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Abstract: As the largest inland saltwater lake in China, Qinghai Lake plays an important role in
regional sustainable development and ecological environment protection. In this study, we adopted a
spatial downscaling model for mapping lake water at 10 m resolution through integrating Sentinel-2
and Landsat data, which was applied to map the water extent of Qinghai Lake from 1991 to 2020. This
was further combined with the Hydroweb water level dataset to establish an area-level relationship
to acquire the 30-year water level and water volume. Then, the driving factors of its water dynamics
were analyzed based on the grey system theory. It was found that the lake area, water level, and
water volume decreased from 1991 to 2004, but then showed an increasing trend afterwards. The
lake area ranges from 4199.23 to 4494.99 km2. The water level decreased with a speed of ~0.05 m/a
before 2004 and then increased with a speed of 0.22 m/a thereafter. Correspondingly, the water
volume declined by 5.29 km3 in the first 13 years, and rapidly increased by 15.57 km3 thereafter. The
correlation between climatic factors and the water volume of Qinghai Lake is significant. Precipitation
has the greatest positive impact on the water volume variation with the relational grade of 0.912,
while evaporation has a negative impact.

Keywords: water level; water volume; spatial downscaling; water dynamics; climate change

1. Introduction

Lakes are an important part of global hydrological and ecological processes [1–3], pro-
viding humans with indispensable resources and services, including drinking water supply,
agricultural production, transportation, recreation, fishery, etc. [4,5]. Ongoing global warm-
ing and climatic change [6] is enhancing the global hydrological cycle and affecting water
availability. As a result, efficient management of water resources is needed [7,8]. Warming-
induced hydrological cycle intensification and its impacts on local and global ecosystems
have brought increasing attention to the links between climatic change/variability, hydro-
logical processes, and water resources across various temporal and spatial scales during
the last few decades [9,10]. Therefore, understanding the hydrological changes of lakes
and their potential driving factors can provide insights into lake conservation and water
resource management [11,12]. As the largest inland saltwater lake in China, Qinghai Lake
is located at the northeastern part of the Tibetan Plateau, which is extremely sensitive
to climate change and plays a crucial role in maintaining the regional hydrological cy-
cle [13]. Therefore, monitoring the long-term dynamics of Qinghai Lake and analyzing its
driving factors are of great significance for local sustainable development and ecological
environment protection.

Remote sensing provides an effective way of monitoring surface water, mainly in
the forms of microwave remote sensing and optical remote sensing. Microwave remote
sensing is powerful due to its less atmospheric effect and all-weather observation [14],
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while optical remote sensing is widely used because of the data availability and appropriate
spatial and temporal resolutions [15]. For example, high temporal resolution multispectral
data, including MODIS and AVHRR, have been widely used to detect the seasonal and
inter-annual changes of lakes in the Tibetan Plateau [16], bearing in mind that the coarse
resolution may cause a lack of water extraction details and low accuracy at a regional
scale [17,18], while higher spatial resolution remote sensing data (e.g., Landsat imagery)
make it possible to accurately detect and delineate the water body information [19–22]. For
example, Cui et al. [23] analyzed the coastline change of Qinghai Lake and its surrounding
lakes from 1973 to 2015 by utilizing multitemporal Landsat imagery. Zhang et al. [24]
estimated the water balances of the ten largest lakes in China using ICESat and Landsat
data between 2003 and 2009. They proved that satellite remote sensing could serve as a
fast and effective tool for estimating lake water balance. Although Landsat imagery has
higher spatial resolution in comparison with MODIS or AVHRR, the accuracy of water
body extraction was still limited by its 30 m resolution. Sentinel-2 satellites are able to
obtain multispectral remote sensing data with a higher spatial resolution of up to 10 m,
which is assumed to be better for mapping surface water [25]. Existing research, such as
Du et al. [26] and Yang et al. [27], has demonstrated that Sentinel-2 data can provide more
explicit and accurate surface water information with the advantages of intensively and
continuously monitoring the surface of the Earth and higher spatial resolution. However,
as this is a recent satellite mission, its data have a relatively short time series, which fails to
meet the requirements of long-term analysis of lake water dynamics.

