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Abstract: The increase in population growth and demand is rapidly depleting natural resources.
Irrigation plays a vital role in the productivity and growth of agriculture, consuming no less than
75% of fresh water utilization globally. Irrigation, being the largest consumer of water across the
globe, needs refinements in its process, and because it is implemented by individuals (farmers),
the use of water for irrigation is not effective. To enhance irrigation management, farmers need to
keep track of information such as soil type, climatic conditions, available water resources, soil pH,
soil nutrients, and soil moisture to make decisions that resolve or prevent agricultural complexity.
Irrigation, a data-driven technology, requires the integration of emerging technologies and modern
methodologies to provide solutions to the complex problems faced by agriculture. The paper is an
overview of IoT-enabled modern technologies through which irrigation management can be elevated.
This paper presents the evolution of irrigation and IoT, factors to be considered for effective irrigation,
the need for effective irrigation optimization, and how dynamic irrigation optimization would help
reduce water use. The paper also discusses the different IoT architecture and deployment models,
sensors, and controllers used in the agriculture field, available cloud platforms for IoT, prominent
tools or software used for irrigation scheduling and water need prediction, and machine learning
and neural network models for irrigation. Convergence of the tools, technologies and approaches
helps in the development of better irrigation management applications. Access to real-time data,
such as weather, plant and soil data, must be enhanced for the development of effective irrigation
management applications.

Keywords: Internet of Things (IoT); agriculture; irrigation; cloud platforms; sensors; controllers;
machine learning; neural networks

1. Introduction

Water, considered a limited resource, is still an elementary requirement for life on
Earth; the upsurge in population growth and climatic changes over several decades has
affected water utilization, and water is now in high demand [1,2]. The resources available
for agriculture are being depleted at an alarming rate; hence, traditional methods have to be
replaced with new methods for the effective utilization of available resources. Soil and water
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are the two main resources for agriculture. As per the Food and Agriculture Organization
[FAO] report on Aquastat, India, where more than 55% of the land is a cultivable area
of approximately 183 million ha, irrigation is the major consumer, accounting for more
than 80% of the water resources. The origins and history of irrigation in India have been
identified from remains of Indus Valley civilization. Irrigation is a process that has been
followed for thousands of years and has undergone several changes and refinements.
Supplying the appropriate amount of water to the crop at the appropriate time requires a
complexity of irrigation techniques or irrigation management [3,4]. Water use efficiency
(WUE) and better yield are the key factors for effective irrigation management application
(FAO 2001); this is an important and essential issue to be resolved as the demand to feed
the exponentially growing population is high [5–7]. Irrigation optimization is essential to
meet the demand for natural resources. Irrigation optimization has been evolving for a
long period and has gained attention since the 1970s. Automatic irrigation technologies in
precision agriculture based on control theory would result in irrigation optimization [4].
AquaCrop-Open Source is a crop simulation model implemented using MATLAB. Among
the water-driven crop models, AquaCrop accounts for a wide spectrum of water stress
impacts on transpiration. AquaCrop is a specifically designed simulation model used to
simulate the essential factors such as water requirements, growth, biomass production, and
harvestable yield of herbaceous crop types [4]. Irrigation optimization includes multiple
factors that are not static and change completely with the climate, available resources, crops
planted, evapotranspiration, stress coefficient, crop coefficient, electrical conductivity, and
many more factors [5]. Irrigation optimization complexity exists due to the heterogeneous
problem statements of irrigation. A prescribed static irrigation model will result in a limited
scope of improvisation, whereas a dynamic irrigation model would result in high precision.
Available technologies, such as IoT, machine learning, and cloud-based decision support
systems, reduce the complexity of implementing dynamic irrigation optimization. The
adoption rate of modern technologies and data management tools in agriculture is steadily
increasing. However, the technologies adopted differ from region to region.

Soil sampling, computers having high-speed Internet access, yield maps, and yield
monitoring have the highest rates of adoption among farmers. New technology implemen-
tation would result in an increase in yields by 70%.

