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Abstract: In this study, we use the critical slowing down (CSD) theory to identify the precursory
anomalies of groundwater radon based on the 1000-day continuous data from 8 monitoring stations
in Yunnan Province, China during the seismically active period of 1993–1996. The low-frequency
and high-frequency information were extracted from raw groundwater radon data to calculate their
one-step lag autocorrelation (AR-1) and variance, respectively, in order to identify the precursory
anomalies. The results show that the anomaly characteristics can be divided into three categories:
sudden jump anomalies, persistent anomalies, and fluctuation anomalies. The highest average
seismic recognition rate is 72.78%, based on the high-frequency information’s autocorrelation, while
the lowest is 45.08%, based on the low-frequency information’s variance. The crustal activity and the
change in hydrogeological conditions are possibly the main factors influencing groundwater radon
anomalies in the selected period in the study area. There is a positive correlation between the anomaly
occurrence time and epicentral distance when epicentral distance is less than 300 km, which may be
related to the seismogenic modes and hydrogeological conditions. This study provides a reference
for identifying groundwater radon anomalies before earthquakes by mathematical methods.

Keywords: radon anomaly; groundwater; earthquake; critical slowing down

1. Introduction

Earthquake disasters are important global issues concerning the development of
human society, which can often be highly destructive due to the lack of early warning
systems [1]. The geochemistry anomalies related to earthquakes are important research
directions in the search for earthquake precursors with potential use in earthquake predic-
tion [2]. With the improvement in the monitoring system, radon, which is considered as
one of the key indicators of the geochemistry, has increasingly attracted the attention of
researchers [3–5]. Radon is generated by the decay of 238U in rock and soil in the subsurface
environment, and therefore remains in the soil or dissolves in groundwater. There are
many published studies on the relationship between radon and earthquakes, suggesting
that radon has the potential to be a good indicator of the precursory process [6].

It was first proposed in 1927 that radon anomalies in groundwater were related
to earthquakes, but it was not until 30 years later that people collected accurate data
showing the change in radon concentrations in groundwater before earthquakes [7,8]. The
temperature, precipitation, and other meteorological factors can cause the seasonal variation
in groundwater radon concentrations, but its anomalies may also be related to the change
in tectonic stress [7,9]. Although it has become a consensus that radon anomalies could be
related to earthquakes, it is generally very difficult to identify anomalies because radon
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concentration variations often show the characteristics of nonlinear dynamic fluctuations.
Therefore, it is very necessary to find effective identification methods. The traditional
statistical methods, to a certain degree, are subjective and inaccurate. Some data mining
methods, such as machine learning and artificial neural networks, have been used recently
and have made a few achievements [7,9–11].

Faced with the complexity of crustal movements, many scholars began to perform
systematic statistical analysis [12,13]. In 1989, Bak [14] proposed the “self-organized
criticality (SOC) phenomenon” and classified earthquakes as this phenomenon, which
attracted seismic researchers’ attention to the precursor analysis of the critical threshold of
complex dynamic systems [15,16]. With the in-depth study of complex systems in medicine,
finance, ecology and other fields [17–19], scholars have found that many complex systems
have critical points, before and after which the state of the system will change; the critical
point is also called an “avalanche” in SOC phenomena [20]. Accordingly, how to identify
the critical point has become the key issue in complex systems research.

The critical slowing down (CSD) theory has been widely used to indicate the critical
point of complex systems, such as the critical state’s identification in clinical medicine,
biological systems and climate change, etc. [21–23]. The CSD is a phenomenon before the
tipping point, which is where a complex system shifts abruptly from a state to another
state [24]. For earthquakes, the high stress state before a large earthquake is considered
as before the critical point, and the stress release after the earthquake is after the critical
point, so the earthquake can be regarded as the critical point. Before the earthquake, the
fluctuation amplitude of the corresponding observation value increases and the recovery
speed slows down until the occurrence of the earthquake. Numerous studies have found
indicators that can reflect the CSD effectively [25]. Some scholars have also tried to apply
this theory to the precursory anomaly identification in groundwater radon, and revealed
that the CSD theory showed promise in dealing with the anomalous variations in ground-
water radon and confirming the existence of critical slowing effects before earthquakes,
which also provides an important reference for earthquake precursor identification [26–29].
In this study, the CSD theory is employed to identify the precursory anomalies in ground-
water radon based on the 1000-day continuous data from 8 monitoring stations in Yunnan
Province, China during the seismically active period of 1993–1996, which may provide
ideas for the related research of identifying precursory anomalies in groundwater.

2. Geological and Hydrogeological Settings

The eight monitoring stations are located in the west and north of the Yunnan re-
gion, Southwest China. The region is in the southeastern margin of the Qinghai-Tibet
Plateau, and the edge zone of interaction between the Eurasian plate and the Indian plate
(Figure 1). As one of the tectonically active regions, the Yunnan region is characterized by
the high-frequency, large magnitude and wide distribution of earthquake activities [30,31].
According to the earthquake catalogue of the National Earthquake Information Center
(NEIC), more than 289 earthquakes with M ≥ 5 occurred in Yunnan region in the 20th
century, including 13 earthquakes with M ≥ 7 [9].

From west to east, there are three large-scale faults in the region, i.e., the Lancangjiang
fault, the Jinshajiang-Red River fault and the Xiaojiang fault, and there are four main
sub-plates, i.e., the Yunnan-Burma-Thailand (YBT) plate, the Indochina plate, the Yangtze
plate and the South-China plate.

