
����������
�������

Citation: Li, Q.; Zeng, H.; Liu, P.;

Li, Z.; Yu, W.; Zhou, H. Bivariate

Nonstationary Extreme Flood Risk

Estimation Using Mixture

Distribution and Copula Function for

the Longmen Reservoir, North China.

Water 2022, 14, 604. https://doi.org/

10.3390/w14040604

Academic Editors: Yuanfang Chen,

Dong Wang and Dedi Liu

Received: 1 January 2022

Accepted: 15 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Bivariate Nonstationary Extreme Flood Risk Estimation Using
Mixture Distribution and Copula Function for the Longmen
Reservoir, North China
Quan Li 1,2, Hang Zeng 1,2,*, Pei Liu 3, Zhengzui Li 4, Weihou Yu 4 and Hui Zhou 4

1 School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology,
Changsha 410114, China; liquan9751@163.com

2 Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province,
Changsha 410114, China

3 Power China Zhongnan Engineering Corporation Limited, Changsha 410014, China; liupei6838840@126.com
4 Hydrology and Water Resources Survey Center of Hunan Province, Changsha 410008, China;

hnlzz@139.com (Z.L.); yweihou@163.com (W.Y.); 2527092@163.com (H.Z.)
* Correspondence: hzeng1989@csust.edu.cn; Tel.: +86-188-9002-8903

Abstract: Recently, the homogenous flood generating mechanism assumption has become question-
able due to changes in the underlying surface. In addition, flood is a multifaced natural phenomenon
and should be characterized by both peak discharge and flood volume, especially for flood protection
structures. Hence, in this study, data relating to the 55-year reservoir inflow, annual maximum flood
peak (AMFP), and annual maximum flood volume (AMFV) for the Longmen Reservoir in North
China have been utilized. The 1-day AMFV exhibits a significant correlation with AMFP. The extreme
flood peak-volume pairs are then used to detect the heterogeneity and to perform nonstationary
flood risk assessment using mixture distribution as the univariate marginal distribution. Moreover, a
copula-based bivariate nonstationary flood frequency analysis is developed to investigate environ-
mental effects on the dependence of flood peak and volume. The results indicate that the univariate
nonstationary return period is between the joint OR and the AND return periods. The conditional
probabilities of 1-day AMFV, when AMFP exceeds a certain threshold, are likely to be high, and
the design flood values estimated by joint distribution are larger than the ones in the univariate
nonstationary context. This study can provide useful information for engineers and decision-makers
to improve reservoir flood control operations.

Keywords: extreme flood risk; mixture distribution; G–H copula; bivariate nonstationary flood
frequency analysis; nonstationary return period

1. Introduction

Design flood estimation is necessary for the design of adequate flood control structures
such as reservoirs and dams, in order to improve flood preparedness. Flood frequency anal-
ysis is the fundamental method for quantifying the design flood and is usually conducted
within a univariate flood frequency analysis framework [1–5]. However, an extreme flood
events is a multifaced natural phenomenon and is characterized not only by peak discharge
but also by flood volume. Moreover, in practice, flood peak discharge and volume are both
highly correlated with flood management. Therefore, traditional univariate flood frequency
analysis is unable to model the occurrence probability of an extreme flood event [6]. A
bivariate frequency analysis has been demonstrated as being desirable and indispensable
and is proposed to better understand and capture multiple flood characteristics [7–9].
In recent decades, numerous studies have been conducted to implement bivariate flood
frequency analysis. Among them, joint distribution is the most useful tool for capturing
flood peak and volume dependence. Copula-based joint distributions have proven to be
an effective method in the bivariate framework for flood coincidence risk analysis and for
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measuring the dependences between flood variables [10–14]. Hu et al. (2022) conducted
copula-based bivariate flood frequency analysis and proposed a nonstationary bivariate
design flood estimation approach [15]. Brunner et al. (2018) developed a bivariate copula
function model to model dependence between flood peak and volume and demonstrated
that climate changes not only affect flood peaks but also have an effect on flood characteris-
tics [16]. Duan et al. (2016) evaluated the variations of flood frequency in the Huai River
basin by fitting a copula function [17]. Parent et al. (2014) selected copula functions and
analyzed the corresponding parameters under a Bayesian framework [18].