The application of the right quantity of water at the appropriate time is an impor-
tant criterion for developing an irrigation management application. The use of machine
learning and artificial neural network models will tremendously increase the feasibility of
developing a better irrigation management application [6]. This paper reviews the basic
technologies, tools, and approaches that can be easily converged to provide solutions to the
intricacies in irrigation management. However, this paper does not discuss the economic
betterment or government’s geographical policies that may also impact on the solution.

1.1. Evolution of Irrigation

We examine the evolution of irrigation from the references in four different time
periods ranging from 1970 to 2018 (present). The evolution is depicted in Figure 1.

From 1970 to 1985, the emergence of automatic control systems and the scarcity of
water for irrigation processes attracted the attention of researchers regarding irrigation
optimization [7–10]. Water use information and efficiency were implemented in the late
1970s as the demand for water started to increase with the exponential rise in the pop-
ulation and depletion of natural resources [11,12]. The scenario triggered the necessity
for the optimization of the irrigation technique. Several factors were identified to attain
optimization in irrigation, such as the stress day index (SDI), the evapotranspiration crop
canopy, and climate conditions. The emergence of the Internet for public use after 1989
has driven Internet-based control systems and enabled data storage on the web. Wireless
sensor networks (WSNs) have started to emerge as an easy and powerful technology for
environmental monitoring [13]. Sensors and actuators have been developed for various
applications of WSNs, including agriculture. Smart applications and methodologies for
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irrigation, soil fertilization, pest control, and disease forecasting have attracted important
attention among researchers in the field of precision agriculture [14–24].

Figure 1. Evolution of irrigation from 1970 to present.

1.2. Factors to Be Considered for Effective Irrigation

Several irrigation systems, or characteristics of irrigation systems, exist based on
the application or utilization of the water to the surface or the crop. These are normally
classified as surface, drip, or sprinkler, and localized and subsurface irrigation. Surface
irrigation irrigates by applying water on the surface of the agricultural land. Drip or
sprinkler irrigation uses less water for irrigation as it applies the water drop by drop or
sprinkles it like artificial rain, whereas localized irrigation applies water to specific places
on the surface, and, in subsurface irrigation, water is applied to the crop’s root zone [25].

Many factors are dependent on the type of irrigation optimization that is performed [15–17].
Furthermore, all of the factors differ based on the geography, crop, soil type, irrigation
methodology, and the amount of rainfall [18,19]. Below are some of the vital factors
affecting irrigation optimization:

1. Soil moisture.
2. pH value.
3. Electrical conductivity.
4. Crop growth metrics.
5. Climate data.
6. Crop canopy.
7. Evapotranspiration.

Given the difficulty of establishing successful irrigation, it is prudent to estimate the
irrigation need and optimize it through the development of an irrigation optimization
approach that takes into account all of the complicated irrigation characteristics.
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1.3. Irrigation Optimization

Irrigation optimization is a complex task as it involves the processes of data collection,
analysis, and interpretation of acquired data and optimization decisions. Optimization is
attained using different factors as the irrigation impact differs based on various factors.
Montesano et al. (2018) designed and deployed an automated irrigation system where
soilless substrate was taken for growing basil and stated that a wireless sensor network can
be used as an effective tool for real-time monitoring and sensing of substrate water status
in greenhouse soilless conditions for effective irrigation management of basil [20].

Difallah et al. (2017) developed a linear programming model along with a knapsack
decisional form to attain irrigation optimization with weather and soil conditions as vital
factors, and the results reduced the utilization of water by 28.5% [21]. Consideration of
other external factors of importance, such as relative humidity, soil nutrients, wind speed,
and sunshine duration, would result in better optimization.

An integrated hydrological-irrigation optimization modeling system was implemented
for the Central Vietnam rice irrigation scheme [22]. The model comprises a distributed
hydrologic model, a simulated inflow for the reservoir, and an irrigation methodology that
optimizes the irrigation of rice. Continuous flooding is replaced with alternate wetting and
drying (AWD) throughout the summer–autumn season, and the reservoir capacity and
reservoir release are considered to be important factors.

