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Abstract: Eutrophication is a long-standing ecological and environmental problem, and the severity
of harmful algal blooms continues to increase, causing large economic losses globally. One of the
most important hazards created by harmful algal blooms is the production of cyanotoxins. This
study aimed to analyze the characteristics and development trends of cyanotoxin research through
bibliometric analysis. A total of 3265 publications from 1990 to 2020 on cyanotoxins were retrieved
from the Science Citation Index (SCI) Expanded database, Web of Science. Over the past 30 years, most
research has been concentrated in China (21.4%) and the USA (21.3%). Throughout the study period,
microcystin was the focus of the research, accounting for 86% of the total number of publications.
A word frequency analysis revealed that as people became more aware of drinking water safety
and the construction of large-scale water conservation facilities, “reservoirs” and “rivers” became
hot words for researchers, while “lakes” have always been important research objects. Nonmetric
multidimensional scaling (NMDS) analysis of studies from the five countries with the largest numbers
of publications showed that Chinese researchers typically associate eutrophication with Microcystis,
while research subjects in other countries are more extensive and balanced. The development of
cyanotoxin research around the world is not even, and we need to push for more research on major
lakes that are outside of North America, Europe and China.

Keywords: bibliometric analysis; current hots; development trends; cyanotoxin

1. Introduction

In recent decades, due to climate change and intensified human activities, inland water
eutrophication has become increasingly severe, and the magnitude of harmful algae blooms
(HABs) has increased [1,2]. HABs have seriously impacted the ecological landscape of
water bodies as well as the safety of drinking water for humans and animals [3]. Moreover,
HABs are prone to producing toxic secondary metabolites, i.e., cyanotoxins, which are
usually released into environmental water bodies during the decay period of algae.

Cyanotoxins are divided into four categories: (1) hepatotoxins, (2) neurotoxins with
tumor-promoting effects, (3) dermatoxins and (4) cytotoxins with specific biological activi-
ties [4,5]. Hepatotoxins are further divided into microcystins (MCs), nodularins (NODs) and
cylindrospermopsins (CYNs) [6]. MCs are currently the most widely studied cyanotoxin [7].
They have a molecular structure with a cyclic heptapeptide (cyclo-(D-Ala-X-D-MeAsp-Y-
Adda-D-Glu-Mdha)), where X and Y are variable [8]. At present, about 280 microcystin
congeners [9], which differ in demethylation, hydroxylation, and polypeptide sequences,
have been isolated and identified from different Microcystis strains. Among these congeners,
MC-LR (X: leucine (L), Y: arginine (R)), MC-RR (X: arginine (R), Y: arginine (R)) and MC-YR
(X: tyrosine (R), Y: arginine (R)) are the most common [10]. In view of the serious hazards
of MCs to the safety of drinking water for humans and animals, the World Health Organi-
zation (WHO) set the limit of MC-LR in drinking water to 1 µg/L in 1998 [11], and the US
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Environmental Protection Agency (EPA) released a drinking water health advisory (10-day)
for people of all ages [12]. However, many cyanobacterial peptides, such as cyanopep-
tolins, anabaenopeptins, aeruginosins etc. which can threat human and ecological health,
have received little attention [13]. Recently, a research in the United States’ Great Lakes
Basin found that concentrations of cyanopeptolins and anabaenopeptins in drinking water
treatment facilities were equivalent to microcystins [14]. Furthermore, in European lakes,
the researchers also detected all cyanopeptides [13]. With the continuous advancement
of analytical scientific technology and the increasing enthusiasm of researchers for the
study of cyanotoxins, more and more cyanotoxins will continue to attract the attention of
researcher in the coming decades.