As shown in Figure 1, in the YBT plate, the Tengchong block is mainly metamorphic
rock aquifer, and the Baoshan block is mainly carbonate rock aquifer; in the Indochina plate,
the Lanping-Simao back arc basin is mainly clastic rock aquifer, and the rest is metamorphic
rock and magmatic rock aquifers; the Yangtze plate has complex fold structures and
various aquifers. Among them, the central Yunnan depression is mainly composed of
loose sedimentary aquifers and clastic rock aquifers, and the aquifers of other plots are
mainly carbonate rock aquifers, mixed with metamorphic rock aquifers and magmatic rock
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aquifers. The South China plate is mainly carbonate rock aquifer in the center, and the
boundary with the Yangtze plate is clastic rock aquifer (Figure 1).
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3. Data Preprocessing

There were four seismic active periods in Yunnan region in the 20th century, and
the last period started in 1988 and ended in 1996 [31]. During that period, there were
two earthquakes with magnitudes larger than 7, which were the Menglian earthquake
(12 July 1995, Mw 7.2) and the Lijiang earthquake (3 February 1996, Mw 7.0). Therefore,
we chose this region as the study area. We collected 1000 days of data (9 May 1993–3
February 1996), which is in the active period of earthquakes in the region where the eight
monitoring wells were distributed. Groundwater samples were collected daily using a
pre-vacuumed glass bottle and radon concentrations were measured on the same day using
the FD-105K instrument (Shanghai Electronic Instrument Co., Ltd., Shangjai, China) based
on the scintillation method. The locations of the monitoring wells are shown in Figure 1.
The longitude and latitude of the stations are shown in Table 1.

Table 1. Information of 8 stations.

Station Longitude Latitude Types of Wells and Springs Formation Lithology Well Depth

MD 100.5 25.35 Artesian thermal water well Silicified limestone 32.9
NJ 100.52 25.05 Bedrock fissure water Cambrian metamorphic rocks
CN 99.61 24.83 Fault rising spring Ordovician sericite schist
TC 98.54 25.02 Structural fissure water Olivine basalt 121
LC 100.1 23.98 Fissure confined water Granite 213
LD 103.56 27.19 Contact descending spring Permian limestone 39
SM 100.98 22.79 Fissure confined water (artesian) Cretaceous sandstone 112.27
ML 99.59 22.34 Fissure confined water (non artesian) Cretaceous sandstone 100.38

We can calculate the possible occurrence range of earthquake precursors according to
the empirical formula:

R = 100.43M (1)
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where M is earthquake magnitude and R is epicenter distance (km) [32]. The calculation
results show that the precursory range of M 5.0 earthquake is 141.25 km and the range is
more than 1000 km when the M is greater than 7.

Hauksson et al. put forward an empirical formula for water radon anomalies before
earthquakes with M ≥ 5, as follows:

M = 2.4lgR− 0.43 (2)

where M is earthquake magnitude and R is epicenter distance (km) [33]. The calculation
results show that the precursory range of M 5.0 earthquake is 183 km and the range is more
than 1246 km when the M is greater than 7.

Assuming that the precursory response is highly correlated with the co-seismic ef-
fect [9], the precursory range can be also estimated according to the formula [34]:

e = 101.449M−3.04lgR−3.91 (3)

where e is the energy density, M is earthquake magnitude and R is epicenter distance (km).
Wang et al. indicated that the hydrological response in some areas is very sensitive, and the
response to energy density may be as small as 10−4 J/m3 [35], so we selected earthquakes
with seismic energy density greater than 10−4 J/m3 as earthquakes whose precursor may
occur at the stations. When the energy density is 10−4 J/m3 and the magnitude is 5, the
maximum epicenter distance is 256.8 km; when the magnitude is 7, it is greater than
2300 km.

Walia et al. summarized the empirical formula for the occurrence range of radon
anomalies before earthquakes and pointed out that the range in radon anomalies before
earthquakes can be far greater than the calculation results of the empirical formula [36].
Therefore, we only took the above results as references. By investigation of the occurrence of
earthquakes in the study period in the study area, we finally selected the data of earthquakes
with magnitude greater than M 5.0 within the farthest 500 km of the most marginal stations
from 9 May 1993 to 3 February 1996, according to the earthquake catalogue of the NEIC,
for calculation. We only selected earthquakes with the largest magnitude among multiple
earthquakes occurring in a short time in the same area. The earthquakes finally selected are
shown in Table 2.
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Table 2. The epicentral distance and energy density of the earthquakes selected at each station.

No. Name Time Latitude Longitude Mag
Epicentral Distance/(km) Energy Density/(J·m−3)

MD NJ CN TC LC LD SM ML MD NJ CN TC LC LD SM ML

1 Puer 1993/7/17 28.011 99.636 5.4 308.09 340.79 353.72 350.00 450.62 397.28 596.02 630.60 0.0002 0.0002 0.0001 0.0002 0.0001
2 Longquan 1993/8/14 25.44 101.545 5.2 105.45 111.84 206.26 305.84 218.31 279.64 300.19 397.88 0.0030 0.0025 0.0004 0.0001 0.0003 0.0002 0.0001
3 Luocheng 1993/10/14 28.629 103.419 5 465.35 490.98 566.96 628.71 613.66 160.61 693.66 797.80 0.0004
4 Tanai 1994/1/11 25.231 97.203 6.1 331.73 334.49 246.57 136.63 324.22 670.44 469.90 402.87 0.0018 0.0018 0.0045 0.0273 0.0020 0.0002 0.0006 0.0010
5 Myitkyina 1994/4/6 26.188 96.867 5.9 375.53 387.48 313.96 212.15 407.75 674.12 562.04 509.14 0.0006 0.0006 0.0011 0.0037 0.0005 0.0001 0.0002 0.0003
6 Sidoktaya 1994/5/29 20.556 94.16 6.5 839.72 821.17 733.62 669.20 719.97 1206.55 747.12 595.90 0.0004 0.0004 0.0006 0.0008 0.0007 0.0001 0.0006 0.0012
7 Homalin 1994/8/9 24.721 95.2 6.1 538.49 537.84 445.38 338.58 503.15 879.52 626.13 519.94 0.0004 0.0004 0.0008 0.0017 0.0005 0.0003 0.0005
8 Mae Chai 1994/9/11 19.586 99.516 5.2 648.84 616.27 583.19 612.51 492.30 940.67 387.24 306.33 0.0001
9 Pacific 1994/11/21 25.54 96.657 5.9 386.44 392.15 307.44 197.96 388.50 711.67 534.58 464.13 0.0006 0.0006 0.0012 0.0045 0.0006 0.0002 0.0003
10 Luocheng 1994/12/30 29.079 103.79 5.1 526.97 552.69 628.27 688.32 675.33 211.25 753.56 859.19 0.0003
11 Kamaing 1995/5/6 24.987 95.294 6.4 525.44 526.59 435.61 327.13 499.04 860.85 627.50 527.25 0.0012 0.0012 0.0022 0.0052 0.0014 0.0003 0.0007 0.0012
12 Menglian 1995/7/12 21.966 99.196 6.8 399.02 368.53 321.25 346.11 242.31 729.33 205.04 58.10 0.0109 0.0138 0.0210 0.0167 0.0495 0.0017 0.0823 3.8023
13 Wuding 1995/10/24 26.003 102.227 6.2 187.68 201.41 293.41 385.79 310.72 187.05 378.92 487.26 0.0145 0.0117 0.0037 0.0016 0.0031 0.0147 0.0017 0.0008
14 Lijiang 1996/2/3 27.291 100.276 6.6 216.98 250.37 281.62 306.24 368.59 324.85 505.48 554.86 0.0355 0.0230 0.0161 0.0125 0.0071 0.0104 0.0027 0.0020