In addition, due to the combined actions of different basin properties (e.g., land use
change, hydraulic construction, etc.) and meteorological conditions (e.g., thunderstorm,
typhoon, etc.), the extreme flood generating mechanisms would be changed and no longer
be homogeneous [19,20]. The heterogeneity of extreme flood series resulting from envi-
ronmental changes would result in changes, both in distribution parameters and in the
type of distributions. As emphasized by Alila and Mtiraoui (2002) [21] and Villarini and
Smith (2010) [22], prior scientific evidence of mixture populations should be provided to
strengthen the physical understanding of the mixed nature of flooding. However, due to
the limitation of long-term underlying surface data used for separating the flood population
and the complexities of flood generation mechanisms, it is not always feasible to identify
the distinct flood populations. Generally, the mixture distribution model does not require
flood population separation and is widely utilized in nonstationary flood frequency analy-
sis with various distribution types [21]. Zeng et al. (2014) and Feng and Li (2013) applied
mixture distribution on extreme flood series, divided by prior change point detection, and
suggested that nonstationary mixture distribution performed much better than stationary
single-type distribution [23,24]. Li et al. (2018) proposed the improved mixture distribu-
tion for fitting the two subset flood samples, which both consider historical extraordinary
floods [25]. Yan et al. (2017) investigated the mixture distribution application from the
perspective of the temporal variation of separating the distributions’ parameters [20]. Yan
et al. (2019) improved the mixture distribution using the flood timescale method to separate
it into two flood generation mechanisms [26].

In recent decades, a number of researchers have focused on simultaneously consider-
ing the non-stationarity of flood series and modeling flood characteristics by multiple flood
variables. Zhang et al. (2019) gave a rigorous comparison of several bivariate nonstationary
flood frequency calculation models using different explanatory variables in time-varying
marginal distributions [14]. Jiang et al. (2015) applied a time-varying copula function
that considered elements of the changing reservoir environment as covariates [27]. Wen
et al. (2019) presented a process of employing a time-varying copula model to model the
nonstationary dependence structures between two highly correlated flood variables [28].
Generally, because the copula function relaxes the restriction of the marginal distributions’
form, most of the above studies adopted time-varying marginal distributions to construct
the nonstationary models for multivariate frequency analysis. However, corresponding
studies using the nonstationary mixture distributions as marginal distributions and estimat-
ing bivariate nonstationary design flood are limited. In this study, the inflow extreme flood
series of the Longmen Reservoir, which is located on the southern branch of the Daqing
River Basin, are selected as the target flood variables. Because the Longmen Reservoir
catchment has undergone extensive measures of returning farmland to forests, along with
the construction of soil and water conservation engineering around 1980, the flood gener-
ating mechanisms would be heterogeneous, and the traditional flood frequency analysis
should not be made available. Because forest cover and hydraulic engineering are the
main drivers of controlling runoff processes, this study develops a bivariate nonstationary
flood frequency analysis on flood peak and volume variables using a mixture distribution
descripting the non-stationarity of reservoir inflow annual maximum flood series. Further-
more, the comparison of univariate and bivariate nonstationary flood frequency analysis
is extended to investigate and explore the mathematical rules of corresponding design
flood for reservoir flood risk management. The findings provide scientific guidance for
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engineers to manage extreme flood events and improve the theoretical system of bivariate
nonstationary flood frequency analysis.

The paper is organized as follows. In Section 2, we describe the study area, the data
set, and the statistical–physical analysis for extreme flood characteristics. Section 3 presents
the methodologies of the univariate and bivariate nonstationary models, along with a brief
description of the bivariate nonstationary return period. The results and discussions are
presented in Section 4. Finally, the article concludes in Section 5.

2. Study Area and Flood Data

The Longmen Reservoir (Figure 1) is located 39◦7′ N and 115◦16′ E in northern China
and has a drainage area of 470 km2 and a total storage capacity of 1.27 × 108 m3. Due to
the temperate semi-arid continental monsoon climate, the rainfall distribution over one
year is extremely uneven, with 80% of rainstorms occurring during the flood season in
the basin. The uneven water allocation contributes to large flood or drought hazards,
which frequently appear in the Longmen Reservoir basin. Thus, the Longmen Reservoir, as
one of the four large-scale reservoirs for the Daqing River basin in northern China, was
constructed to control flooding, and also to provide an irrigation function. For the reservoir,
which was built in February 1958, expanded in 1977, and reinforced in 2002, the design
flood control standard reaches a 100-year return period, and the flood check standard is a
2000-year return period.
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River Basin.