Zhang et al. [23] irrigated tomatoes at different crop evapotranspiration (ETc) percent-
ages, such as 40%, 50%, 60%, 80%, and 100%, finding that the highest yield was obtained
with 80% ETc, and recommended 80% ETc as an optimal irrigation standard for the Hetao
Irrigation District comprising sandy soil.

A smart drip irrigation system combining technologies such as the cloud, data min-
ing, and Android [24] was developed by Ghosh et al., and they achieved remote control
over the drip irrigation. Humidity, temperature, light, and moisture are considered as
important factors in irrigation control. Factors such as temperature and humidity in the
air, soil moisture, wind speed, and solar radiation can be considered universal variables in
agricultural applications.

Before optimizing the irrigation, the right irrigation technique must be chosen based
on the farm and other factors [21]. Several irrigation techniques are available among these,
of which flood, drip, and sprinkler irrigation are the most applied techniques.

Other irrigation methods have also been followed as per the geographic demands and
research process.

1.4. Remote Monitoring and Control of Irrigation for Optimized Irrigation

Irrigation monitoring is critical for optimization; thus, manual monitoring should be
phased out in favor of automated or remote monitoring. Numerous irrigation systems
are used across the world, and Table 1 summarizes the numerous strategies used in the
reference articles. In 2018, Karimi et al. [25,26] developed a web-based monitoring system
for vineyards and grape drying, and the results proved it was a complete monitoring
system that provided efficient monitoring.

Table 1. Various irrigation techniques.

Various Irrigation Techniques References

Flood irrigation [17,22,25,27,28]

Alternate wetting and drying (AWD) [22]

Sprinkler irrigation [21,27,29,30]

Drip irrigation [23,24,31–33]

Micro irrigation [14,34]
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Table 1. Cont.

Various Irrigation Techniques References

Low-pressure pipe irrigation [21,33,35]

Channel lining [36,37]

Furrow irrigation [28,35]

Pivot irrigation [32]

Das et al. considered four key data fields, namely, the morphology of the plant,
canopy, leaf area index, and fruit counts, using sensor suites containing a laser range
scanner, multispectral cameras, a thermal imaging camera, and navigational sensors. Using
the sensor suites, they were able to monitor the agriculture process effectively [26].

Gosh et al. developed a remote monitoring and control system where the field data
were collected using preconfigured sensors and passed on to the controller, which passes
the information to a computer on the farm, from which the data are transferred to the
cloud [24]. The emergence of critically designed IoT devices and controllers enables the
field data to be directly stored in the cloud without a computer to interface the field and
cloud [38]. Precision agriculture has to be complemented with emerging technologies, such
as the Internet of Things (IoT), and has enabled technologies to improve the quality of
farming [39]. Monitoring the field and fetching data from the farm helps in monitoring and
analyzing other processes in precision agriculture [40], such as the soil nutrient depletion
rate, crop canopy, and other parameters. Researchers used cloud services to save the
data for further analysis. An automated cloud-based dynamic decision support system
for acquiring data from different sources was developed by Tan in 2016 and was tested
successfully. The system was able to provide decisions that were application specific, and
the field devices could be controlled from the cloud [41]. These cloud-assisted platforms
increase the scope of analytics and decision support systems in precision agriculture [27].

Imaging platforms have also been used for remote monitoring [42], as several pa-
rameters, such as the canopy, detection of leaf width, and infection in plants, can be
performed using image processing algorithms and other approaches in combination with
image processing.

Irrigation optimization, remote monitoring, and remote control complement each
other to enable precision agriculture. The process cycle is depicted in Figure 2.

Figure 2. Components of precision agriculture.
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2. Architecture or Deployment Models for IoT in Agriculture Irrigation Management

A remote monitoring system based on the Internet of Things employs a variety of
methodologies for a variety of applications, and hence the design and deployment patterns
are diverse. There is no one-size-fits-all approach to IoT architecture. Consolidation of the
Internet of Things architecture is based on a three- or four-layer architecture.

Three-Layer and Four-Layer Architectures

The common architecture is the three-layer architecture represented in Figure 3, com-
prising the physical, network and application layers [43].