The mixed pixel issue usually hinders the accurate drawing and monitoring of lake
water. There are two popular methods to alleviate mixed pixel issues, pixel unmixing and
reconstruction, and spatial and temporal fusion [25]. The purpose of pixel unmixing and
reconstruction is to achieve higher resolution land cover mapping from coarse-resolution
data under the assumption that each mixed pixel can be expressed in the form of certain
combinations of a number of pure spectral signatures [25]. Spatial and temporal fusion
(spatio-temporal fusion) aims to blend high spatial resolution data with high temporal
resolution data to achieve both high spatial and high temporal resolutions [28–31], so that
the mixed pixel issue of the coarse spatial resolution data can be alleviated. Wu et al. [32]
proposed a downscaling algorithm that established a statistical regression model between
MODIS and Landsat data for generating a higher resolution inundation map from MODIS.
Through this downscaling process, they managed to generate 30 m water maps from coarse
resolution MODIS data while keeping their high temporal resolution. It was proved that
the downscaled water maps provide more spatial details and have higher accuracy.

The rapid development of remote sensing technology also brings new ideas for mon-
itoring lake water volume changes. This can be achieved by combing the lake area de-
rived from optical remote sensing and water level estimated by satellite altimetry data.
Satellite radar/laser altimeters such as TOPEX/POSEIDON, ENVISAT, JASON-1, and
ICESat/GLAS have been successfully applied for monitoring lake level variations [33–36].
For example, Zhang et al. [37] utilized Landsat and ICESat datasets to examine annual
changes in lake area, level, and volume of the Tibetan Plateau and explored the reasons
for the lake water volume changes from the 1970s to 2015. The Hydroweb, maintained
by LEGOS/GOHS in France, provides water level/area information derived from a com-
bination of multiple altimetry satellite observations of more than 150 inland lakes and
reservoirs [38], which serves as a useful data source for lake monitoring. For example,
Liu et al. [39] combined the Hydroweb and Landsat data recorded from 1975 to 2015 to
evaluate water volume variations and the water balance of Taihu Lake.

In this study, we aim to achieve a long-term and high-resolution analysis of the
water variation of Qinghai Lake in the past 30 years. To fulfil this objective, we adopt
Wu et al.’s [32] downscaling method to generate 10 m resolution water maps from a
long-term Landsat image series, with Sentinel-2 data as the auxiliary. To facilitate the
computation, we implement this method on Google Earth Engine (GEE) [40], an advanced
remote sensing cloud computing platform for large-scale and long-term remote sensing



Water 2022, 14, 671 3 of 16

analysis and processing. We also want to combine the long-term water area variation
with water level information to estimate the water volume dynamics of Qinghai Lake, and
ultimately analyze the driving factors.

2. Study Area and Materials
2.1. Study Area

Qinghai Lake is the largest plateau inland saltwater lake in China, located in the
northeast corner of the Tibet Plateau (36◦32′–37◦15′ N, 99◦36′–100◦47′ E) (Figure 1) at an
altitude of 3196 m. It belongs to the semi-arid climate on a continental plateau, with large
evaporation, great temperature difference between day and night, and a short frost-free
and long freezing period [41]. The annual precipitation in the lake area is about 357 mm,
and the annual average temperature is approximately 1.2 ◦C [42]. More than 40 rivers (or
streams) flow into Qinghai Lake, with the two largest rivers, the Buha River and Shaliu
River, accounting for 63% of the total recharge volume [43]. As a closed inland lake, the
variations of Qinghai Lake water are closely related to, and highly affected by the climate,
while human activities contribute little [41,42,44], probably because it is a salt lake.
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2.2. Materials