Note: the blank value means the energy density less than 10−4 J/m3 and the bold value means the energy density greater than 10−3 J/m3.
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4. Method
4.1. Wavelet Transform (WT)

We note that in previous studies using the CSD theory, some studies chose not to carry
out data preprocessing, and some used filters to eliminate the trend information of time
series and only retained the residual, i.e., random fluctuations, to observe the potential
critical point warning of complex systems. However, we note that when the observation
period is long, there may also be effective information in the trend information, no matter
what filtering method is selected; thus, only retaining the residual may cause a loss of
this effective information. In this study, we used the wavelet decomposition (WD) as the
filtering method to split the time series of radon concentration into trend information (low-
frequency information) and residual (high-frequency information), and further analyzed
and compared them, respectively.

Wavelet analysis, which is composed of wavelet basis functions, is a method of signal
analysis in both the time domain and the frequency domain. With the in-depth exploration
of data analysis in recent years, the mathematical methods based on wavelet theory play
an important role in extracting data information [7,9]. Compared with Fourier transforms,
wavelet analysis methods including continuous wavelet transforms (CWTs) and discrete
wavelet transforms (DWTs) have better accuracy in local time and frequency domains.
Therefore, it is widely used in image, signal and other fields for data analysis, denoising,
signal contrasts, etc.

Wavelet decomposition (WD), as one of the methods of wavelet transforms, is based
on the multi-resolution theory proposed by Malat [37]. It decomposes the original non-
stationary signal into several detail coefficients and one approximation coefficient by using
multi-resolution analysis, and the level of decomposition is the number of decomposition
layers. The length of the signal is damaged every time, so it needs to be reconstructed by
interpolation to obtain the high and low-frequency signals. Figure 2 is a schematic diagram
of this process. By adjusting the number of decomposition layers, one can obtain the
required high-frequency information (Residuals) and low-frequency information (Trend).

Figure 2. Level decomposition of the WD process. H is the high-frequency filter and L is the
low-frequency filter. Dj are the detail coefficients and Aj are the approximation coefficients.

Wavelet coherence (WTC) is also a method of WT. It can effectively reveal the phase
relationship between two time series. It is defined as follows [38]:

R2(x, y) =

∣∣S(s−1W(x, y)
)∣∣2

S(s−1W(x))S(s−1W(y))
(4)

where W is an operator, S is a smoothing operator, s is wavelet scale, and R2 is the wavelet
coherence of two time series, which resembles the traditional correlation coefficient. In this
study, the statistical significance level of WTC is determined by Monte Carlo methods [39].
Edge effects caused by discontinuities at endpoints are evaluated by Cone of Influence
(COI) [40].
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4.2. CSD Theory

In 2009, Schaefer et al. proposed that critical slowing is related to three potential early
warning indicators, namely disturbance recovery rate, autocorrelation and variance [24].
Vasilis et al. summarized the indicators that can indicate the critical slowing phenomenon,
including autocorrelation at lag 1 (AR-1), return rate, variances, spectral density etc. [25].
For the autocorrelation and variance, they will increase rapidly when the CSD phenomenon
occurs. The autocorrelation will tend to 1 and the variance will tend towards infinity.
These early-warning signals are the result of CSD near the threshold value of the control
parameter [24].

For the statistical variance and autocorrelation calculation of data, the following
formula is used:

var = s2 =
1
n

n

∑
i=1

(xi − x)2 (5)

α(j) =
1
n

n−j

∑
i=1

(
xi − x

s

)(
xi+j − x

s

)
(6)

where j is lag length. xi represents the ith data, x is the mean, n is the number of data points
in the sample, s is the standard deviation and s2 is the variance.

5. Parameter Selection

To explore the possible residual anomalies and trend anomalies in groundwater radon,
this study extracts the high frequency information and low frequency information from the
continuous monitoring radon data through WD, and then calculates their autocorrelation
and variance, respectively. In the process, there are three main parameters affecting the
results, namely, the level of WD, window length (WL) and window lag step. In this paper,
the lag step is set as 1, and then the two scenarios of fixed window length adjusting WD
level and fixed WD level adjusting WL are analyzed respectively (See Supplementary
Material for detailed analysis of parameter selection). The results show that:

(1) The change in parameters has less influence on the variance but greater influence on
AR-1. The results of AR-1 are complex and changeable, which may be because the
calculation of AR-1 requires high sampling frequency data.