2.1. Extreme Flood

The annual maximum flood peak series (AMFP) and annual maximum different
periods (e.g., 1-day, 3-day, and 6-day) flood volume (AMFV) for the period 1951–2005
are the target variables and were collected from the Hydraulic and Hydropower Design
Institute of Hebei Province in China. In addition, the flood in 1963 was the largest recorded
flood, with a peak discharge of 4250 m3/s, which is almost 15 times the median annual
maximum flood. Moreover, the historically extraordinary flood in 1939, with a peak flow
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of 4180 m3/s, had the same magnitude as the flood in 1963. Hence, in terms of AMFP and
AMFV, there have been two previous extraordinary floods.

In general, in most cases, flood event risks for a reservoir should take into consideration
both the flood peak and the volume, which can comprehensively describe the characteristics
of a flood event. Traditionally, flood frequency analysis has been aimed at a single flood
variable. Thus, in this study, we apply bivariate flood frequency analysis by investigating
the correlational relationship between flood peak and volume. Kendall and Spearman
correlation tests are used to estimate the dependence between flood peak; Q; and annual
maximum 1-day, 3-day, and 6-day flood volume series, and their estimated values are
listed in Table 1. The results indicate that the 1-day AMFV series has the most significant
correlation with AMFP and is selected to display the clearly visible mutually correlated
nature, which supports the necessity for bivariate flood frequency analysis.

Table 1. The Kendall and Spearman correlation test results between AMFP and AMFVs.

Flood Series Kendall Correlation Test Spearman Correlation Test

1-day AMFV 0.84 0.96
3-day AMFV 0.79 0.93
6-day AMFV 0.77 0.92

2.2. Statistical-Physical Heterogeneity Analysis

Whether or not the extreme flood variables series is stationary is a prerequisite and
crucial step for implementing flood frequency analysis. In this study, AMFP and 1-day
AMFV are utilized in combination with the stationary or nonstationary characteristics in
terms of both statistical and physical aspects to establish a bivariate joint distribution model.

Mathematically, as suggested by Zeng et al. (2014) and Xie et al. (2009), the het-
erogeneity investigation of AMFP and 1-day AMFV records using a two-step diagnose
process indicates that the candidate significant change points are presented in the years
1964 and 1979 [23,29]. The two-step diagnose process (for method details, refer to Zeng
et al., 2014) includes: (1) First, the Hurst exponent method [30,31] is adopted to identify
the long-term memory of flood series, as proposed by Xie et al. (2009) [29], to manifest the
diagnosis variation. (2) Second, based on the first diagnosis result, several change point
detection tests, including the Mann–Whitney–Pettitt (MWP) test [32], the Brown–Forsythe
method [33], and the Moving rank test [34] are applied to ascertain the significant change
points. The diagnosis process results, which are shown in Table 2, demonstrate that the
AMFP has no variation, the 1-day AMFV exhibits medium variation, and the two leading
significant change points appear in 1964 and 1979.

Table 2. The statistical heterogeneity results of AMFP and 1-day AMFV.

Methods AMFP 1-Day AMFV

Hurst exponent value 0.67 (no variation) 0.73 (medium variation)
MWP — 1959–1971, 1974, 1977–1983

Brown–Forsythe — 1996, 1964
Moving rank test — 1964, 1979, 1998

Change points — 1964, 1979

Physically, natural hydrologic phenomena that include extreme flood events are inves-
tigated by utilizing statistical tools, but the causes are ultimately related to physical factors.
Climate and underlying surface causes are both involved to acquire the most significant
change point. The annual maximum 30-day precipitation series over the same period,
which has significant correlation with 1-day AMFV (Spearman and Kendall correlations
test p-values are 2.20 × 10−16 and 3.52 × 10−15, respectively), is chosen to represent the
climate effect driver because the annual maximum events generally occur in August dur-
ing the flood period (June–July–August–September (JJAS)). The annual maximum 30-day
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precipitation has no significant change point, which reveals that the influence of climate
is rather small on the Longmen Reservoir, which has a relatively small area. On the other
hand, the underlying surface change is caused by both land-use change and anthropogenic
activities. The land-cover types in the Longmen Reservoir, including forest, cultivated
land, and grassland, in the years 1970, 1980, and 2000, are showed in Figure 2. The area
percentage variation of the three land cover types demonstrates that the forest exhibits
an increase, but grassland and cultivated land both have a small decrease between 1970
and 1980. Relatively speaking, there was almost no change between 1980 and 2000. The
increase of forest area in the years around 1980 reduced flood generation, to a certain extent.
Moreover, in the Daqinghe river basin, as well as in the Longmen Reservoir catchment,
since the 1980s, numerous soil and water conservation projects have emerged, such as
level trenches, check dams, and riverbank protection engineering. Additionally, dozens of
non-engineering measures, such as closing hills for afforestation, greening bare mountains,
and forest planting, have been carried out on a large scale, partially due to the ‘Soil and
Water Conservation Management in Small Basin’ document declared by the Ministry of
Water and Electricity in China in 1980.
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The change point of 1-day AMFV, which appeared in 1964 and is the lag change result-
ing from the catastrophic flood event in 1963, is close to the beginning of the flood samples
and is therefore discarded. The above land-use changes and frequent anthropogenic ac-
tivities around 1980 likely destroyed the homogeneity of the flood generating mechanism
and contributed to inducing a shift in annual maximum flood series [35]. Consequently,
the most significant change point is identified to be in the year 1979 for 1-day AMFV, from
both a statistical and a physical viewpoint.
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3. Methodology
3.1. Mixture Distribution as Marginal Distribution