Data used in this study include Landsat imagery, Sentinel-2 imagery, water level data
from the Hydroweb, and meteorological data (Table 1). Landsat 5 TM, Landsat 7 ETM+, and
Landsat 8 OLI data were employed together to implement a long-term earth observation
from 1991–2020. Sentinel-2 MSI imagery, with a spatial resolution up to 10 m, was employed
to establish the downscaling model to generate 10 m water extent from Landsat data. Both
Landsat and Sentinel-2 data were obtained and pre-processed on GEE. Considering the
interference of clouds, Landsat images from May to November were mosaiced to generate
a cloud-free image for each year. In order to reduce distortion caused by projection,
Sentinel-2 data were reprojected to the same coordinate system as Landsat data (WGS
84/UTM zone 47N). The Hydroweb dataset (http://Hydroweb.theia-land.fr, accessed
on 20 October 2020) provides long-term water level, area, and water storage estimations
of major lakes globally. Its water level dataset is a fusion of multiple altimetry satellites

http://Hydroweb.theia-land.fr
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with different service years, including Topex-Poseidon (1992–2005), Jason-1 (2001–2013),
ICESat (2003–2009), Jason-2 (2008-), Jason-3 (2016-), Sentinel-3A (2016-), ICESat-2 (2018-),
and so on [35]. Meteorological data were obtained from the China Surface Climate Data
Daily Value Dataset (V3.0) published by the China Meteorological Data Service Center
(https://data.cma.cn/en/?r=data/index, accessed on 20 October 2020). We acquired
temperature, evaporation, and precipitation of Gangcha, Chaka, and Gonghe stations near
Qinghai Lake from this dataset, and used them to analyze the driving factors of Qinghai
Lake’s water dynamics.

Table 1. Materials used in this study.

Year Selected Bands Spatial Resolution (m) Purpose

Landsat 5 TM 1991–2011 B2, B4 30 Water extraction
Landsat 7 ETM+ 2012 B2, B4 30 Water extraction

Landsat 8 OLI 2013–2020 B3, B5 30 Downscaling Model & water
extraction

Sentinel-2 MSI 2015–2019 B3, B8 10 Downscaling Model
Hydroweb dataset 1995–2020 - - Water volume estimation

Meteorological dataset 1991–2017 - - Driving factor analysis

3. Methodology

We utilized Landsat and Sentinel-2 images in the overlapping period (2015–2019) on
GEE to establish the statistical regression downscaling model as developed by Wu et al. [32].
This model was then applied to generate long-term (1991–2020) and high-resolution (10 m)
water maps from Landsat imagery. Through integrating with the water level from the
Hydroweb dataset, the water volume variation in the past 30 years was analyzed based
on the area-level relationship. Finally, the meteorological dataset was used to analyze the
driving factors of lake volume changes. The flowchart of the methodology of this study is
shown in Figure 2.
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3.1. Downscaled Mapping of Surface Water

We adopted the statistical regression model proposed by Wu et al. [32] to downscale
Landsat imagery from 30 m to 10 m resolution, with the assistance of 10 m resolution
Sentinel-2 data. This model is based on regressing water index images derived from
Landsat and Sentinel-2 (Equation (1)). Specifically, Landsat 8 and Sentinel-2 with close
dates (less than 3 days) from 2015 to 2019 were selected to construct the regression model
(Table 2). Among the selected 11 pairs of Landsat-8 and Sentinel-2 images, the one on

https://data.cma.cn/en/?r=data/index
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23 October 2018 was selected to validate the downscaled results only, while the remaining
were selected for regression.

NDWIFine
i,j,t = ai,j·NDWICoarse

i,j,t + bi,j, (1)

Table 2. Selected Landsat 8 and Sentinel-2 imagery for establishing the regression model. The bolded
pair was for validation only.

Sequence The Date of Landsat 8 The Date of Sentinel-2

1 2016/07/29 2016/07/30
2 2016/10/17 2016/10/18
3 2017/07/16 2017/07/15
4 2017/11/05 2017/11/07
5 2017/12/07 2017/12/07
6 2018/02/09 2018/02/10
7 2018/02/25 2018/02/25
8 2018/03/13 2018/03/12
9 2018/10/23 2018/10/23

10 2019/01/11 2019/01/11
11 2019/04/17 2019/04/16

In Equation (1), ai,j and bi,j are the fitted regression coefficients, NDWIFine
i,j,t and

NDWICoarse
i,j,t are the normalized difference water index (NDWI) [45] of fine and coarse

resolution images at time t and pixel location (x, y), respectively. NDWI was calculated as
the normalized difference of GREEN and near-infrared (NIR) bands (Equation (2)).