(2) The influence of parameter changes on results derived from the high-frequency
information is less than that from low frequency information. In the results of high-
frequency information, the AR-1′s and variance’s anomalies under different WL
and different levels of WD all appear at the same time point. This shows that the
changes in parameter values have little effect on the high frequency information
calculation results. However, the low frequency information calculation results vary
greatly under different parameter values. With the increase in WL, the abnormal
points of low frequency are delayed gradually; with the increase in level of WD, the
resulting curve of low frequency gradually changes from fluctuation to stability until
it approaches a straight line.

Considering that the influence of different parameters on the high-frequency-information
calculation results is not obvious, while the low-frequency calculation results are regular,
we chose moderate parameters, level 5 for WD and 10 days for WL.

6. Results

We computed the autocorrelation and variance of high-frequency information and
low-frequency information data on groundwater radon for each monitoring well. Due
to the calculation results fluctuating sharply, it is difficult to obtain effective information
(Figure 3a, taking LC monitoring well as an example). According to CSD theory, the closer
the recovery rate of the system is to 0, the closer the autocorrelation coefficient is to 1; that
is, the more significant the CSD phenomenon is [21]. We transformed the original AR-1
values with a power function to enlarge the value in order to make the anomalous values
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more visible. For the variance, in order to facilitate observation, we chose to normalize
it, and substituted it into the power function as well. The functions of AR-1 and variance
substitution are:

y1 = 1000AR-1 (7)

y2 = 5Var (8)
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As shown in the Figure 3b, the uplift point of the AR-1 and of the variance is shown
clearly after processing, and the peak points are basically consistent with Figure 3a. The
similar situation can be seen in Figure 4a,b. Through such processing, we can distinguish
the peak points and take them as the candidate anomalies in the groundwater radon data.

In this study, we conducted the above processing on the calculation results of all
monitoring stations, and then we selected IQR (interquartile range) plus median as the
anomaly standard to filter the anomaly values.
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Figure 4. The compared figure of the low−frequency information data. The blue line is AR-1 and the
red line is trend of AR-1. The green line is variance. The gray line indicates the time of the earthquake.
(a) is the figure with unprocessed data. (b) is the figure with processed data.

6.1. The Results of High-frequency Information (Residuals)

The calculation results of high-frequency information are shown in Figure 5. The
anomaly characteristics can be divided into three categories: sudden jump anomalies,
fluctuation anomalies and persistent anomalies. The sudden jump anomaly means an
increase in value in a short time, with only one significant peak and duration less than
10 days (such as red circle in Figure 5g,h); the fluctuation anomaly is that it breaks through
the anomaly threshold for many times in a short time, forming many peaks in a short time
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(such as yellow circle in Figure 5c); the persistent anomaly is one that remains above the
anomaly threshold for more than 10 days (such as the blue circle in Figure 5a).

It is shown in Figure 5 that there are differences in the main anomaly characteristics
of AR-1 at each station. In the stations of MD, LD and SM, there are mainly sudden
jump anomalies (Figure 5a,f,g); Cn, TC, LC and ML are mainly fluctuation anomalies
(Figure 5c–e,h); in the station of NJ, the three characteristic anomalies exist (Figure 5b).
There are some persistent anomalies in AR-1, but the duration is short, the anomaly value
is small, and the fluctuation is frequent, so it is difficult to strictly distinguish it from the
other two anomaly characteristics. Generally speaking, the abnormal characteristics of
AR-1 are mainly sudden jump anomalies and fluctuation anomalies.

The anomaly characteristics of variance are mainly sudden jump anomalies and
persistent anomalies. The persistent anomalies in variance have obvious characteristics,
long duration, and most peaks are obvious. Most of the sudden jump anomalies of variance
are co-seismic anomalies with large values and significant characteristics. The fluctuation
anomalies in most stations are not obvious, but the variance results of LD and SM show
large fluctuations after an earthquake, forming a long-time-scale fluctuation anomaly
(Figure 5f,g).

Some anomalies in AR-1 and the variance appeared synchronously in some wells.
However, except for a few earthquakes, the synchronization of the two indexes in response
to most earthquakes is poor. For example, the two indicators of LD, SM and ML have
abnormal responses to earthquakes at the same time in the Menglian earthquake (day
No. 800). The two indicators of LC are basically synchronized with the seismic response
after the Wuding earthquake (day No. 700). In most cases, only one indicator responds to
earthquakes. The number of anomalies of variance is less than that of AR-1.

The empirical formula for the relationship between the occurrence time of earthquakes
and precursors is as follows:

lgRT = 0.63M± 0.15 (9)

where R (km) is the epicenter distance, T (days) is the number of days before the earth-
quake when the earthquake precursor appears, and M is the earthquake magnitude [41].
According to the calculation, the maximum occurrence time of the precursor with less than
500 km epicenter distance is about 73 days before the earthquake.

We take the time between the occurrence of precursory anomalies at each station and
that of the subsequent earthquakes as the number of abnormal days in advance. According
to the CSD theory, the lifting point indicates that the complex system begins to enter the
CSD state. However, in order to facilitate identification, we select the peak point as the
abnormal point for the sudden jump and fluctuation anomalies, because the peak point
and uplift point are very close. For the persistent anomaly with a long interval between
the uplift point and the peak point, we still take the uplift point as the anomaly point.
Considering the effect of the length of WL, we assume that the precursory anomaly point
is the first peak point between the two earthquakes within 83 days (73 days plus 10 days)
before the next earthquake. The results are shown in Tables 3 and 4. We take the ratio of
the number of earthquakes with pre-earthquake anomalies at the station to the number of
earthquakes with seismic energy density ≥ 10−4 J/m3 as the recognition rate. The results
show that the recognition rate of AR-1 in MD station is the highest, which is 81.82%; the
variance recognition rate of LD station is the highest, which is 80%. The average recognition
rate of AR-1 in 8 stations is 72.78%, which is greater than the 55.34% of the variance (Table 5).
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Figure 5. The AR-1 and variance of 8 stations with high frequency information data. The vertical
dotted lines are the date of earthquake with high e (>10−4 J/m−3) at each station. The results’ values
are the power functions of AR-1 and variance. The black arrow is the first peak date between two
earthquakes within 83 days before the next earthquake. Red circles indicate sudden jump anomalies;
the yellow circle indicates a fluctuation anomaly; the blue circle indicates a persistent anomaly. Note:
the results for the station: (a) MD; (b) NJ; (c) CN; (d) TC; (e) LC; (f) LD; (g) SM; (h) ML.
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Table 3. The AR-1 anomalies’ time of high-frequency information.