Due to the interaction of underlying surface conditions (or meteorological variations)
and flood generation mechanisms, an extreme flood series is generated by distinct complex
sources, such as cyclonic rainfall, convective rainfall, land cover situations, and channel
characteristics. Once the single flood series are heterogeneous, the conventional stationary
physical basis is destroyed. Consequently, the mixture distribution (MD), which is defined
in the mathematical statistics field as the probability distribution of a random variable
combined with several other random variables, is proposed to address the multiple flood
population frequency calculation issue [36]. Theoretically, in this study, we use the basic
additive form of finite density mixture distribution, which is described by:

f (x) =
n
∑

i=1
ωi fi(x|θi)

n
∑

i=1
ωi = 1

(1)

where fi(x|θi) is the ith component probability density distribution with corresponding
parameters set, θi, ωi is the relative weight (0 ≤ ωi ≤ 1) denoting the probability of
belonging to the ith flood component, and n is the number of flood components.

In the application, the n value should be confirmed by flood classification based on
the generating mechanism. Nevertheless, it is worth emphasizing that the flood physically-
based genesis with underlying surface interaction is complicated, so that the prior subdi-
vision may not be feasible [37–39]. In addition, Alila and Mtiraoui (2002) stressed that an
increase in the n value needs a large sample size and makes the parameter estimation less
robust, less parsimonious, and less accurate [21]. To keep it to a minimum, in this study, the
two single Pearson III type (P-III) probability density distributions are summed up for the
mixture model. The selection of P-III distribution is widely applied and recommended in
the Regulation for Calculating Design Flood of Water Resources and Hydropower Projects
in China. Then the two-component mixture model is given by:

f (x) = ω f1(x|θ1 ) + (1−ω) f2(x|θ2 ) (2)

fi(x

∣∣∣∣∣θi) =
β

αi
i

Γ(αi)
(x− a0i)

αi−1e−βi(x−a0i) (3)

where all the parameters, namely ω and θi(αi, βi, a0i), pproximately seven parameters, are
jointly estimated from the overall extreme flood series, including historical extraordinary
floods by the Simulated Annealing Algorithm (SAA); detailed in Zeng et al., 2014 [23],
minimizing the differences between empirical and theoretical cumulative probabilities. It
should be noted that the parameters θi(αi, βi, a0i) can be represented by the commonly-used
statistical parameters mean, EXi, coefficient of deviation, Cvi, and coefficient of skewness,
Csi, which are convenient and visibly manifest flood sample statistical characteristics. The
original parameters of P-III distribution and statistical parameter conversion formulas are
illustrated by: 

EXi = a0i + αi/βi
Cvi =

√
αi/(βia0i + αi)

Csi = 2/
√

αi

(4)

3.2. Bivariate Copula Functions

Traditional flood frequency analysis usually focuses on individual flood series, and
a bivariate assessment of peak discharge and flood volume is not commonly included.
A joint consideration of peak discharges and flood volume is, however, crucial when
assessing the flood event risks for flood control reservoirs. Moreover, the joint distribution
construction is quite difficult, especially for two non-independent random variables. Thus,
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the copula function as a powerful tool is frequently used by hydrologists for modelling,
while jointly considering peak discharge and flood volume without any restrictions on
marginal distributions.

The theory of the copula function was proposed by Saklar (1959) [40], and the copula
function is found to be multifunctional for constructing joint distribution functions because
it allows a variety of independent marginal distributions [41–43]. Based on Sklar’s theo-
rem [40], in this study there are two dependent variables, Q and W, representing flood peak
and flood volume, respectively, and they can be characterized by the associated dependence
function copula, which can be expressed as:

F(q, w) = Cθ(FQ(q), FW(w)) = Cθ(u, v) (5)

where u = FQ(q) = P(Q ≤ q) and v = FW(w) = P(W ≤ w) are the marginal cumulative
distribution functions of univariate random variables X and Y, respectively; The bivariate
joint probability distribution function, F, is expressed with the univariate marginal dis-
tributions and the dependence copula function, Cθ , where θ is the parameter of copula.
Moreover, if FQ(q) and FW(w) are continuous, then copula, C, is unique [43] and captures
the dependencies among the random variables. For an extended mathematical introduction
and practical approach and details of the copula functions, readers can follow Nelsen
(2006) [42], Durante and Sempi (2015) [44], and Salvadori et al. (2007) [45].