NDWI = (GREEN − NIR)/(GREEN + NIR), (2)

We first resampled the coarse resolution NDWI image to the same resolution as the
fine resolution NDWI imagery using the NEAREST interpolation method, i.e., resampled
the 30 m Landsat NDWI to 10 m resolution, and then established the regression model
based on the resampled Landsat NDWI and Sentinel-2 NDWI on a pixel-by-pixel basis.
Using this model, higher resolution (10 m) NDWI images can be generated from any input
of Landsat NDWI image. OTSU thresholding [46] was then applied to the resultant NDWI
images to extract the surface water extent.

3.2. Water Volume Estimation

To calculate the relative water volume variation, the lake was assumed to be circular
with a regular shape. In this study, we adopted the method used in [47] to estimate the lake
volume change (∆V), as shown in Equation (3).

∆V =
1
3
(H 1 −H2)·(A 1+A2 +

√
A1·A2), (3)

where H1 and A1 represent the corresponding lake water level and area at time 1, and H2
and A2 are the water level and area at time 2, respectively.

3.3. Driving Factor Analysis

As the human activities had limited impacts on the water volume variation of Qinghai
Lake [48], we assume there is no impact caused by anthropogenic factors and only analyze
the climatic driving factors for lake water dynamics. Due to the complexity of climatic
change and the diversity of influencing factors of lakes, nonlinear constraints and uncer-
tainties are involved in the consideration of the impact of climate elements on the lake
dynamics, which causes extensive greyness [49]. Therefore, the Grey Relation Analysis
(GRA) [50] was applied to analyze the response of the water volume to climate factors.
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The GRA uses the correlation of two sequences to characterize the degree of association
between them, called the relational grade, which is calculated as:

Rij =
1
N ∑N

t=1 Rij(t), (4)

where Rij represents the relational grade between the sequences of i and j, N is the length
of the sequence, and Rij(t) is the correlation coefficient between the sequences of i and j at
time t, calculated as Equation (5):

Rij(t) =
∆min+ρ∆max

∆ij(t) + ρ∆max
, (5)

where ∆min and ∆max denote the minimum and maximum of the absolute difference of two
sequences at each time, respectively, ∆ij(t) represents the absolute error between sequences
at time t, and ρ is the resolution coefficient (ρ ∈ (0, 1)), usually set to 0.5 [49].

In addition, we adopted three different methods to calculate the correlation coefficient,
namely Pearson [51], Spearman [51], and Kendall [51], to compare with the GRA analysis
results. The Pearson correlation coefficient was also used to investigate the climate influence
on water volume, which was calculated as Equation (6):

r =
n ∑xiyi

−∑xi ∑yi√
n ∑x2 −

(
∑xi

)2
√

n ∑y2 −
(

∑yi

)2
, (6)

where r is the correlation coefficient ranging from −1 to 1, x and y are the values of the two
variables, and n is the number of samples. While the absolution value of r is closer to 1, the
correlation between variables is stronger.

4. Results
4.1. Validation of Downscaled Water Maps

We utilized a pair of Landsat 8 and Sentinel-2 images on 23 October 2018, which were
not employed for establishing the downscaling model but to validate the downscaling
method. A 10 m resolution water map was generated from a downscaled NDWI image
derived from the Landsat 8 image using OTSU thresholding. Another 10 m resolution
water map derived directly from the Sentinel-2 image was employed as the reference to
validate the downscaled result. Two maps were generated by overlaying the water map
derived from the original Landsat image and the downscaled result with the Sentinel-2
derived referencing water map, respectively (Figure 3). From these maps, it is obvious
that the Landsat 8 image can accurately extract the major water body of Qinghai Lake,
either with or without the downscaling process. The extraction differences are mainly
distributed along the boundary, especially in Haixi Island, the estuaries of the Buha River
and Shaliu River, the sandy area of Shadao Lake, and Haiyan Bay. Compared with the
referencing Sentinel-2 water map, the water map derived from the original Landsat 8 image
has many misclassified pixels, shown as red color for omission errors and green color
for commission errors. The water map derived from downscaled Landsat 8 data showed
some improvement, with more detailed features and small water bodies successfully being
extracted, for example in the sandy area.
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as Land on Sentinel-2 image and Land on original/downscaled Landsat 8 image. Red color (S2_warer-
L8_land) stands for pixels that were identified as Water on Sentinel-2 image and Land on origi-
nal/downscaled Landsat 8 image (omission error). Green color (S2_land-L8_water) stands for pixels
that were identified as Land on Sentinel-2 image and Water on original/downscaled Landsat 8 image
(commission error). Blue color (S2_water-L8_water) stands for pixels that were identified as Water on
Sentinel-2 image and Water on original/downscaled Landsat 8 image.

