S generation can
be neglected. Average EC values were around 1271.9 µS/cm and maximum and minimum
were 1929 µS/cm and 839.1 µS/cm, respectively (Table 1).

Total organic carbon (TOC) can be used as a type of substrate that SRB uses for its
growth. Bacterial growth is aided by high quantities of organic materials. This results in the
depletion of DO, which, in turn, enhances sulfide generation [36]. The average TOC was
306.3 ppm, and the maximum and minimum concentrations were 430.5 ppm and 215 ppm,
respectively (Table 1). Chloride, along with other chemicals including ozone, hydrogen
peroxide, permanganate, and oxygen, oxidizes sulfide directly [42]. Chloride also plays a
role in facilitating the corrosion of steel by damaging its protective layer [43]. The average
chloride level was 1098.2 ppm, and the maximum and minimum concentrations were
2281.2 ppm and 167.5 ppm, respectively (Table 1).

3.3. Effects of Different Parameters on H2S Emissions
3.3.1. Effect of Flowrate

Variations in flowrate and additional wastewater input have an effect on the release of
odorant into the headspace [44]. Wastewater flowrate causes turbulence in the wastewater
stream and increases or reduces re-aeration with high or low flow, respectively. It also
determines the amount of sulfate entering the system [34]. In the case of H2S emissions,
more wastewater results in an increased sulfate concentration. It was observed that flowrate
and H2S concentration were negatively correlated for both sampling events. This is similar
to the case of velocity, where a lower flowrate gives more time for micro-organisms to
convert sulfate-containing compounds to H2S and release H2S gas to headspace. Generally,
H2S concentration was higher during the night, with it being highest during the night of
the second sampling event. During both the sampling events, H2S concentrations were at
their maximum between 11:00 p.m. and 6:00 a.m. The flowrate varied between 2518.7 m3/h
and 3524.8 m3/h during this time. H2S concentration was at its peak when the flowrate
was around 3347 m3/h.

The variation in H2S concentration was limited during the first sampling event. How-
ever, during the second sampling event, the range was wider. In the case of flowrate, the
variation was limited during the second sampling event; however, the range was broader
during the first sampling event. Generally, H2S concentration was lowest during the day
between 1:00 p.m. and 6:00 p.m., with it being the lowest during the day of the second
sampling event. The flowrate varied between 3209.2 m3/h to 3925.9 m3/h during this pe-
riod. During both sampling events, H2S concentration was at its lowest when the flowrate
was around 3649 m3/h. There was a spike in H2S concentration between 11:00 p.m. and
12:00 a.m., and between 5:00 a.m. and 6:00 a.m. during a different flowrate range. An
isolated dip was identified was in H2S concentration from 11:00 a.m. to 1:00 p.m. using
contour plot analysis. The flowrate ranged between 2558.2 m3/h and 2716 m3/h during
this event.
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3.3.2. Effect of Sulfate Concentration

Hvitved et al. [45] stated that an increase in sulfate concentrations increases H2S
generation since sulfate serves as the substrate in H2S production. The average sulfate
concentration was 202.2 ppm, and the maximum and minimum concentrations were
260 ppm and 153 ppm, respectively (Table 1). The sulfate concentrations in the wastewater
were higher during the night, as shown in Figure 2. The samples during the day and
night of the first sampling event are represented as Sample_1 Light and Sample_1 Night,
respectively. The samples during the day and night of the second sampling event are
represented as Sample_2 Light and Sample_2 Night, respectively. Sulfate concentration
ranged between 189 ppm and 200 ppm for the first sample and 196 ppm and 249 ppm for the
second sample at night. H2S concentration was highest during this period (between 11:00
p.m. and 6:00 a.m.) for both samples. During the day, sulfate concentrations were lower.
Sulfate concentration ranged between 177 ppm and 187 ppm for the first sample and 153
ppm and 196 ppm for the second sample during the day. H2S concentration was also lower
during this period for both samples. However, there was a slight disruption to this pattern
from 2:00 p.m. to 8:00 p.m. for the second sample. During this period, sulfate concentration
was higher (between 210 ppm and 260 ppm), but H2S concentration was lower. It was
observed that the flowrate was higher during this period. This reduced the retention time of
the wastewater, thus reducing the amount of H2S released into the headspace. Hence, even
at a higher sulfate concentration, the H2S concentration recorded was lower. Regression
lines were developed for the sulfate concentrations of each sampling event, with separate
regression equations for day and night. It was observed that although R-sq is low and does
not justify correlation, H2S decreases with increasing sulfate concentration. The samples
have the same R-sq value of 0.6 for daytime. However, the R-sq value of nighttime for the
first sample is 0.4 and the second sample is 0.8.