Many copula families are frequently employed by hydrologists for modeling extreme
flood events, including Archimedean, elliptical, Plackett, and extreme value [46]. The
Archimedean family is quite popular due to its massive variety of families, and it is
well-adapted for establishing the bivariate joint dependency constructures of the extreme
flood characteristics. It is noteworthy that considering the tail dependence in selecting
the optimal copula function is of great importance for providing the best fit to flood
samples [47]. Thus, in this work, we introduce and test three Archimedean families, i.e.,
Gumbel–Hougaard (G–H), Clayton, and Frank, for constructing the joint distribution of
annual flood characteristics, flood peak discharge, and flood volume series. The three
copula functions describe different types of features of dependence structures. For instance,
the G–H copula displays a strong capability to model upper-tail dependency, and the
Clayton copula is more suitable for modelling lower-tail dependency. On the contrary, the
Frank copula exhibits higher versatility and has no tail dependency [48]. In this study, we
focus on modeling the extreme flood events and the exceedance probabilities of large flood
events, which are of more interest for reservoir flood management. Thus, the G–H copula
is selected to model the dependence of the Q-V pair, and the copula dependence parameter
θ is estimated using the relationship between Kendall’s tau and θ. The mathematical
expression for the bivariate G–H copulas function is illustrated below: Cθ(u, v) = exp

{
−
[
(− ln u)θ + (− ln v)θ

]1/θ
}

, θ ∈ [1, ∞)

τ = 1− θ−1
(6)

3.3. Goodness of Fit for Models

For the selected copula to be admissible and capable of depicting the dependency
modeling of two extreme flood series, the copula functions are needed to conduct the
goodness-of-fit for evaluating the validity. In this study, the Kolmogorov–Smirnov (K–S)
test [49] is adopted for the goodness-of-fit test. Thus, the definition of the K–S test is
illustrated in the following.

The K–S test statistic D is defined as:

D = max
1≤k≤n

{∣∣∣Ck −
mk
n

∣∣∣, ∣∣∣∣Ck −
mk − 1

n

∣∣∣∣} (7)
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where Ck is the copula value of the joint observed flood peak and the flood volume pairs
samples (q, w), mk is the number of the (q, w) pairs samples, which simultaneously satisfy
the conditions of Q ≤ q and W ≤ w, and n is the sample size. Then, if the statistic D exceeds
the critical value at 5% confidence level, it rejects the null hypothesis and reveals that the
distribution cannot model the extreme flood variables well.

3.4. Bivariate Nonstatioarny Return Period

In the univariate case, extreme flood events for a specific return period are extremely
important for the reservoir’s design, and the return period is usually defined as a mean
inter-arrival time estimation of events exceeding a dangerous flood threshold. Thus, the
univariate return period of two variables, flood peak, Q, and flood volume, W, with
thresholds q and w, respectively, are given by:

TQ(q) =
1

1− FQ(q)
, TW(w) =

1
1− FW(w)

(8)

In a bivariate domain, in contrast to the univariate case, an extreme flood event can be
defined as critical if either flood peak or flood volume exceeds a design flood threshold, or if
both flood variables are larger than the prescribed values. Hence, as eight types of possible
bivariate joint flood events are proposed by Salvadori and De Michele (2004) [50], the joint
“OR” and “AND” return periods (represented by OR-RP and AND-RP, respectively) are
two widely used approaches in hydrological applications [51]. They can be expressed
as follows:

TOR =
µ

P(Q > qorW > w)
=

µ

1− Cθ(FQ(q), FW(w))
(9)

TAND =
µ

P(Q > qandW > w)
=

µ

1− FQ(q)− FW(w) + Cθ(FQ(q), FW(w))
(10)

where µ is the average inter-arrival time between two consecutive events (equals 1 for
annual extreme events).