Based on these overlaying results (Figure 3), we calculated a confusion matrix by
counting the number of four types of overlay map pixels. In this process, as both the
reference and verification object are raster data, we took all the pixels as the samples to
construct the confusion matrix, based on which accuracy indicators including commission
error, omission error, overall accuracy, and Kappa coefficient were calculated (Table 3). It
was found that the overall accuracy was clearly improved from 88.35% to 92.10%, and the
commission error decreased by 2.46% and omission error by 1.94%. The Kappa coefficient
was increased from 0.77 to 0.84. These accuracy indices suggest that the lake water was
mapped more accurately by the downscaling method.

Table 3. The accuracy of water maps derived from the original Landsat 8 image and downscaled
Landsat 8 image.

Accuracy Indicators Landsat 8 Image Downscaled Landsat 8 Image

commission error (%) 6.18 3.72
omission error (%) 5.47 3.53

overall accuracy (%) 88.35 92.10
Kappa coefficient 0.77 0.84

4.2. Lake Area and Shoreline Dynamics

We applied the downscaling model to generate 10 m resolution water maps from
selected Landsat images for Qinghai Lake from 1991 to 2020. The lake water area ex-
hibits a two-phase changing pattern as shown in Figure 4a. Taking 2004 as a turning
point, the water area showed an overall downward trend at the first stage, dropping from
4316.20 km2 in 1991 to 4199.23 km2 in 2004. Since 2004, the water area of Qinghai Lake has
been increasing gradually, reaching 4494.99 km2 in 2020, with an annual growth rate of
18.49 km2/a.
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We compared the lake area derived from Landsat before and after downscaling with
that extracted from the Hydroweb dataset (Figure 4b). Hydroweb only provides area
estimation of Qinghai Lake from 1995 to 2017 through a combination of multiple satellite
data such as Landsat and CBERS-2 [35]. The annual area was taken from the average value
from May to November. It is shown in Figure 4b that the annual lake water areas are
consistent among the three data sources. The Hydroweb area is overall slightly higher than
the area derived from Landsat images, which may be accounted for by the area integrated
by different remote sensing satellites. It is also observed that through the downscaling
process, the Qinghai Lake area extracted by the Landsat images is closer to the observations
of Hydroweb.

We took 1991, 2004, and 2020 to elaborate the spatial dynamics of Qinghai Lake
shoreline (Figure 5). It can be seen clearly that the shoreline at the west, east, and north
banks shrank in 2004 in comparison with 1991, particularly in the east bank. In 2004, Shadao
Lake was separated from the main body of Qinghai Lake due to water receding. Compared
with 2004, the water extent of Qinghai Lake in 2020 was much larger. The Shadao Lake and
Haiyan Bay on the east was integrated with the main body of Qinghai Lake. The Tiebuka
Bay, Buha River, and Haixi Island also expended significantly, but the Gahai Lake has not
changed significantly. In addition, the shoreline on the south bank also had an apparent
expansion from 2004 to 2020.
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4.3. Lake Water Volume Variation

We extracted the annual average water level of Qinghai Lake from the Hydroweb
dataset by taking the average water level from May to November each year. Due to the
data availability, we only have the water level record from 1995–2020. The water level
dropped from 3194.22 m in 1995 to 3193.62 m in 2004 with an average descending speed
of 0.05 m/a, and then raised to 3197.20 m in 2020, with an average rate of 0.22 m/a. A
significant correlation between the area and water level of Qinghai Lake was identified
(R2 = 0.976, RMSE = 11.67, Figure 6a). Based on the regression model of water level and
area, we estimated the water level of Qinghai Lake from 1991 to 1994 (red dots in Figure 6b)
and made a full time series of the water level for 1991–2020 (Figure 6b). Similar to the
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area variation, the water level variation of Qinghai Lake also exhibits a first-decline-then-
increase pattern. We fit a linear regression for the water level of 1991–2004 and 2004–2020,
respectively, and found that both periods have significant linear trends, with R2 both greater
than 0.8.
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Figure 6. (a) The area-level correlation; (b) The water level of the Qinghai Lake in 1991–2020.