Figure 2. Comparison between H2S concentration and sulfate concentration during the day and
night of the first and second sampling events.

It was observed that the variation in sulfate concentration with H2S had a cyclic,
pattern as depicted. This pattern was repeated in the second sampling event. The second
sampling event had a longer cyclic pattern, as the range of sulfate concentration was
broader than in the first sampling event. Even in terms of H2S concentration, the range
was broader in the second sampling event. Both cycles had 6:00 p.m. on one end and
10:00 a.m. on the other, depicting the beginning and end of the cycle. The lowest point of
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the first and second cycles was at 6:00 p.m., where the H2S concentrations were 77 ppm
and 15 ppm, respectively. The highest point was different for both sampling events. The
second sampling event had a longer cycle compared to the first sampling event. This is
because the range of sulfate was wider in the second sampling event.

3.3.3. Effect of Sulfide

H2S gas is a byproduct of the dissociation of organic sulfide compounds [46]. Hence,
the amount of sulfide available is important in determining the H2S emission. The average
sulfide concentration was 0.1 ppm and the maximum and minimum concentrations were
0.3 ppm and 0.048 ppm, respectively (Table 1). H2S concentration varied at the same sulfide
concentration for both sampling events. During the first sampling event, H2S concentration
was higher between 10:00 p.m. and 8:00 a.m. However, at the same sulfide concentrations,
H2S concentration was also lower between 10:00 a.m. and 8:00 p.m. During the second
sampling event, H2S concentration was higher between 12:00 a.m. and 6:00 a.m. However,
at the same sulfide concentration, H2S concentration was lower between 8:00 p.m. and
10:00 p.m. Between 12:00 p.m. and 4:00 p.m., H2S and sulfide concentrations were lower.
However, between 4:00 p.m. and 8:00 p.m., H2S concentration was lower, even at higher
sulfide concentrations. This can be explained by the variations in pH during the sampling
events by considering the graph of equilibrium speciation of aqueous hydrogen sulfide as
a function of pH [47]. At a lower pH, H2S concentration was higher, while at a higher pH,
H2S was observed to be lower. This agrees with the observations made by Sharma et al.,
where pH and H2S concentration were correlated [37]. The pH of the wastewater sampling
events collected in this study was between 6.9 and 7.2, at which there are equal chances of
forming HS− and H2S [45].

3.3.4. Effect of Humidity

Humidity is one of the key factors leading to H2S-induced corrosion. Higher moisture
content on sewer walls enhances microbial activity, which increases the rate of corrosion [48].
It was noted that humidity fluctuates together with H2S concentration, as shown in Figure
S3 in Supplementary Materials. The first peak in H2S concentration coincides with the
peak in humidity; however, humidity reaches a peak and stays constant for some time. The
second peak in H2S has a pattern that is not similar to the peak in humidity. Neglecting the
rapid changes in H2S concentration at the peak, H2S and humidity peaks can be considered
coincidental. Both the peaks of H2S concentration during the second sampling event agree
with the peaks of humidity. This is in agreement with the findings of Jiang et al., where it
was concluded that when humidity increases, H2S concentration also increases [21].