As suggested by Feng and Li (2013) [24], the univariate return periods, OR-RP and
AND-RP have the following comparison expression, which is given by:

TOR ≤ min
[
TQ, TW

]
≤ max

[
TQ, TW

]
≤ TAND (11)

In addition to focusing on the probability of both flood peak and flood volume simul-
taneously exceeding a certain threshold, the conditional probabilities of flood events are
also of great importance for reservoir operations obtained from the copula-based bivariate
analysis. The probabilities of flood volume, given flood peak exceeding a certain threshold,
are illustrated by:

P(W ≥ w|Q ≥ q) =
P(Q ≥ q, W ≥ w)

P(Q ≥ q)
=

1− FQ(q)− FW(w) + Cθ(FQ(q), FW(w))

1− FQ(q)
(12)

As the two return period approaches for bivariate joint distribution, the design flood
peak and volume value calculations are confused and ambiguous. Because the computation
of design flood hydrographs for reservoirs is carried out under the assumption that the
flood peak and volume events share the same return period, as suggested by Xiao et al.
(2007) [52], assuming that u = v, Equation (13) of the bivariate OR joint return period TOR
and joint copula distribution Cθ(u, v) can determine the u value. Then the inverse functions
of u = FQ(q) and v = FW(w) can be used to obtain the design flood peak and volume,
respectively, corresponding to the joint return period, TOR.
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4. Results and Discussion
4.1. Univarite Mixture Distribution Flood Frequency Analysis

Based on the heterogeneous diagnosis results of AMFP and 1-day AMFV series, the
1-day AMFV is modeled on the nonstationary flood frequency analysis using mixture
distribution, and the parameters of MD estimated by SAA are given in Table 3. For the
comparison of a stationary benchmark, we used the single-type Pearson type III distribution
to fit the AMFP and 1-day AMFV, and the parameters were estimated by the linear moment
method [53]. The P-III distribution and MD fitting curves of 1-day AMFV are displayed in
Figure 3. The curves indicate that the theoretical frequency curve fitted by MD is a little
farther from the upper floods than the P-III distribution. However, the P-III distribution
neglected most of the empirical flood data in the corner section, which results in greater
differences between the theoretical fitting results and the empirical frequencies compared to
MD. However, these small deviations may be overlooked by an inexperienced viewer, the
results of which could be quite considerable because even a tiny difference may bring out
a huge deviation in the design flood values, and hence contribute to different treatments
in flood risk management. Furthermore, the K-S test statistic value, with 0.1668 of MD,
is less than the value of 0.3409 with P-III distribution. We thereby suggest that the MD
applied in a nonstationary extreme flood series have better modeling performance and
improve the fitting capability. Thus, it is necessary to establish the nonstationary model
to provide scientific support for the flood control operation of the Longmen Reservoir
under the land use changes and the increasing construction of numerous soil and water
conservation projects.

Table 3. The estimated parameters of MD and P-III distribution in the Longmen Reservoir.

Flood α EX1 Cv1 Cs1 EX1 Cv1 Cs1

AMFP (m3/s) 265.77 2.88 6.04
1-day AMFV

(P-III) (108 m3) 0.12 2.3 5.2

1-day AMFV (MD)
(108 m3) 0.34 0.18 1.7 5.1 0.09 1.95 4.00
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Corresponding to the fitting results of MD and P-III distribution, the design flood
values with different univariate return periods are provided by graphical information (see
Figure 3) as well as by the numerical values summarized in Table 4. The results demonstrate
that, given the same return period, the design flood values estimated by MD are smaller
than those estimated by P-III distribution. Specifically, the reduced magnitude of 1-day
AMFV is approximately 3.1–15.2% between MD and P-III distribution with various return
periods. The results indicate that the design flood differences have a great implication
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for flood control operation, and the nonstationary flood frequency analysis should not
be negligible.

Table 4. The design flood values of MD and P-III distribution.

Flood Distribution
Return Periods (Year)

2000 1000 100 50 20 10

1-day AMFV
(108 m3)