Cyanotoxins cause serious harm to human and animal health [15,16]. After consum-
ing food or water containing cyanotoxins, humans and animals frequently experience
stomach discomfort, vomiting, nausea, diarrhea, fever, sore throat, and other unpleasant
symptoms. The conduction of cyanotoxins through food chains and the accumulation of
toxins in different organisms also vary. For example, researchers have found that MCs can
bioaccumulate in rice plants [17,18]. As an important food crop, rice is strongly related
to human dietary health. Furthermore, contact between human skin and cyanotoxins in
water during common activities such as bathing and swimming or other recreational or
sporting activities can also cause skin allergies [19]. Since Francis et al. [20] first reported
that animals died from drinking water containing cyanobacteria, there have been reports
of large-scale diseases and deaths of birds, fish, livestock and even humans caused by
cyanotoxins around the world. In 1975, the drinking water source of Sewickley, a small
town in Pennsylvania, USA, was contaminated with toxic cyanobacteria, which eventu-
ally caused approximately 8000 people (62% of the local population) to suffer from acute
gastroenteritis [21]. In 1996, in a Brazilian hemodialysis center, 116 of 130 patients had
abnormal symptoms due to contamination of the dialysate with cyanotoxins, and more
than 50 of patients eventually died [22]. Recently, 330 African elephants died suddenly in
Botswana, Africa, and this incident has aroused global attention and concerns. Researchers
have found through literature analysis that excessive cyanotoxins in waters on the African
continent may be the direct cause of this tragedy [23].

Over the last three decades, the number of studies on the health problems associated
with toxic cyanobacteria blooms as well as cyanotoxin detection and treatment methods
have greatly increased. Several review papers have summarized the latest progress in
research on cyanotoxins. Gartner et al. [4] proposed that researchers began to shift from
studying toxin-producing algae in common environments to studying toxin producers in
extreme habitats and collect a large number of samples from extreme habitats to facilitate
extensive screening of cyanotoxins in these environments. Merel et al. [6] summarized the
research status of cyanotoxins in various countries around the world and concluded the
research hotspots of cyanotoxins at the time.

Nearly ten years have passed since the last bibliometric review paper on this topic
was published, and the state of research on cyanotoxins is still a topic of concern. Moreover,
following improvements in text analysis methods, a variety of text mining methods have
been applied in bibliometric research, which allows for more comprehensive analyses
of retrieved publications [24,25]. Understanding how studies on cyanobacterial blooms
differ by region and whether all regions, especially relatively underdeveloped areas, have
received enough attention may help improve local environmental health as well as prevent
the occurrence of public health incidents. Here, we analyzed the characteristics and trends
of cyanotoxin research from 1990 to 2020 through bibliometrics.

2. Materials and Methods
2.1. Search Strategy

The SCI Expanded database, Web of Science, was used in this study. This database is
the world’s largest and most comprehensive academic information resource, covering the
most disciplines. It contains a variety of core academic journals with the most influence in
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various research fields, such as natural sciences, engineering technology, and biomedicine.
To cover the general subject of lake cyanotoxins, the following search strategy was used in
this study: TS = ((microcystin* or Cyanotoxins* or nodularin* or cylindrospermopsin* or
saxitoxin* or beta-N-methylamino-l-alanine* or anatoxin* or lyngbyatoxin* or aplysiatoxin*)
and (lake* or river* or reservoir*)). The publication time period covered 1990 to 2020. The
search was carried out on 10 November 2021. Since some of the search words appeared in
only the keywords plus for the retrieved publications, we exclude this part of the search
results [26]. For the retrieved results, we examined changes in the total number and
distribution of publications on cyanotoxins around the world. Then, we summarized the
characteristics of research on cyanotoxins in key nations over the course of several years.
Finally, the geographical distribution of cyanotoxin research was summarized by scanning
the abstracts of relevant publications.

2.2. Data Analysis

For additional analysis, document information such as the author, title, source (journal
title), language, country/region, document type, author’s keywords and address, and topic
category were downloaded. Articles from areas Hong Kong and Taiwan were not included
in the Chinese category.