Earthquake No. MD NJ CN TC LC LD SM ML

1 12 nan nan 44 56
2 94 106 nan nan nan nan 72
3 nan nan
4 241 190 189 234 251 242 242 197
5 317 299 275 277 281 292 nan nan
6 375 365 387 346 349 377 nan nan
7 414 417 462 nan 420 420 nan
8 nan
9 539 537 504 504 nan 516 513

10 nan
11 nan nan 652 691 692 nan 655 707
12 nan 788 nan 750 782 772 796 797
13 875 817 826 853 856 868 817 834
14 922 962 939 nan 981 nan 930 930

Note: Blank indicates that the seismic energy density is <10−4 J/m3, bold indicates that the seismic energy density
is >10−3 J/m3, and nan indicates that the seismic energy density is >10−4 J/m3, but there is no abnormality.

Table 4. The variance anomalies’ time of high-frequency information.

Earthquake No. MD NJ CN TC LC LD SM ML

1 nan 25 14 21 32
2 91 104 nan 107 nan 97 nan
3 nan nan
4 192 nan nan nan nan 216 186 nan
5 nan nan 274 nan 327 nan 257 nan
6 nan nan 386 nan nan 350 358 373
7 nan 409 463 nan nan 406 nan
8 nan
9 nan nan 502 484 nan nan nan

10 nan
11 662 nan 694 726 nan 707 680 nan
12 nan 768 773 749 775 763 755 797
13 830 850 nan 860 875 893 nan 875
14 nan 932 955 930 980 951 930 nan

Note: Blank indicates that the seismic energy density is <10−4 J/m3, bold indicates that the seismic energy density
is >10−3 J/m3, and nan indicates that the seismic energy density is >10−4 J/m3, but there is no abnormality.

Table 5. The recognition rate of each station’s high-frequency information data by two methods.

Recognition
Rate MD NJ CN TC LC LD SM ML Average

AR-1 81.82% 75.00% 72.73% 72.73% 80.00% 60.00% 80.00% 60.00% 72.78%
variance 36.36% 50.00% 72.73% 63.64% 40.00% 80.00% 70.00% 30.00% 55.34%

6.2. The Results of Low-frequency Information (Trend)

The calculated results from low-frequency information data of each station are shown
in Figure 6. The results show that there are significant differences in the abnormal character-
istics of low-frequency information AR-1 and variance. In the AR-1 results, the fluctuation
anomaly is the main anomaly type, the sudden jump anomaly is the secondary anomaly
type, and there is no persistent anomaly in the eight stations. In the variance results, persis-
tent anomalies are the main anomaly feature. Compared with high-frequency information,
the average value of low-frequency-information AR-1 is higher. The variance results show
an obvious peak like protrusion, which is similar to the calculation results of high-frequency
information, but they are smoother. The rising process of the variance curve can be clearly
seen. There is a large interval between the date when the variance value breaks through the
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anomaly threshold (uplift point) and the date of the peak, showing obvious characteristics
of persistent anomalies.

Figure 6. The AR-1 and variance of 8 stations calculated with low-frequency information data. The
vertical dotted lines are the dates of earthquakes with high e (>10−4 J/m−3) at each station. The
results’ values are the power functions of AR-1 and variance. Note: the results for the station: (a) MD;
(b) NJ; (c) CN; (d) TC; (e) LC; (f) LD; (g) SM; (h) ML.
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The peak of AR-1 results has less relationship with the peak of variance results. There
is no co-seismic peak in AR-1 results, but the variance results in MD, NJ and ML stations
have a co-seismic peak at the time of the Wuding earthquake. The variance anomaly
in low-frequency information lasts longer, often breaks through the anomaly threshold
some time before the earthquake, and finally reaches the peak before or a few days after
the earthquake.

We selected the peak point of AR-1 results as the anomaly point, and the intersection
of the variance curve and the anomaly standard line as the anomaly point (uplift point) for
the variance results. The results are shown in Tables 6 and 7. The AR-1 recognition rate
of LC is the highest, which is 100%; ML has the highest variance recognition rate of 60%.
The average recognition rate of low-frequency AR-1 is 88.24%, which is higher than that of
high-frequency AR-1; the average recognition rate of variance is 45.08%, which is about
10% lower than that of high-frequency variance (Table 8).

Table 6. The AR-1 anomalies’ time of low-frequency information.

Earthquake No. MD NJ CN TC LC LD SM ML

1 55 42 76 44 53
2 91 nan nan 91 43 nan 54
3 115
4 213 186 192 215 219 204 219 215
5 283 279 277 275 298 279 300 267
6 nan nan 379 364 375 375 347 364
7 412 443 406 411 409 443 439
8 475
9 501 523 507 503 506 524 nan

10 598
11 684 667 686 nan 667 653 652 699
12 774 759 739 nan 748 748 nan 748
13 876 842 822 nan 855 844 823 847
14 923 928 940 939 983 923 927 928

Note: The blank indicates that the seismic energy density is <10−4 J/m3, the bold indicates that the seismic
energy density is >10−3 J/m3, and nan indicates that the seismic energy density is >10−4 J/m3, but there is
no abnormality.

Table 7. The variance anomalies’ time of low-frequency information.