Taking the water volume of 1991 as the baseline, the water volume dynamics in the
past 30 years were calculated from water area and water level using Equation (3). As shown
in Figure 7, it is clear that the water volume also shows a first-decline-then-increase pattern.
We also fit a linear regression for the water volume variation in 1991–2004 and 2004–2020,
respectively. It was found that both regression models have a high R2, suggesting significant
linear trends. From these models, it is obvious that the water volume decreased from 1991
to 2004, with a fitted rate near to 0.38 km3/a, while it increased from 2004 to 2020, with a
fitted rate of 0.89 km3/a.
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Figure 7. 30-year water volume dynamics of Qinghai Lake based on water volume of 1991.

4.4. Driving Factors of Qinghai Lake Water Variation

In this paper, we calculated the annual accumulated temperature by selecting the daily
temperature greater than 10 ◦C, which is proven to be increasingly important for assessing
the impact of climate change [52].We adopted the Mann–Kendall (M–K) [53] trend analysis
to identify the tipping point and trend of accumulated temperature, precipitation, and
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evaporation from 1991 to 2017 in Qinghai Lake Basin (Figure 8). The M–K method is a
nonparametric analysis method that has been extensively used for time-series hydrological
analysis [54]. The results show that the annual accumulated temperature, precipitation, and
evaporation in the Qinghai Lake Basin was overall increasing gradually. The tipping points
of accumulated temperature and precipitation are 2005 and 2003, respectively, which is close
to the turning point of the lake water volume. The average accumulated temperature in
1991–2005 is 1374.47 ◦C, which jumps to 1520.15 ◦C in 2005–2017. The average precipitation
changes from 285.31 mm in 1991–2003 to 336.67 mm in 2003–2017. However, the change
point of evaporation occurs in 1995. The average evaporation of 1991–1995 and 1995–2017
are 1669.86 mm and 1736.36 mm, respectively.
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We employed the GRA to investigate how the climatic elements have affected the
relative water volume of Qinghai Lake in the past 30 years. The relational grade (Table 4)
between the annual accumulated temperature, precipitation, and evaporation, and the
water volume of Qinghai Lake was obtained through Equations (4) and (5). In addition,
three different correlation analysis methods (i.e., Pearson, Kendall, and Spearman) were
adopted for cross comparison.
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Table 4. The correlation of annual mean values of accumulated temperature, precipitation, and
evaporation with the annual water volume.

Accumulated Temperature Precipitation Evaporation

Pearson 0.25 0.46 * −0.26
Kendall 0.12 0.28 −0.14

Spearman 0.14 0.40 * −0.23
Relational grade 0.56 0.95 0.51

Note: * p < 0.05.

According to the results of three different correlation analyses, the correlation of
precipitation is the highest no matter which method is applied. The correlation between
water volume and accumulated temperature is relatively low, while that with evaporation
is negative. The relational grade of GRA also suggests that precipitation has the greatest
impact on the water volume, with a relational grade of 0.95. The accumulated temperature
has a value of 0.56, and evaporation exerts the weakest effect on water volume dynamics,
with a relational grade of 0.51.

To further explore the relationship between climate factors and Qinghai Lake water
volume, we performed the Pearson analysis in 1991–2004 and 2004–2017 separately (Table 5).
During the period of 1991–2004, it seems that the accumulated temperature is the major
factor affecting the decline of Qinghai Lake water volume. For the period of 2004–2017, the
increase of water volume seems to be mainly positively affected by the precipitation, with
the correlation coefficient close to 0.6 and p < 0.05.

Table 5. Pearson’s r between climate factors and water volume for period 1991–2004 and 2004–2017.

Period Accumulated Temperature Precipitation Evaporation

1991–2004 −0.70 ** 0.12 −0.24
2004–2017 0.36 0.60 * −0.32

Note: * p < 0.05; ** p < 0.01.