We used the information supplied in the abstracts to carry out the following analysis
since abstracts comprised the primary information from each article. Abstract data from all
publishers were used to develop word frequency statistics and finally generate extremely
large sparse matrices using the R package “tm” [27]. The words with practical significance
were identified from the top 50 keywords with the highest frequency. Relative importance
(the rank of words in all vocabularies each year) was used to evaluate the changes in
attention given to different words over the years [28]. The patterns of interannual variation
in these phrases were tested using Mann–Kendall trend analysis [29]. The Mann–Kendall
trend analyses were performed using “Kendall” [30].

The latent Dirichlet allocation (LDA) model [31] was used to analyze the research
topics of the retrieved publications. Different from the topic classification of different types
of articles on the Web of Science, the LDA topic model can help us understand the research
topics of the retrieved publications. The LDA topic model analysis was carried out using
the R package “seededlda” [32]. In the LDA analysis, the number of topics was set to 50, the
20 topics with the largest number of publications were selected; then, the 6 most frequent
keywords were selected to draw a network diagram to better understand the relationships
between topics.

To analyze the distribution of sites (i.e., lakes, reservoirs, and rivers) studied by
publications related to cyanotoxins, we summarized the names of the lakes and reservoirs
mentioned in the abstracts. We used the R package “stringr” to find the names of lakes by
looking for the words before and after the keywords “Lake”, “River” or “Reservoir” and
then manually searched for lake names [33].

Based on the generated sparse matrix, NMDS analysis was carried out using the R
package “vegan” [34]. To use each article as a row vector, we collected keywords as column
vectors to create a very large sparse matrix. For the formed sparse matrix, we choose
words with a sparsity greater than 0.95 (a total of 39 words). In the NMDS results, we
distinguished different countries and regions by color and shape to show the distribution
characteristics of publications in different countries and regions. We used the nationality of
the corresponding author as the country to which the article belongs.

Figures were drawn using the R package “ggplot2” [35], and network visualization
was carried out with “igraph” [36]. The R package “RgoogleMaps” was used to query the
latitudes and longitudes of lakes, reservoirs, and rivers that appeared in the summaries [37].
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3. Results and Discussion
3.1. Variation in and Distribution of the Total Publication Number

A total of 3265 publications were retrieved through the search strategy described
above. Most of the publications (2807) were related to microcystins, accounting for 86%
of the publications, and 438, 292, 51, 382, 11, and 7 publications were related to cylin-
drospermopsin, saxitoxin, beta-N-methylamino-l-alanine, anatoxin, lyngbyatoxin, and
aplysiatoxin, respectively. These results indicate that the research is still focused on micro-
cystin. In fact, other types of cyanotoxins are also threatening the health of humans and
animals [38–40]. To better promote the progress of cyanotoxin-related research, other types
of cyanotoxin research should be given more attention. In addition to the search keywords
that appeared in only keywords plus, there were 2905 related publications. Before 1996, the
number of publications per year was less than 10. Subsequently, the number of publications
increased rapidly each year, at an average annual rate of 12.4%, and 252 related publica-
tions were published in 2020 (Figure 1). Global warming has severely affected shallow
reservoirs, releasing pollutants from sediments and accelerating eutrophication [41,42].
Researchers have found that temperature effects largely determine the distribution of
different cyanotoxins in Europe [43]. The issue of cyanotoxins caused by the increasing
number of algal outbreaks has attracted increasing attention from researchers. Therefore,
in recent years, there has been an increasing number of publications related to cyanotoxins.
The development of research on lake cyanotoxins in different countries and continents is
mainly concentrated in developed countries. China and Brazil are the only two developing
countries among the ten countries with the largest numbers of publications. Since 1999,
the number of papers published on cyanotoxins has maintained a high growth rate in
China. However, the proportion of publications on cyanotoxins suddenly dropped in
2020. This sudden decrease might be closely related to the healthy and stable economic
development of China over the past 2 decades; however, the COVID-19 pandemic affected
the ability of researchers to conduct field studies [44,45], which may be the main reason for
the decrease in the proportion of Chinese publications on cyanotoxins in 2020. In Brazil,
cyanobacteria blooms frequently occur in drinking water reservoirs. Brazilian researchers
have developed a quantitative Polymerase Chain Reaction (PCR) method to provide early
warning of possible cyanotoxin contamination of water bodies [46]. China, the United
States, Germany, Canada, and Australia were the five countries with the largest numbers of
published articles. Europe is also one of the regions with the highest number of publica-
tions, but it is not significant in the results when they were analyzed based on each country.
The number of publications from China and the United States (698 and 696, respectively)
was much higher than that from other countries (Figure 2). The publications from these
five countries accounted for approximately 40% of the total number of publications. It
should be noted that the number of publications on cyanotoxins from different countries
is very uneven, and only 53 countries have more than 20 publications. In addition, many
relatively poor countries still have not published any research on cyanotoxins, such as
Angola, Zambia and Libya.