3.3.5. Effect of Total Sulfur

Total sulfur is the sum of all sulfur-containing compounds present in both air and
water. It was assumed that H2S from headspace and sulfide and sulfate from wastewater
represent the majority of sulfur-containing compounds at a particular time. It was observed
that the variation in total sulfur concentration in wastewater has a cyclic pattern. This
pattern was repeated in the second sampling event. The first sampling event had a longer
cyclic pattern. The range of total sulfur was broader in the first sampling event, resulting in
a slightly erect cyclic pattern for the second sampling event. The highest point of the first
and second cycles was at 6:00 a.m., where the total sulfur concentrations were 215 ppm
and 306 ppm, respectively. The lowest point was different for both samples. This cyclic
pattern was very similar to the patterns for flowrate and sulfate.

Total sulfur concentrations were higher during the night. During this period, total
sulfur concentrations ranged between 260 ppm and 442 ppm for the first sampling event
and 255 ppm and 458 ppm for the second sampling event. The flowrate was highest during
this period for both sampling events. Regression lines were developed for total sulfur
concentrations with the flowrate of each sampling event, with separate regression equations
for day and night. The first and second sampling events had a similar R-sq value of 0.8 for
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nighttime. During the day, sulfate concentrations were lower. Sulfate concentration ranged
from 180 ppm to 323 ppm for the first sampling event and from 283 ppm to 323 ppm for the
second sampling event. The flowrate was also lower during this period for both sampling
events. The R-sq value of the slope representing the daytime of the first sampling event is
0.7 and the second sampling event is 0.8.

It was noted that during nighttime, H2S concentration was higher. Total sulfur con-
centration was also higher during this period. H2S concentration during the day is com-
paratively lower, along with total sulfur concentration. This trend is similar for both the
first and second sampling events. H2S concentrations were at their maximum between
10:00 p.m. and 8:00 a.m. The total sulfur concentration varied between 441 ppm and
364 ppm during this time. There was a spike in H2S concentration between 11:00 p.m. and
5:00 a.m., at a lower total sulfur concentration (between 219 ppm and 290 ppm). Neither
flowrate nor pH was correlated with this increase in H2S concentration. However, the
temperature of wastewater was highest during this period, which can explain the increase
in H2S concentration. H2S concentration was lowest between 11:00 a.m. and 8:00 p.m.,
when the total sulfur concentration was in a lower range of between 188 ppm and 304 ppm.

3.3.6. Effect of pH

Dissociation of H2S to dissolved H2S gas, hydrogen sulfide ions, and sulfide ions is
governed by the pH of wastewater [49]. Yongsiri et al. [11] stated that the pH of wastewater
is important in evaluating H2S emissions. A decrease in pH is associated with increased
H2S emissions, according to a study conducted by Nielsen et al. [50]. This agrees with
our findings, where pH decreases while H2S concentration in the headspace increases,
as shown in Figure S2 in Supplementary Materials. As discussed in the literature, pH
determines the relative proportion between H2S and HS−. H2S concentration is favored
at a lower pH. When the pH increases, the chances of H2S formation decrease, and HS−

increases. The pH is low during the evening (from 12:00 p.m. to 10:00 p.m.) and quickly
escalates to its highest value at 4:00 a.m. The pH values suddenly fall to reach their lowest
at 10:00 a.m. and then rise rapidly again. This trend was evident for both the first and the
second sampling events. The average pH value of the wastewater was 7.1, and the lowest
and the highest values were 6.9 and 7.3, respectively (Table 1).

3.3.7. Effect of COD

COD has been reported as one of the influential factors in the generation of H2S in
wastewater [40,45]. In the second sampling event, COD fluctuated with flowrate by a
difference of 2 h. In the first sampling event, COD increased with increasing flowrate, but
had a contrasting time difference compared to the second sampling event. This is contrary
to the results reported by Wang et al., where COD decreased with increasing flowrate [51].
The authors had observed rainfall as a reason for the increase in flowrate. Hence, COD
was reduced because of the dilution of the wastewater. In our case, when the flowrate
increased, the amount of organic matter available also increased. Thus, COD increased
with increasing flowrate. The average COD value of the wastewater for both days was
279.2 ppm, and the lowest and the highest values were 79.6 ppm and 546 ppm, respectively
(Table 1).