Figure 3. Generic three-layer architecture.

i. The sensor and actuator layer (physical layer) has the sensors and actuators con-
nected to it, allowing sensing to gather information from the environment and to
control the actuators

ii. The network layer (data management layer) connects other devices, servers, and
things in the IoT application. This layer is sometimes called the communication
layer, as it merges some of the functions, such as data aggregation and preprocess-
ing.

iii. The application layer delivers application-driven services or functions to the end
users. The functions and process differ based on the application in which it is used,
such as smart homes, smart cities, and smart agriculture.

In the four-layer architecture depicted in Figure 4, the service layer is added to the
three-layer architecture, and the service layer classifies the data for the application layer.
The data are classified based on applications such as visualization, security, storage, com-
munication services, and analytics. The service layer is accountable for the creation and
management of services needed for applications. It acts as a middleware for the application
and network layer, and is responsible for maintaining the services registry for discovery of
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services, API (application programming interface), and composition of services. Reliability
management is also taken care of by the service layer.

Figure 4. Four-layer architecture.

3. Commonly Used Cloud Platforms in IoT

As per the National Institute of Standards and Technology (NIST), “cloud computing
is a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction” [43–50]. The integration of the cloud platform is an
important factor for developing an effective application in the IoT. Most IoT applications
are developed to complement data collection in an analytics application. The cloud also
helps attain scalability and flexibility, and, with clouds, features such as visualization and
data analysis are easily carried out, reducing the time and cost required of applications.
Multiple cloud platforms are compared and contrasted in Table 2.
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Table 2. Cloud platforms of IoT comparison.

Applications/Cloud
Service Providers Open Source Device

Management
Security
Built in

Machine
Learning Tools

Data
Management Analytics Virtualization

Mobile
Application

Support
Visualization Developer

Tools

AWS IOT no 4 4 4 4 no 4 4 4 4

Artik Cloud no 4 4 no no 4 no no 4 4

Autodesk Fusion
Connect no 4 4 no 4 4 4 no 4 4

GE Predix no 4 4 4 4 4 4 4 4 no

Google Cloud IoT no 4 4 no 4 4 no 4 4 no

Microsoft Azure
IoT Suite no no 4 4 4 4 no 4 4 4

IBM Watson IoT no 4 4 4 4 4 no no 4 4

Salesforce IoT Cloud no 4 no no 4 4 no no 4 no

Kaa Platform 4 no no no 4 4 no no 4 4

Macchina Platform 4 4 no no 4 no no 4 4 4

Microsoft Lab
of Things no 4 4 4 4 no no no 4 4

Nimbits 4 4 no no 4 4 no no 4 4

Oracle IoT no 4 4 no 4 4 4 no 4 no

SiteWhere Platform 4 4 no no no no no no no 4

Carriots Platform 4 4 no no no no no no 4 4

Temboo Platform no no no no 4 4 no no 4 4

Thethings.io 4 4 no no no no no 4 4 4

Thing speak 4 4 no no 4 4 no no 4 4

Thing Worx no 4 no no 4 4 no no 4 4

Ubidots Platform 4 4 no no 4 4 no no 4 4

Xively no 4 4 no 4 4 no no 4 no
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4. Commonly Used Sensors and Controllers in Agriculture
4.1. Sensors in Agriculture

The sensor collects data from the field and aggregates it for processing in an IoT
application. The actuators in the application are mostly activated by detected data. Sensor
data is gathered and used in analytics and visualization-based applications. The following
are some of the more obvious sensors mentioned in the cited article(s):

1. Soil moisture sensor.
2. Weather station.
3. CO2 sensor.
4. DHT11 digital.
5. TGS 813 sensor for SO2 gas.
6. PIR motion sensor.
7. Soil pH sensor.

4.2. Hardware Platforms in the IoT

Hardware platforms connected with sensors and actuators are the heart of the IoT.
In the case of IoT hardware, it is designed or amended depending on the application in
which it is used. The hardware used in the IoT consists of two types of ARM controllers,
as compared in Table 3, and Single Board Computers, as contrasted in Table 4. The
tables present the available and commonly used hardware platforms, with parameters of
supply voltage, processor, processor speed, system flash, system memory, IDE, GPIO, I/O,
connectivity, and network interfaces.