Earthquake No. MD NJ CN TC LC LD SM ML

1 nan nan nan 37 24
2 nan 83 nan nan nan nan nan
3 nan
4 229 nan 224 187 nan nan nan 200
5 nan nan 289 nan 304 nan 315 nan
6 nan 356 351 nan 344 nan nan 350
7 nan 411 448 nan nan nan 410
8 nan
9 nan nan nan nan nan 515 515

10 549
11 nan 704 708 nan nan nan nan 677
12 nan nan nan 770 758 766 769 nan
13 848 852 nan 847 833 864 838 889
14 930 nan 932 964 933 nan 951 nan

Note: The blank indicates that the seismic energy density is <10−4 J/m3, the bold indicates that the seismic
energy density is >10−3 J/m3, and nan indicates that the seismic energy density is >10−4 J/m3, but there is
no abnormality.
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Table 8. The recognition rate of each station’s low-frequency information data by two methods.

Recognition
Rate MD NJ CN TC LC LD SM ML Average

AR-1 90.91% 81.82% 90.91% 72.73% 100% 90.91% 90% 90% 88.24%
Variance 27.27% 33.33% 54.55% 45.45% 50.00% 40.00% 50.00% 60.00% 45.08%

Comparing the calculation results of high-frequency information with those of low-
frequency information, it can be seen that the variance recognition rate of high-frequency
information is higher, and the AR-1 recognition rate of low-frequency information is higher.
For the same earthquake, the synchronization of variance response in high-frequency
results and low-frequency results is higher than that of AR-1.

7. Discussion
7.1. Interfering Factors

Previous studies showed that radon anomalies are not only affected by tectonic activi-
ties, but also affected by meteorological conditions such as air temperature, air pressure
and precipitation. [4,7,42–46]. In this study, we collected atmospheric pressure (PRS), air
temperature (T) and precipitation (PR) data of each station, and the missing data was sup-
plemented by the monitoring data of nearby stations. We calculate the wavelet coherence
(WTC) of atmospheric pressure, temperature and precipitation on radon concentration, and
calculate the correlation between pressure, temperature and precipitation and raw radon
data, low-frequency data and high-frequency data.

As shown in Figure 7, in the results of wavelet coherence in the whole observation
time, the three WTC images of each station are similar. This may be due to the similar
seasonal cycle period of air pressure, temperature and precipitation. Radon and air pressure,
air temperature and precipitation of MD, CN, TC, LD and ML stations have coherence
within the band of 1 year in the whole period; PRS, T and PR of CN and TC stations
showed coherence with radon in some time periods. CN station showed correlation before
September 1994 (about day No.500), and TC station showed a high coherence for a 1 year
band in May 1993 to March 1994 and 1995 to 1996. The PRS, T and PR at NJ, LC and
SM stations do not show correlation with radon within the band of 1 year. There was a
correlation between radon and T and between radon and PR of ML station within the band
of a half year in June 1994 to July 1995. For other bands, there are sporadic correlations in
each station’s results, but the duration is short, mostly within 100 days.

In addition, we also calculated the correlation coefficients of air pressure, precipitation
and temperature to the original radon data, high-frequency information data and low-
frequency information data. The formula is as follows:

R =
∑N

i=1(xi − x)(yi − y)√
∑N

i=1(xi − x)2 ∑N
i=1(yi − y)2

(10)

where R is correlation coefficients, N is the number of data, xi and yi mean the ith data
of x and y respectively, and x and y mean the average value of x and y respectively. The
calculation results are shown in Table 9. There are nine results for each station. For
the correlation coefficient, less than 0.3 is considered as no correlation, and 0.3 to 0.8 is
considered as a weak correlation [47]. The results of the correlation coefficient show that
PRS, T and PR have no significant correlation with radon.

The calculation results for R at each station show that radon concentration has no
certain correlation with PR, while it can be seen from WTC that except for LD and ML
stations, radon and PR of other stations have correlation only for part of the time or no
correlation, which is similar to the result for R. We speculate that this may be related to
the well depth. For deep groundwater, the response of groundwater dynamics to the
infiltration recharge of precipitation is delayed, and precipitation signals may be smoothed,
resulting in that the correlation between the two cannot be identified.
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Figure 7. WTC analysis between radon and air temperature, radon and air pressure, and radon and
precipitation. The thick black outline represents the 95% confidence level, and the bright color area
represents the area within the cone of influence (COI).
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According to Feng’s study [48], the increase in air pressure will make the degassing
effect worse and reduce the radon concentration in water, but the influence of air pressure
on radon concentration in deep groundwater is small. That may be why the relationship
between air pressure and radon concentration is not obvious in our calculation results.

The formula for radon dissolution is as follows [49]:

S = 0.1057 + 0.405 exp(0.0502T) (11)

where S is the solubility of radon and the T is the temperature. We can see that the increase
in temperature will increase the solubility of radon, thus increasing the concentration of
radon in water. However, there is no obvious correlation in R results, and there is even a
negative correlation between temperature and radon concentration in NJ and MD.

According to the calculation results of WTC, meteorological factors have a certain
impact (mainly periodic) on radon concentrations in water, which is consistent with the
previous research conclusions. It is worth noting that in the results of WTC, there is a stable
strong correlation (mainly periodic) between water radon concentration and meteorological
factors in two stations (LD and ML); however, the calculation results of R show that there
is no strong correlation between meteorological factors and water radon in eight stations.
Overall, meteorological factors did not cause short-term radon concentration changes.

Table 9. R value of radon with precipitation (PR), air pressure (PRS), and air temperature (T).