3.4. Model for Prediction of H2S Emissions

Wastewater was collected from certain parts of the city, along with the wastewater
collected in tankers were flowing through an enclosed structure. H2S concentration was
measured in the headspace and sulfide and sulfate in the wastewater, with the assumption
that no other forms of sulfur would be present to contribute to the total sulfur concentration.
It was assumed that no H2S gas had escaped the system before the point of measurement.
It was also assumed that the parameters that are not included in the study had little to no
impact on H2S generation. The temperature of headspace, the temperature of wastewater,
flowrate, wastewater depth, velocity of wastewater, moisture content, DO, COD, chloride,
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sulfates, sulfide, TSS, TDS, pH, electrical conductivity, TOC, and total sulfur were measured
and analyzed. From the aforementioned parameters, significant parameters were identified
using 95% significance in the correlation matrix. It was noted that the temperature of
wastewater and the wastewater depth, total sulfur, and humidity were the significant
factors influencing H2S generation, according to the collected data.

The data of the parameters selected to carry out the modeling were used in regression
analysis. H2S concentration in ppm was taken as the response variable and the temperature
of wastewater (TL) in ◦C, wastewater depth (WD) in m, total sulfur (TS) in ppm, and
humidity (H) were continuous predictors. The analysis was performed at a 95% confidence
level. The final regression equation obtained is shown in Equation (6):

[H2S] = −3417 + 102.9TL + 2.867H + 0.345 TS − 94 WD (6)

From the model, it is evident that H2S concentration increases with increasing wastew-
ater temperature, humidity, and total sulfur, and decreases with increasing wastewater
depth. The model from regression had an R-sq value of around 0.7. This means that 74.3%
of the variation in H2S concentration is explained by the parameters used in this model, as
shown in Table 2.

Table 2. Summary of the regression model.

Model Summary

S R-sq R-sq (adj) R-sq (pred)

45.6328 74.38% 71.08% 62.41%

The model developed in this study can serve as an important tool as it can be used for
H2S control applications. The model can be improved by increasing the data collected. It
can also help in understanding more layers of the variability of the parameters. However,
this model is only applicable to the prediction of H2S in the particular treatment plant
where the experiment was conducted. The model must be further developed for a more
universal application. This is discussed in the next session.

3.5. Generalized H2S Emissions Prediction Model

The regression model developed in Section 3.5 has limited applications because of
its specificity. Hence, a neural net fitting application was used to analyze the dataset.
Two variables were created in the workspace, which contains input data (parameters) and
target data (H2S concentration) with four neurons in the hidden layers. The Levenberg–
Marquardt backpropagation algorithm was used as the training algorithm. This algorithm
gave the best results when compared to other training algorithm options in a short time
(0:00:00). Out of the total 42 datasets, 30 were used for training, 6 for validation, and 6 for
testing. The model obtained a good relationship from the training data, with an R value of
0.87, as shown in Figure 3. As proposed by Sivák et al. [52], an R-sq value of 0.9 or above is
considered very good, and a value higher than 0.8 is good. An R-sq value of above 0.6 was
considered acceptable. Thus, the data fit well with the model. The R values of validation
and testing were 0.97 and 0.92, respectively. However, there are some probable outliers
and scattering of the data. The best validation performance was obtained at an epoch of 12
(Figure 4). The prediction of the network is within 20% of the measured H2S concentration.
This can be improved by increasing the data collection. In the study conducted by Rege
et al. [33], a backpropagation algorithm was used to develop an ANN that could predict
H2S emissions. They used a minimal quantity of data for model development, similar to
this work. For some of the training data, the experimental error was reported to be in the
order of 10%. There were errors in the emission rate estimations of up to 20%. Tian et al. [53]
developed a two-phase mass transfer model based on the mass transfer rate equation for
predicting H2S emissions. This model had an R-sq of 0.8714 between the predicted and
measured concentrations of H2S, and they concluded that the model was reliable.
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Figure 3. Outputs of the model using training, validation, testing, and overall datasets.