5. Discussion

As the largest inland saline lake on the plateau in China, Qinghai Lake not only
regulates the local climate through the “lake effect”, but also directly affects the wetlands
and sandy land around the lake. This study made full use of the continuity of the medium-
to high-resolution Landsat imagery and combined them with higher-resolution Sentinel-2
imagery for more accurate and long-term monitoring of Qinghai Lake water area dynamics.
Meanwhile, the water level data acquired by satellite altimetry were employed to transform
the Landsat-based water area dynamics to water volume dynamics. The results show
that the water area, water level, and water volume of Qinghai Lake from 1991 to 2020 all
exhibit a first-decline-then-increase pattern. The turning point occurred in 2004, when
the water level and area reached the minimum. Since then, Qinghai Lake has entered
into a period of stable expansion. Overall, our findings were found to be consistent with
previous studies [23,24,48,55,56]. However, compared with the annual average water level
obtained from gauge stations of Qinghai Lake by Li et al. [42], the water level of the
Hydroweb dataset is relatively higher. Due to the lack of lake bathymetry dataset, the
water volume estimated in this study only represents the water volume change relative
to 1991, instead of the real water volume change. Moreover, different altimetry data have
different uncertainties due to their different data quality. In the future, we will consider
combining the lake bathymetry and fusing different altimetry satellite data to deepen the
research on water level and water volume.

Existing studies have proven that local climate change in the Qinghai Lake Basin in
recent years leads to gradual increases in temperature and precipitation and decreases
in evapotranspiration [48,57]. Zhang et al. [37] found that increased net precipitation
contributes the majority of the water supply (74%) for the lake volume increase, followed
by glacier mass loss (13%) and ground ice melt due to permafrost degradation (12%) on
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the Tibetan Plateau from 2003–2009. Song et al. [58] also pointed out that the meltwater
from mountainous glaciers and snow cover have become important water sources for
Qinghai Lake, supported by the work of Zhang et al. [33]. Considering the increasing
contribution of glaciers and precipitation to the water balance, it is anticipated that the
water volume of the plateau inland lakes will continue to increase in the next few decades.
We also found that the increasing precipitation had a major contribution to the increase
of Qinghai Lake’s water volume, indicating possible continuous water increasing in the
near future [59]. Continuous rising of water level and expansion of water area may breed a
better ecological environment and richer biodiversity, which would be beneficial for local
ecological protection and desertification prevention [48].

6. Conclusions

We integrated Landsat and Sentinel-2 remote sensing imagery to construct a long-term
10 m resolution lake water area variation series, which was further associated with the
Hydroweb water level dataset to estimate the water volume change. Through this process,
we were able to provide the highest resolution long-term Qinghai Lake water monitoring
results to date. The driving factors of lake water variation were further analyzed through
the grey theory. Based on the results, we draw the following conclusions.

(1) The spatial downscaling method that was incorporated with the Sentinel-2 and
Landsat imagery can effectively take advantage of Landsat’s long time series and Sentinel-2’s
high spatial resolution and thus achieve long-term and high-resolution lake monitoring.
The resultant water extent was proven to have an improved overall accuracy of 92.10% and
Kappa coefficient of 0.84.

(2) The area, water level, and water volume of the Qinghai Lake exhibit the same
first-decline-then-increase pattern, with 2004 as the turning point. The minimum lake area
that occurred in 2004 is 4199.23 km2, and the maximum is 4494.99 km2 in 2020. The water
level dropped from 3194.22 m in 1995 to 3193.62 m in 2004 with an average descending
speed of 0.05 m/a, and then raised to 3197.20 m in 2020, with an average rate of 0.22 m/a.
The water volume decreased between 1991 and 2004, with a fitted rate of 0.34 km3/a, while
it increased between 2004 and 2020, with a fitted rate of 0.89 km3/a.

(3) The results of the GRA and three correlation analyses all indicate that precipitation
has the greatest impact on the water volume variation of Qinghai Lake, followed by
accumulated temperature and evaporation. From 1991–2004, the Pearson correlation
analysis indicates that accumulated temperature is the primary factor affecting the decline
of Qinghai Lake water volume, while the increase of water volume from 2004–2017 seems
to be mainly positively affected by precipitation.
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