The data collected from the farm using the IoT devices and cloud platform enable the
analysis of data through which several complexities can be visualized and resolved, such
as estimation of evapotranspiration and irrigation for the upcoming days, prediction of
yield, and scheduling of irrigation based on the acquired value. To perform the analysis,
machine learning and neural networks are deployed. The following section discusses some
of the many studies for irrigation management that use machine learning models or neural
networks for effective irrigation.
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Table 3. Comparison of ARM-based controllers.

Parameters/
Microcontroller

Based Boards
Arduino Uno Arduino Yun Particle Electron Espressif Systems

ESP8266-01 Node MCU. ARM mbed NX-
PLPC1768Processor Electric Imp 003

Supply Voltage 5 V 5 V/3.3 V 3.3 V 3.3 V 3.3 V 5 V 5 V

Processor ATMega328PU
ATmega32u4, and
Atheros
AR9331

32-bit STM32F205 32-bit Tensilica L106 32-bit Xtensa L106
ARM
Cortex
M3

ARM
Cortex
M4F

Processor speed
(MHZ) 16 16 120 80 80 300 96

System Flash 32 KB 16 MB 128 KB RAM - 128 KB 512 KB 4 MB

System Memory 16 MB 64 MB 1 MB 1 MB 16 MB 120 KB 32 KB

IDE Arduino Arduino Arduino Online Compiler,
Arduino Arduino

C/C++
SDK,
Online
Compiler

Electric
Imp

GPIO 6 Analog in
14 Digital—6 PWM

12 Analog in
20 Digital—7 PWM

12 Analog In,2
Analog out, 30
Digital–15 PWM

2 Digital
1 Analog

1 Analog in
16 Digital

6 Analog in
20 Digital—6 PWM

5 Analog
6 Digital

I/O Connectivity
SPI, I2C,
UART,
GPIO

SPI, I2C,
UART,
GPIO

SPI, I2C,
UART,
GPIO

SPI, I2C,
UART,
GPIO

SPI, I2C,
UART,
GPIO

SPI, I2C,
UART, CAN
GPIO

SPI, I2C,
UART,
GPIO

Network Interfaces No, can be added as
ad-on.

No, can be added as
ad-on.

Integrated GPRS
modem(2G/3G) Wi-Fi Wi-Fi No, can be added as

ad-on. Wi-Fi
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Table 4. Single Board Computer-based hardware for IOT.

Parameters/Single
Board Computers Raspberry Pi 3 Model B Intel

Galileo Gen2
Intel
Edison

Beagle
Bone Black

Qualcomm
DragonBoard 410c

Supply voltage 3.3 V 5 V 3.3 V 3.3 V 1.8 V

Processor ARM CORTEX A53 IntelQuarkTM
SoC X1000

IntelQuarkTM
SoCX1000 SitaraAM3358BZCZ100 ARM CORTEX A53

Processor speed(HZ) 1.2 GHZ 400 MHZ 500 MHz 1 GHZ 1.2 GHZ

RAM 1 GB 256 MB 1 GB 512 MB 1 GB

System Memory Supports 8/16 GB 8 MB 4 GB 4 GB 8 GB

IDE

NOOBS, Debian,
Android,
Ubuntu,
Cloud9 IDE

ArduinoIDE ArduinoIDE, Eclipse,
Intel XDK

Debian,
Android,
Ubuntu,
Cloud9 IDE

Debian,
Android,
Ubuntu,
Cloud9 IDE

GPIO 40 I/O pins, including 29
Digital 14 Digital, 6-Analog 14 Digital, 6-Analog 65 Digital—8 PWM

7 Analog in 12 Digital

I/O Connectivity
SPI, DSI,
UART, SDIO,
CSI, GPIO

SPI, I2C,
UART,
GPIO

SPI, I2C,
UART,
I2S, GPIO

SPI, UART, I2C,
McASP, GPIO

SPI, UART, I2C,
McASP, GPIO

Network Interfaces Wifi, Ethernet, Bluetooth Ethernet Wi-Fi
Ethernet, USB ports allow
external wifi/Bluetooth
adaptors