Additional tests were performed using this model. For testing, a dataset collected
from another wastewater treatment plant was used. The network was tested using values
of TL, WD, H, and TS as input data and H2S concentrations as target data. The R value of
the performed test is 0.6, which can be considered acceptable. However, the low value of
R is because the data was not collected from an input location, but at a buffer tank. This
model did not consider other factors that might have an influence on H2S concentration.
These include variations in VFAs, which are the most important carbon source for SRB [54]
and BOD. Further, the dataset used in the model is limited to the location of data collection.
Since artificial neural network (ANN) models are data-driven, the model can be improved
by training with more data.
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Figure 4. Performance of the neural network showing MSE.

4. Conclusions

Microbial-induced concrete corrosion in sewers facilities is a consequential global
concern incurring losses in the billions of dollars annually. This paper focuses on the
generation of H2S gas in wastewater which is responsible for corroding concrete surfaces
in wastewater treatment plants. This study examined the factors that affect the formation
and generation of H2S in a wastewater treatment plant and formulated a model using the
most important influencing parameters. The key findings are discussed in this section.

The variation of wastewater quantity throughout the sampling events is discussed.
Sulfate and total sulfur concentration were observed to have a positive correlation with H2S
concentration throughout the experimental period. The flowrate, velocity, sulfate, and total
sulfur had a similar cyclic pattern throughout the sampling events. Sulfide concentrations
were influenced by pH values since higher H2S concentrations were observed with higher
and lower concentrations of sulfide. The effect of pH on H2S generation was studied. It was
observed that higher H2S concentrations were recorded at lower pH values. The results also
demonstrated that humidity and H2S concentration are positively correlated. The impact
of other parameters like DO, COD, TOC, TSS, TDS, and temperature was also investigated.
However, no clear patterns or correlations could be extracted from the data analysis.

The temperature of wastewater and its humidity, total sulfur, and depth were identified
as the most important parameters influencing H2S emissions through correlation analysis.
Based on the dataset collected from the inlet of the wastewater treatment plant, a statistical
equation was proposed using regression analysis. However, due to the inapplicability of
this model to any other wastewater treatment plant, a neural network model was developed.
In the neural network model, validation and testing had an R value of 0.9. The training
had an R value of 0.8. The model provided an accuracy of 80% for the prediction of H2S
concentration in wastewater treatment plants. External environmental conditions impair
the accuracy of prediction. The model was tested on a sample collected from the buffer
tank of another wastewater treatment plant. The test had an R value of 0.6, indicating that
the model is limited to its applicability in the prediction of H2S emissions under conditions
similar to the inlet of a wastewater treatment plant. However, the model can be improved
by training with more data.

Parameter analysis leads to the understanding of H2S emissions. This helps to manage
H2S gas emissions in wastewater treatment plants, and, in turn, to control the bio-corrosion
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of concrete. In order to manage H2S emissions, it is necessary to know H2S emission
patterns. Prediction tools are used in this situation, hence reducing the cost associated
with H2S control measures. However, this model can be improved by analyzing more
parameters, such as VFAs and biofilms. Since this model is data-driven, it can be further
improved by increasing the collected data. By further developing this ANN model, it can
be used for sewer modeling. Predictions of H2S emissions for large sewer and wastewater
treatment plants can be developed by parametric emission modeling (PEM).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14050791/s1, Figure S1: Arial view of Al Saad wastewater
treatment plant with the sampling area encircled. The arrow shows the direction of flow of wastew-
ater in various treatment units; Figure S2: H2S concentration and pH levels at different times of
measurements; Figure S3: H2S concentration and Humidity at different times of measurement.
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