3.2. Characteristics of the Research Objects

The importance ranking of the number of occurrences of different words can help us
understand the trends that researchers have paid attention to in recent years. The results
of the relative importance analysis of word frequency are shown in Figure 3, the relative
importance of words in the upper part of the figure show an upward trend (Figure 3a), and
the lower part shows a downward trend (Figure 3b). The relative importance of “reservoir”
and “river” has increased significantly in recent years (p < 0.001), while the frequency of
occurrence of the word “lake” has not changed significantly (p > 0.5). This result shows that
recently, researchers have paid more attention to reservoirs in the study of cyanotoxins. In
particular, in recent years, the relative importance value of “reservoir” has been marginally
lower than that of “cyanobacteria”, indicating that reservoirs are now dominating the
research on this topic. This result might be influenced by two factors. First, reservoirs are
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increasingly used as sources of drinking water, and drinking water safety issues are always
a priority. The increased importance of the terms “freshwater”, “human” and “health”
also suggests that people are paying closer attention to drinking water safety. Second,
as humans transform nature, there is a rapidly increasing amount of water conservation
projects, reservoirs, and related sudies [47]. The term “gene” was first used after 2000,
suggesting that genetic testing methods and other approaches were gradually included in
cyanotoxin research after 2000. For example, researchers infer the toxigenic potential of
a water body by detecting the presence of cyanotoxin-producing genes [48]. Cyanotoxin
investigations frequently require the use of recipient organisms. The increased use of
the keyword “fish” may indicate that more attention is being devoted to research on the
interactions between fish and cyanotoxins. Cyanotoxins not only cause large-scale deaths
of fish and destroy aquatic ecosystems but also enter the human body through food chains
and cause adverse reactions in humans [49].

Water 2022, 14, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 1. Changes in the number of articles published each year and the proportion of the number 
of publications from the top five and other countries/areas with the most publications. 

 
Figure 2. Number of articles published by authors in different countries. Gray color represents areas 
without publications. 

3.2. Characteristics of the Research Objects 
The importance ranking of the number of occurrences of different words can help us 

understand the trends that researchers have paid attention to in recent years. The results 
of the relative importance analysis of word frequency are shown in Figure 3, the relative 

Figure 1. Changes in the number of articles published each year and the proportion of the number of
publications from the top five and other countries/areas with the most publications.

Water 2022, 14, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 1. Changes in the number of articles published each year and the proportion of the number 
of publications from the top five and other countries/areas with the most publications. 

 
Figure 2. Number of articles published by authors in different countries. Gray color represents areas 
without publications. 

3.2. Characteristics of the Research Objects 
The importance ranking of the number of occurrences of different words can help us 

understand the trends that researchers have paid attention to in recent years. The results 
of the relative importance analysis of word frequency are shown in Figure 3, the relative 

Figure 2. Number of articles published by authors in different countries. Gray color represents areas
without publications.