P-III 3.02 2.61 1.34 0.99 0.58 0.32
MD 2.79 2.36 1.14 0.84 0.51 0.31

Difference (%) −7.6 -9.6 −14.9 −15.2 −12.1 −3.1

4.2. Fitting Bivariate Joint Distribution

In the above section, MD is used to obtain the nonstationary marginal distribution for
the nonstationary 1-day AMFV series, and the significant correlated dependence between
AMFP and 1-day AMFV is obviously visible, which supports the necessity for the bivariate
flood frequency analysis. Hence, the stationary bivariate copula function is constructed
based on the estimated marginal distributions of P-III distribution for both AMFP and
1-day AMFV. In contrast, in the nonstationary context, the copula-based joint distribution is
implemented using the P-III distribution for AMFP and MD distribution for 1-day AMFV
as the bivariate marginal distributions. The copula parameters, K-S statistical test, OLS,
and AIC results under stationary and nonstationary conditions are listed in Table 5. In
the nonstationary bivariate context, the applied G–H copula function passes the K-S test,
with the statistic D critical value of 0.1817 at the significant level of 0.05, but the copula
function model fails the test under the stationary condition. Additionally, the G–H copula
under the nonstationary condition is the best-fitted copula function, with smaller D, OLS,
and AIC values. Hence, the G–H is selected as the most reasonable function for modeling
the dependence structure between the AMFP and the nonstationary 1-day AMFV. The
Clayton copula and Frank copula functions have also been employed to model the bivariate
flood variables, and the fitting results, especially for the extraordinary flood events, are not
sufficient. Thus, the Clayton copula and Frank copula parts are not presented in this study.

Table 5. The G–H copula function fitting results under stationary and nonstationary conditions.

Cases Parameter (θ) K-S Test (D) OLS AIC

Stationary 6.26 0.3214 0.1371 −220.55
Nonstationary 6.26 0.1419 0.0604 −312.3

Figure 4a shows the fitting performance between the theoretical frequency estimated
by the optimum G–H copula and the empirical frequency points. Meanwhile, Figure 4b
displays the probability–probability plot (PP-plot) of the optimal G–H copula. The good
agreement exhibited in Figure 4a,b demonstrates that the selected G–H function has a
satisfactory fitting performance.

4.3. Estimating Bivariate Nonstationary Return Period and Design Flood

In light of the above mixture marginal distribution and the selected optimal G–H
copula function, the copula function joint distribution fitting results and the joint OR-
RP and AND-RP for AMFP and 1-day AMFV are illustrated by three-dimensional (3-D)
plots in Figure 5. In order to obtaining the bivariate joint return periods intuitively and
conveniently, Figure 6a,b displays the isolines of the flood peak-volume pairs for different
return periods under the joint OR-RP and AND-RP cases, respectively. Given a flood event
in a specific year, the joint return periods in the OR-RP and AND-RP cases are easy to
confirm, especially for extraordinary flood events. Taking the largest recorded flood in
1963 as an example, the joint return period of either the flood peak exceeding 4250 m3/s
or the flood volume exceeding 1.6 × 108 m3 is approximately 130 years, and the joint
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return period of both the flood peak-volume pair exceeding the corresponding threshold is
approximately 260 years. The univariate return period for the extreme flood event in 1963
is then 150 years, which lies between the OR-RP and the AND-RP.
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According to Equations (9) and (10), through the different univariate return period
combinations of AMFP and 1-day AMFV, the bivariate joint OR-RP and AND-RP can be
obtained, and their isolines are showed in Figure 7. Additionally, it is obviously visible
that, when assigning the same univariate return period, the joint OR-RP is always smaller
than the univariate return period; in contrast, the associated AND-RP is greater than the
univariate return period. The results are consistent with the mathematical Formula (11).
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The design flood values for hydraulic engineering are also of utmost important. Be-
cause there are two joint return periods, the determination of bivariate design flood values is
difficult. As suggested by Li et al. (2013) [22], under the assumption that the flood peak and
the volume share the same return period for joint OR-RP, combing Equations (6) and (9),
the analytical formulas of bivariate design flood peak and volume are given by:

u = v = (1− 1
TOR

)
2−

1
θ

(13)

Q = F−1
Q (u), W = F−1

W (v) (14)

The design flood values can be calculated for AMFP modeling by P-III distribution
and 1-day AMFV modeling by univariate mixture distribution, and the optimal bivariate
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G–H copula functions with different return periods (T = 20, 50, 100, 1000, 2000 years) are
listed in Table 6. It is worth noting that the bivariate design floods for both flood peak
and flood volume are larger than the ones in the univariate P-III distribution and MD
conditions, respectively. Compared to the univariate condition, the different percentages of
AMFP design flood estimated by bivariate joint distribution increase from 2.29% to 9.3%, in
line with the decrease of the return period as well as the 1-day AMFV.

Table 6. Design flood results under univariate and bivariate nonstationary conditions.