Wifi, Bluetooth, GPS
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5. Artificial Neural Networks and Machine Learning for Irrigation

Machine learning is the process of building a mathematical model that uses the
available data to learn decision making using the patterns and features of the data. The
sample or the training data are the base of the machine learning models, which generate
decisions or predictions without a traditional program that explicitly instructs a computer
to do so [44]. Neural networks embed the process of imitating the operations of the human
brain to perform tasks through a non-explicit programming structure, where sample data
or training data are used to fetch insights from the available data resources. Machine
learning is considered the subset of neural networks [50–61]. With the enormous amount of
data, machine learning or artificial neural networks would help in identifying the pattern
hidden inside the data. Machine learning and neural networks for the betterment of
irrigation management use several factors as parameters; among the parameters, reference
evapotranspiration (ET) is the most widely used.

Cordeiro et al. predicted soil moisture for irrigation management as soil moisture data
was not properly retrieved from the farm due to sensor failure. A fog-enabled smart system
for irrigation was deployed using neural networks [62–66].

Optimal water application or control was achieved using a convolution neural network
(CNN) for a sugarcane crop. The proposed CNN provided better water control with high
accuracy compared to other models [67–70]. Although several factors help in attaining
irrigation optimization, evapotranspiration is the most preferred as it is derived using other
key parameters.

Evapotranspiration is a significant element, not only in irrigation management, but
also in many other applications. Evapotranspiration (ET) estimation depends on several
models, and the Penman–Monteith model is a highly followed standard across the globe
among many researchers for the estimation of ET [46].

Mohammad rezapour et al. in 2019 estimated ET by comparing and contrasting three
models, namely, the support vector machine (SVM), adaptive neuro fuzzy inference system
(ANFIS), and gene expression programming (GEP). All three models estimated the potential
evapotranspiration for semi-arid land [47]. The simulation of ET was performed for the data
ranging from 1970–2010, with inputs of five different combinations in southeastern Iran.
Among the three models, ANFIS is a neural network model, SVM is a machine learning
model, and GEP is an evolutionary computing technique. The SVM-based model performed
better than the other two models, with sunshine hours, humidity, relative humidity, air
temperature average, and wind speed as the input parameters for the model [70–74].

Feng et al. estimated the ET for the collected data from two stations in China for the
years 2009–2014 using the temperature-based random forest model (RFM) and generalized
regression neural network (GRNN) model [48]. From the results, it is clear that both models
can be used for the estimation of ET on a daily basis, and both the RFM and GRNN perform
well in terms of daily estimation. However, the slight performance improvement of the
RFM makes it a preferred choice compared with the GRNN model.

Yamac and Todorovic estimated the daily crop evapotranspiration (ETc) for potato
using K-Nearest Neighbor (KNN), Adaptive Boosting (AdaBoost) and ANN (artificial
neural network) models. The three models were tested for four different input parameter
setups. The estimation of the models was compared with the ETc estimated using the
standard Penman–Monteith methodology. The meteorological data collected from a test
plot in southern Italy for the durations of 2009 and 2010 were used for comparison. The
results show that the KNN model performed well for the scenario with limited input data.
The ANN performed well with a complete set of input data [49].

The estimation of ET for the data collected from two meteorological stations in Turkey
was examined by Sanikhani et al. in 2019 with six different AI models. The models used
limited climatic data for estimation. The examined models were multilayer perceptron,
radial basis neural network (RBNN), GEP, ANFIS with grid partition (ANFIS-GP), ANFIS
with subtractive clustering (ANFIS-SC), and GRNN. The models were verified with the
Hargreaves–Samani (HS) and Calibrated Hargreaves–Samani (CHS) approaches of estima-
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tion. The results show that GRNN and the GEP performed well at a station named Antalya,
and at another station named Isparta; the ANFIS-SC and the RBNN models performed well
in comparison with other models [50]. All six models, except the multilayer perceptron,
performed well compared to CHS and the HS empirical approaches.