Water 2022, 14, 667 6 of 12Water 2022, 14, x FOR PEER REVIEW 7 of 12 
 

 

Figure 3. The interannual changes in the relative rankings of the 20 words with practical meaning. 
(a) The upward trend of the relative importance of words. (b) The downward trend of the relative 
importance of words. 

3.3. Research Characteristics of Cyanotoxins in Major Countries and in Different Years 
The NMDS analysis results show that before 2000, due to the small number of pub-

lished articles, the research focus changed greatly each year (Figure 4a). The increase in 
the number of studies related to cyanotoxins in the past ten years indicates that research-
ers have begun to concentrate on topics related cyanotoxins, with eutrophication as the 
primary focus. Among the countries with the largest numbers of published articles, the 
research contents of publications by authors from the United States, Germany, Australia 
and Canada are relatively similar, while the research content of publications by authors 
from China is mainly concentrated in the lower part of Figure 4b. Specifically, Chinese 
researchers prefer to associate eutrophication, nutrients, etc. with Microcystis, while the 

Figure 3. The interannual changes in the relative rankings of the 20 words with practical meaning.
(a) The upward trend of the relative importance of words. (b) The downward trend of the relative
importance of words.

The prevalence of the terms “neurotoxin,” “hepatotoxin,” “toxin,” “microcystin,”
and so on has diminished, demonstrating that the focus on various toxins has faded. Of
course, this does not mean that researchers are unconcerned; rather, with the continued
advancement of related research, the study of cyanotoxins will encompass an increasing
number of fields. The research related to cyanotoxins is more comprehensive than it
was in the past, which has led to a reduction in the relative importance of the words
listed above. The relative prominence of terms associated with detection methods, such
as “chromatographic” and “hplc”, has similarly declined, indicating that as cyanotoxin
detection methods mature, researchers’ attention has shifted in recent years to focus on fast,
efficient, easy-to-operate and portable biosensors [50,51] to facilitate on-site measurement
in some remote locations.
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In general, when researchers are conducting studies on the toxicity and removal
methods etc. about cyanotoxins, they have also begun to study the possible impact of
cyanotoxins on human health.

3.3. Research Characteristics of Cyanotoxins in Major Countries and in Different Years

The NMDS analysis results show that before 2000, due to the small number of pub-
lished articles, the research focus changed greatly each year (Figure 4a). The increase in the
number of studies related to cyanotoxins in the past ten years indicates that researchers
have begun to concentrate on topics related cyanotoxins, with eutrophication as the primary
focus. Among the countries with the largest numbers of published articles, the research
contents of publications by authors from the United States, Germany, Australia and Canada
are relatively similar, while the research content of publications by authors from China is
mainly concentrated in the lower part of Figure 4b. Specifically, Chinese researchers prefer
to associate eutrophication, nutrients, etc. with Microcystis, while the other four countries
have more research on different types of cyanotoxins. In contrast, research from the United
States covers a wider and more balanced set of relevant topics.
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The 20 topics found in the largest numbers of articles were selected for analysis
(Figure 5). The results show that these topics were mainly divided into three categories. The
first is category is the biological toxicity of cyanobacteria toxins. Such topics often appear in
association with organs, evaluation, humans, health, etc. Another large category was mainly
related to lake cyanobacteria blooms and cyanobacteria toxins. Such topics often include
information on biomass, phytoplankton, community, and nutrients. The third category was
mainly related to the determination of cyanotoxins. In this category, there were more words
such as liquid phase, gene, method, and detection. The keywords that were more prevalent
in earlier publications were freshwater, harmful, algae, bloom, and potential, which shows
that early research may have focused on the potential harm of cyanobacterial toxins. Due
to the recent rapid increase in the number of publications, these three categories of topics
have attracted much attention and are common in recent publications.
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3.4. Geographical Distribution of Research Sites