Raw-PR L-PR H-PR Raw-T L-T H-T Raw-PRS L-PRS H-PRS

MD −0.1344 −0.1965 −0.0200 −0.2905 −0.5135 0.0239 0.1577 0.2931 −0.0239
NJ −0.0439 −0.0827 0.0506 −0.4253 −0.4917 −0.0107 0.2800 0.3205 0.0122
CN 0.0619 0.0657 0.0268 0.1886 0.2836 0.0150 −0.0344 −0.0190 −0.0289
TC 0.0536 0.0484 0.0324 −0.0376 −0.0404 0.0123 0.1768 0.1775 0.0106
LC 0.0943 0.1282 −0.0198 0.0909 0.1018 0.0124 0.0968 0.1105 0.0101
LD −0.0275 −0.0636 0.0227 −0.0886 −0.1502 0.0208 −0.1571 −0.2031 −0.0231
SM 0.0657 0.1145 0.0079 0.0676 0.1346 −0.0020 −0.0570 −0.0507 −0.0360
ML 0.1006 0.1579 −0.0169 0.1838 0.2640 −0.0058 −0.1528 −0.2423 0.0281

Note: Raw denotes raw radon data, L denotes low-frequency information and H denotes high-frequency information.

7.2. Possible Explanations for Different Anomaly Characteristics

In the results, we summarized three kinds of anomaly characteristics, namely sudden
jump anomalies, fluctuation anomalies and persistent anomalies. Previous studies showed
that radon concentrations in water are closely related to the state of the seismogenic
system [4,5,50]. Therefore, if we regard the rock rupture as an “avalanche point” of the
complex system of block motion on a micro level, the anomalies in AR-1 may indicate the
micro fracturing process of rocks near the monitoring well. From the physical meaning
of the index, the AR-1′s sudden jump anomaly indicates that the recovery speed of the
system suddenly decreases and approaches the “avalanche point” in a certain moment
within WL (10 days). Fluctuation anomalies in AR-1 mean that the state of the system
changes sharply over a period of time. Persistent anomalies in AR-1 mean that the state
of the system’s recovery speed keeps slowing down over a period, which is a typical sign
of CSD in other studies. For variance, sudden jump anomalies mean that the sample data
has changed greatly at a certain moment within 10 days. Fluctuation anomalies represent
multiple numerical mutations with an interval of about 10 days over a period of time.
Persistent anomalies indicate that the sample data are in a state of large fluctuation ranges
for a period of time. The three types of anomaly characteristics may be caused by different
water radon anomaly mechanisms.

Zhang et al. proposed that as an important carrier of radon migration, groundwater
flow anomalies have an important impact on radon [7]. The precursory mechanism of water
radon anomalies may be closely related to the change in permeability during earthquake
preparation. In the process of earthquake preparation, the accumulation of stress and strain
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may cause changes in crustal permeability [51]. The continuous accumulation process
constantly disrupts the mechanical balance between particles, moving each other, changes
the porosity and groundwater flow, and finally leads to “avalanches” and forms new pore
channels. In this process, the radon concentration in water changes continuously, which
may provide an explanation for the persistent anomaly.

According to the theory of the “strong body earthquake-generating model” [52], when
the crustal deformation process outside the nucleation area continues to develop, it may
lead to frequent rock micro fractures for a period of time, resulting in frequent changes in
hydrogeological conditions and radon concentrations, manifested by irregular and frequent
fluctuations over a short time, forming fluctuation anomalies, until the rock mass in the
nucleation area suddenly breaks when the pressure reaches the threshold, forming an
earthquake. The frequent rock micro fracturing in this process may provide an explanation
for the sudden jump anomalies and fluctuation anomalies.

In addition, the main anomaly characteristics in the results of different stations are
different. Binda et al. revealed that the response of hydrogeochemistry to seismic activity is
closely related to hydrogeological conditions. This indicates that different hydrogeological
conditions may lead to different responses [53]. In the present study, in the high-frequency
results of MD and LD, AR-1 mainly shows the sudden jump anomalies. MD is a thermal
water well with a shallow well depth and LD is a spring. In terms of lithology, MD
and LD are in sedimentary rocks with significant karstification that may lead to a good
hydraulic connection among aquifers. It is possible that the mixing between shallow
groundwater and deep fluid or gas will occur occasionally during earthquake preparation,
thus causing a sudden jump anomaly. In contrast, high-frequency results of AR-1 in TC and
LC mainly presented with fluctuation anomalies. The formation lithologies of TC and LC
are magmatic rocks, and the well depth is relatively deep and groundwater is fissure water.
We speculate that the change in groundwater radon concentration in the wells mostly
result from the release of rock micro fracturing caused by crustal stress due to the poor
hydraulic connection and relatively stable conditions. The relatively stable conditions may
amplify the slight fluctuations of radon concentration in groundwater, making fluctuation
anomalies the main anomaly feature of AR-1 at these two stations. On the whole, different
hydrogeological conditions, along with regional stress and strain changes, could result
in different responses of aquifers and the associated different anomalies in water radon
concentration at each station, requiring further study.

7.3. Temporal and Spatial Characteristics of Radon Anomalies
7.3.1. Relationship between Epicenter Distance and Anomaly Occurrence Time at
Each Station

Some previous studies suggest that there may be a spatio-temporal relationship be-
tween the occurrence of earthquakes and precursors. In the present study, we conducted
the statistical analyses on the occurrence time of each earthquake and earthquake precur-
sory anomalies, and calculated the time of precursory anomalies ahead of the earthquakes
(Tables 3, 4, 6 and 7). Then, we plotted the diagram of precursory time and epicentral dis-
tance to investigate the possible relationship between them. When we take the single station
as the research object, most R2 of the results are less than 0.1, reflecting that there is no
certain linear correlation between the precursory time and epicentral distance. Considering
that there may be too little data at a single station that may result in a great uncertainty
of results, we drew a scatter diagram with all the stations’ data (Figure 8). Whether it is
high-frequency or low-frequency data, or AR-1 or variance, the data points in the figures
are randomly and irregularly distributed. R2 of the correlation showed in the figures is far
less than 0.1, indicating that there is almost no linear relationship between precursory time
and epicentral distance.