ET-based irrigation management models are reliable models, but they require many
input variables that are not easily available and are not easily collected from farms using
IoT devices. Research to extract the data required for ET estimation is in high demand [46].
Along with the reference ET method, many other parameters, such as canopy cover, rainfall
data, water stress index, and normalized difference vegetation index (NDVI), are also used
for irrigation management.

Machine learning and artificial neural networks not only encourage researchers to make
irrigation recommendations but also encourage the use of many other factors, such as crop
suitability, yield prediction, plant disease classification, and profitable plantations [56,57].
Many of the previous research works have been enhanced with machine learning-based
models for better classification and artificial intelligence-based predictions for more accu-
racy and efficiency [58,59].

6. Tools or Software Available for Irrigation Management

Because irrigation management has been the subject of research for a period of several
decades, multiple tools have been developed for irrigation scheduling and the estimation
of irrigation requirements, which are considered to be a part of irrigation management.
This paper discusses some of the notable tools or software for irrigation management.

6.1. CROPWAT 8.0

CROPWAT is a crop water decision support tool for the estimation of evapotran-
spiration, yield prediction, and irrigation schedules, and estimates crop performance for
irrigated and rain-fed conditions. Developed by Smith M in 1992 [51] by the Land and
Water Development Division of Food and Agriculture Organization (FAO), CROPWAT
has several evolutions and still meets the needs of modern farmers and researchers by
providing features, such as the calculation of water requirements and the development of
user-adjustable irrigation schedules, allowing the use of the CLIMWAT database tool by
the FAO for climate data [52]. CROPWAT is an easy-to-use GUI-based tool where sample
files and data are provided. In conjunction with the compatibility of interactions with
CLIMWAT, the tool helps to reduce the multiple complexities of irrigation management.
The tool is open source and easily downloadable from the FAO website [54].

6.2. Aqua-Crop

Aqua-Crop is another software package from the Land and Water Development
Division of FAO with the ability to simulate canopy cover, ET, yield response, and biomass
of the crop under different irrigation regimes [53]. Similar to the CROPWAT tool, AquaCrop
can also be used to assist the management of irrigation for rain-fed and irrigated agriculture
practices. The main feature of the tool is that it enables understanding of the response of
the crop to changes in the environmental conditions, and the development of schemes for
deficit irrigation conditions.

6.3. SAPWAT

Developed based on the paper by Allen, Periera, Raes and Smith, SAPWAT is an
irrigation water requirement estimation tool based on the Penman–Monteith procedure for
the calculation of ET [55]. It includes more than 50 years of weather data for approximately
3262 weather stations in South Africa. Features such as enterprise budget analysis distin-
guish this software from other existing tools used for irrigation management. SAPWAT
seems to be inspired by the features of CROPWAT and has been developed as an alternative
to CROPWAT. In addition to the three tools/software mentioned above, many other tools
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exist, most of which were specifically designed with geographical constraints or for use in
a particular project.

7. Observations and Discussions

Many cloud platforms are available for the IoT, and each platform has its own specific
features. Among the many available cloud platforms, ThingSpeak, Thingsworx, AWS IoT,
IBM Watson, and Microsoft Azure are the eminent players.

Figure 5 showcases the most preferred cloud services utilized in the irrigation control
and monitoring sector. The data in this section were observed from the papers referred to
for this review. Open-source access, device management, security, implementation ease,
data analytics and machine learning tools are the key factors that determine the use of cloud
services for applications related to irrigation. ThingSpeak is highly utilized because it is
highly instinctive and offers an open-source service for basic features. Remote monitoring is
an important aspect for the implementation of IoT systems. The parameters that need to be
monitored are the core factors that influence irrigation optimization. Figure 6 displays the
parameters that are most considered for irrigation systems using IoT, where the temperature
and humidity correspond to the air.

Figure 5. Key players in cloud service for irrigation.

Soil moisture, humidity, temperature, and rainfall are the key parameters considered
for irrigation using the IoT. Other parameters, such as precipitation, wind speed, sunlight
intensity, and wind direction, are also monitored in the implementations. Although evapo-
transpiration is also effectively utilized, it is derived using the other parameters; hence, it is
not shown in Figure 6. The figure showcases only the parameters that are monitored in real
time from the agricultural field. Other parameters, such as canopy and evapotranspiration,
can be measured or calculated using the parameters that are monitored from the field.