Return Period (yr)
Design Flood of Univariate

Marginal Distribution
Design Flood of Bivariate Joint

Distribution Difference (%)

Q (m3/s) W1 (108 m3) Q (m3/s) W1 (108 m3) Q (m3/s) W1 (108 m3)

2000 9332 2.79 9546 2.86 2.29 2.51
1000 7996 2.36 8208 2.43 2.65 2.97
100 3855 1.14 4038 1.19 4.75 4.39
50 2752 0.84 2920 0.89 6.10 5.95
20 1473 0.51 1610 0.55 9.30 7.84

An attempt to explore the mathematical rule of design floods between the two cases
was made, and it was found that Equation (13) is always smaller than the joint distribution
cumulative probability, which is given by:

Cθ(u, v) = 1− 1
TOR = TQ = TW

(15)

which indicates that the smaller cumulative probability directly results in an increase of
design flood values under bivariate copula joint distribution.

As the traditional univariate stationary P-III distribution is beyond the above constraint
and its calculation is independent of the copula joint distribution, it is worth pointing out
that the design flood values of 1-day AMFV under univariate stationary P-III distribution
(see Table 4) are larger than the ones estimated by bivariate nonstationary joint distribution
(see Table 6). On the other hand, the design flood values of AMFP modelled by bivariate
joint distribution are greater than the ones in a stationary context.

4.4. Estimating Joint and Condtional Probabilities

The estimation of joint and conditional probabilities for extreme flood events plays
a vital role in reservoir flood control operation management. Simultaneous considera-
tion of the probability of flood peak and flood volume exceeding a certain threshold can
be invaluable. The joint exceedance probability is the reciprocal value of the joint OR
return period. Thus, for the extraordinary flood event in 1963, the joint OR probability
of both the flood peak exceeding 4250 m3/s and 1-day AMFV exceeding 1.6 × 108 m3 is
approximately 0.77%.

Considering reservoir flood control, the flood frequency analysis not only focuses
on considering the joint probabilities of Q-V pairs exceeding a certain threshold, but also
aims to estimate the conditional probabilities of extreme flood events. The outcomes of
conditional probabilities are shown in Figure 8. The conditional probability curves of
1-day AMFV when AMFP exceeds a certain threshold are exhibited in Figure 8a. We
focus exemplarily on the AMFP exceeding the design flood values with a 100-year (design
standard) return period. The conditional probabilities of 1-day AMFV with 100-year and
2000-year return periods are 88% and 5.02%, respectively. The conditional probability
results of 1-day AMFV with different return periods when the AMFP exceeds the design
flood values with 100-year (design standard) and 2000-year (check standard) return periods,
respectively, are summarized in Table 7. The results indicate that, with the high correlation
between AMFP and 1-day AMFV, the probability of large flood volume values with the
same return period would be high if an extraordinary flood peak occurred.
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Table 7. The conditional probabilities of 1-day AMFV when the AMFP exceeds the design flood
values with 100-year and 2000-year return periods.

Return Period (Year) 2000 1000 100 50 20

Design flood Wp (108 m3) 2.79 2.36 1.14 0.84 0.51

Conditional
probability (%)

100-year AMFP 5.02 10.05 88.00 99.63 99.99

2000-year AMFP 88.51 99.60 99.99 99.99 99.99

5. Conclusions

This study aimed to investigate the influence of non-stationarity on flood characteris-
tics, considering the dependence between flood peak and flood volume under a changing
underlying surface, using nonstationary univariate and bivariate flood frequency analysis
models in the Longmen Reservoir in North China. The following main conclusions can be
drawn from this study.

(1) The 1-day AMFV exhibits the highest significant correlation with AMFP, which demon-
strates the desirability and indispensability of bivariate flood frequency analysis. In
addition, the underlying surface changes in the Longmen Reservoir contribute to the
heterogeneity of flood generation identified by the statistical methods and physical
basis analysis. A significant change point is detected in the year 1979 for 1-day AMFV,
but the AMFP is shown to be homogenous.

(2) From univariate nonstationary flood frequency analysis of 1-day AMFV, the fitting
performance of mixture distribution is superior to the traditional stationary P-III
distribution. Due to the increase of forest land area and some hydraulic engineering
construction, the design floods of 1-day AMFV with different return periods estimated
by MD are generally smaller than the ones estimated by P-III distribution.

(3) In the case of bivariate analysis, copula-based joint distribution was developed and
performed using the stationary P-III distribution for AMFP and nonstationary MD
for 1-day AMFV as marginal distributions. There is a relatively large increase for the
design floods estimated by bivariate nonstationary joint distribution compared with
the ones estimated in a univariate nonstationary context, which can be concluded and
proved by rigorous mathematical formula derivation. Furthermore, the results of joint
and conditional probabilities demonstrate that, assuming the flood peak and volume
share the same return period, the conditional probability of 1-day AMFV exceeding
the threshold is likely to be high when the AMFP exceeds the design flood associated
with the return period.
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