When we chose the earthquakes with the epicentral distance less than 300 km, the
associated calculation results showed that the R2 of correlation between the epicentral
distance and precursory time of variance (L), AR-1 (L) and variance (H) ranges from 0.051
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to 0.245 (Figure 9), indicating that there may be a very weak or no positive correlation.
However, the R2 of the epicentral distance and precursory time of AR-1 (H) is close to
0.5, showing an obvious positive correlation. This may indicate that within 300 km, the
larger the epicenter distance is, the earlier the occurrence time of water radon precursor
anomalies. This conclusion is consistent with that of some previous studies.

In some areas, there is also a positive correlation between the time of radon anomalies
and the epicentral distance. According to the calculation results of the previous empirical
formula (1), the seismogenic range of the M 5.7 earthquake is about 300 km. Considering
that there is a high frequency of earthquakes with M 5–6 in the study area, we specu-
late that this phenomenon may be closely related to the earthquake preparation process.
According to Mei’s “strong body earthquake generating model”, when the earthquake
begins to prepare, a large number of small fractures will appear in the edge area with low
fracturing strength, which leads to the earliest abnormal radon concentrations in peripheral
groundwater. With the accumulation of stress, the fracturing gradually migrates to the
epicenter, finally forming a phenomenon that the abnormal time is proportional to the
epicenter distance. This may provide an explanation for such correlations.

Figure 8. Relationship between epicentral distance and abnormal days before earthquake (including
all earthquakes studied). Blue points represent the high-frequency information and green points
the low-frequency information. The red line indicates positive correlation; the black line indicates
negative correlation.
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Figure 9. Relationship between epicentral distance and abnormal days before earthquake (including
the earthquakes within the epicentral distance of 300 km). Blue points represent the AR-1 and green
points represent the variance. The red line indicates positive correlation.

7.3.2. Relationship between Epicentral Distance and Anomaly Time of Three
Large Earthquakes

Taking the Lijiang, Wuding and Menglian earthquakes as the research objects, the
relationship between the epicentral distance of eight stations and the anomaly days before
the earthquake is calculated. The results show that only in the case of high-frequency
information AR-1, there is a weak positive correlation between the epicentral distance
of the LJ earthquake and the precursory time; that is, the precursory anomaly appears
earlier with the increase in epicentral distance. In other results, R2 values are less than 0.3,
indicating that there is very weak or no significant correlation between them (Figure 10).

The above results may indicate that there may be no universal law in the temporal
and spatial relationship of earthquake precursors. It may be related to the earthquake
preparation process and the hydrogeological conditions around the monitoring stations.
For the Lijiang earthquake, many studies have proposed that its seismogenic process
conforms to the “strong body earthquake-generating model”. This is consistent with our
results. There are different results for other earthquakes, which may be due to different
seismogenic modes and hydrogeological conditions of stations.

We speculate that the water radon anomaly at each monitoring point is not the response
of the critical point of the whole seismogenic system, but the “critical point” of each small
system. The criticalities of these small systems are related to the critical state of the whole
regional seismogenic system, but they cannot accurately indicate the critical state of the
whole system. For the application of self-organized critical states of complex dynamic
systems in earthquake preparation, we may need to find an index that can effectively
indicate the whole regional crustal movements from spatial observations.
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Figure 10. The relationship between epicentral distance and anomaly advance days for LJ, WD and
ML earthquakes. (a) The results for high frequency and (b) the results for low frequency. The red line
indicates positive correlation; black lines indicate negative correlation.
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8. Conclusions

This paper draws the following conclusions:

(1) When we selected earthquakes with seismic energy density greater than 10−4 J/m3 as
the potential earthquakes with precursors, through the analysis and calculation of the
data on 1000 days in the seismic active period in eight groundwater radon monitoring
stations in the study area, the results were as follows: among the high-frequency
information data results of the eight stations, the recognition rate of AR-1 of MD
station is the highest, which is 81.82%; the variance recognition rate of LD station is
the highest, which is 80%; the average seismic recognition rate of AR-1 in the eight
stations is 72.78%, and the average recognition rate of variance is 55.34%. In the
calculation results of low-frequency information, the AR-1 recognition rate of LC
station is the highest, which is 100%; ML station has the highest variance recognition
rate of 60%. The average recognition rate of AR-1 in the eight stations is 88.24%,
and the average recognition rate of variance is 45.08%. In contrast, the variance
recognition rate of high-frequency information is higher, and the AR-1 recognition
rate of low-frequency information is higher.

(2) The earthquake precursor anomalies of radon in groundwater can be divided into
three categories according to their characteristics: sudden jump anomalies, persistent
anomalies and fluctuation anomalies. The high-frequency information is dominated
by sudden jump and fluctuation anomalies, and the low-frequency information is
dominated by persistent and sudden jump anomalies. The autocorrelation is mainly
sudden jump and fluctuation anomalies, and the variance is mainly persistent anomalies.

(3) There was no correlation or weak correlation between radon concentration and me-
teorological factors in these stations in the selected period. This means that crustal
movement is the main reason for the change in radon concentration in groundwater
in the study area during the active period of earthquakes. In the process of earth-
quake preparation, the accumulation of stress and strain may cause changes in crustal
permeability, which may provide an explanation for persistent anomalies. The de-
velopment of the crustal deformation process outside the nucleation area leads to
frequent rock micro fracturing for a period of time, which may provide an explanation
for sudden jump anomalies and fluctuation anomalies. In addition, the difference in
hydrogeological characteristics of each well (aquifer), and the differences in regional
stress and strain changes of rock mass, may result in different responses of aquifers to
block movements and anomalies in water radon concentration.

(4) There was no correlation between precursory time and epicentral distance when
taking all earthquakes studied into account. However, there was a good relationship
between precursor time and epicentral distance if only earthquakes with an epicentral
distance less than 300 km are considered. This may be related to different seismogenic
modes, hydrological conditions and crustal movements in different regions.

Overall, the critical deceleration theory shows great potential for revealing whether
the complex dynamic system will reach the critical “disaster point”. This study provides a
reference for identifying earthquake precursory anomalies by mathematical methods of
data analysis.
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