Machine learning and ANN models for irrigation optimization have been in high
demand in recent times, and some of the most utilized machine learning algorithms are
compared with ANN models in Figure 7. Several ANN models, such as RNN, GRNN, and
RBNN, are considered under the umbrella of ANN. The ANFIS, SVM, and GEP are the
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most preferred machine learning models. Machine learning models are more implemented
and utilized for irrigation optimization than ANN models.

Figure 6. Key parameters considered for irrigation.

Figure 7. Most commonly used machine learning and ANN models.
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8. Future Challenges

The Internet of Things (IoT) presents several challenges researchers must address. In
this paper, some vital challenges are discussed.

8.1. Standard Protocols

The varied ranges of sensors, controllers, and actuators utilized in the IoT lead to
multiple challenges in the standardization of communication protocols, and varied devices
or gadgets need to be integrated for IoT-based applications; hence, global standards are
required so that adaptability and interoperability can be achieved. Difficulty in the Internet
of Things is caused by the number of components involved, interoperability, communica-
tion protocols, and power sources. Devices use different communication protocols, such
as MQTT, ZigBee, and TCP/IP. Although TCP/IP is the most utilized protocol, it leads to
many complex issues. Therefore, many studies have been conducted to address the issue
of complexity.

8.2. Security in IoT-Based Systems

When data are involved, security must be taken into utmost consideration, but due to
the evolving nature of the IoT system and lack of standards, security is a decisive challenge
that triggers ambiguous implementation. Security in communication protocols is not the
only challenge, and security in routing is also very complex and still evolving. Security
needs to be guaranteed for effective application utilization.

8.3. Connectivity

Providing Internet connectivity for agricultural fields may not be as easy as anticipated
in developing and underdeveloped countries. Although connectivity seems to be feasible,
the available bandwidth needs to be increased for many IoT applications. The Internet
service providers need to expand their territory and range to reduce the key complexity
of connectivity.

8.4. Reliability of the Devices Involved

The Internet of Things converges heterogeneous devices in one application, and the
selection of durable devices is a critical factor for the reliability of the implementation of
IoT applications. If one device fails, the entire application will fail.

9. Conclusions

Agriculture is an application-specific domain in which the implementation of the IoT
and other emerging modern techniques and tools can provide new solutions for traditional
problems. In this paper, several aspects of irrigation management using the IoT, and the
available tools and approaches, are reviewed. The review can be summarized as follows:

• The IoT has facilitated the accumulation of information over a long duration, and since
data are available, the implementation of machine learning and neural networks can
result in identifying several insights that lead to the solution for a complex problem.

• The initial deployment cost for IoT enabled solution is an important concern for small
scale farmers.

• Development of more agriculture specific sensors (soft or hard) needs to be undertaken.
Hard sensors are traditional sensors that are available as physical hardware to sense the
data, whereas soft sensors are a process/formula that converts the available various
sensor data into intricate output data that require a very complex sensor to sense
it. The development of soft sensors will reduce the cost and serve as an affordable
alternative for expensive hard sensors.

• The service layer adds more modularity by acting as a middleware between the
network and application layers. As IoT handles heterogeneous data and diverse
services, the service layer adds more adaptability in developing applications.
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• IoT-based cloud platforms increase the effectiveness of the applications developed,
but cost effectiveness, resource management, security, and configuration of IoT em-
powered devices need enhancement.

• Most of the test cases test only one crop cycle and are not applied to different crops.
• Labor and operation costs were not considered in most of the work.
• Machine learning and neural network approaches need to be provided with adequate

data for effective analysis.
• The irrigation scheduling tools are effective but need to be provided with an ample

quantity of data for useful results. Area-specific tools need to be developed.
• Irrigation management tools should be developed with direct access to sensor data

from the field.
• A complete framework for the IoT in agriculture, starting from sensor deployment,

analytics, and recommendation, has to be developed.
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