Of the 2106 publications, the abstracts of 1362 mentioned specific lakes, reservoirs, or
rivers (LRRs). A total of 556 different LRR names were mentioned, including 285 lakes,
151 rivers and 122 reservoirs. These LRRs were mainly distributed in North America
and Europe, while relatively few were located in Africa, Latin America, and South Asia
(Figure 6). In fact, in relatively underdeveloped areas such as Africa and South Asia,
water pollution may be more serious. For example, in a case that has recently attracted
much attention, at least 330 African elephants (Loxodonta africana) in Botswana may have
died from drinking cyanobacteria toxin-rich water [23]. Human activities have long been
considered the main cause of eutrophication. However, in some underdeveloped areas,
wild mammals such as hippos have contributed significantly to the nutrient load in fresh-
water ecosystems by foraging on land transferring nutrients from terrestrial ecosystems
to aquatic ecosystems, making water bodies not affected by human activities highly eu-
trophic [52–54]. There are few data on the contents of cyanotoxins in lakes on the African
continent. However, the detection of cyanotoxins is mainly performed by enzyme-linked
immunosorbent assay (ELISA) [55] and high-performance liquid chromatography/mass
spectrometry (HPLC–MS) [56,57]. These detection technologies have the advantages of fast
detection speed and high accuracy; however, the high prices of the instruments and the
demand for professional researchers are beyond the reach of some undeveloped countries.
Although China ranks first in the number of publications related to cyanotoxins, its research
sites are concentrated, mainly in the middle and lower reaches of the Yangtze River and
the Yunnan-Guizhou Plateau, while cyanotoxin-related research sites in Europe and North
America are more scattered, with research in different regions. Among the LRRs mentioned
in the studies analyzed, Lake Taihu ranks first, with 146 related publications, followed by
Lake Erie in the United States, which was mentioned in 46 publications. Lake Dianchi,
Lake Chaohu, Lake Victoria, Lake Suwa, Lake Champlain, Yangtze River, and Nakdong
River were each mentioned more than ten times. Among the nine most mentioned LRRs,
China has three lakes and one river; this result may be driven by scientific research projects
in China.
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The Taihu basin has developed industries, and its economy has maintained rapid
growth. However, eutrophication caused by industrial development has become a major
problem for the local government. In 2007, due to a large-scale outbreak of cyanobacteria,
2 million people living in the Taihu Basin in China suffered a drinking water crisis for at
least one week [58]. Since then, with the investment of many scientific research funds,
a major scientific and technological project on water pollution control has focused on
eutrophication control in Lake Taihu. Lake Taihu is currently the lake receiving the most
attention in the field of limnological research [59]. Cyanobacterial blooms in lakes in China
are dominated by Microcystis [60], which is why, as shown in Figure 4b, cyanotoxin-related
research in China focuses heavily on Microcystis. Although this concentration can promote
research on cyanotoxins, for a country with serious eutrophication such as China, the
problems created by cyanotoxins in many other lakes are also worthy of attention.

4. Conclusions

Statistics from relevant literature published from 1990 to 2020 show that research
related to cyanotoxins has developed rapidly in recent years. Moreover, fields related to
cyanotoxins are also expanding, attracting increasing attention from researchers. China
and the United States are the two countries with the largest numbers of publications on
cyanotoxins, with 698 and 696 papers, respectively. However, there are no publications
relevant to cyanotoxins from some poor countries. Reservoirs and rivers have become
hot words, indicating that people have begun to pay attention to topics such as drinking
water safety and ecological health while building water conservation facilities such as
reservoirs and dams. In China, the focus of researchers is relatively concentrated, with
research mainly focused on MCs, while in countries such as Europe and the United States,
more attention is given to different types of cyanobacterial toxins. At present, research on
cyanotoxins has entered a new stage, although the amount of research on cyanobacterial
toxins in many countries throughout the world is quite uneven. In the future, we should
not pay too much attention to well-known lakes that receive large scientific research funds,
such as Lake Taihu in China and Lake Erie in the United States. Instead, we should devote
more research effort to relatively poor areas and carry out research on cyanobacterial toxins
and their ecological effects.
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