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Abstract: The hydraulic parameters representative of actual aquifer conditions can be obtained
through aquifer tests formerly known as pumping tests. Diverse methodologies based on analytical or
numerical solutions have been proposed for the interpretation of aquifer tests; however, measurement
and model errors are often neglected, which could lead to hydraulic parameter values that do not
reflect the aquifer conditions. In this paper, a new alternative is presented for the interpretation
of aquifer tests in confined aquifers based on the Cooper–Jacob solution by means of the dynamic
Kalman filter and a nonlinear optimization method. This proposal was tested in two previously
published case studies; the measured drawdowns were filtered by considering measurement and
model errors to match the Cooper–Jacob solution. For the case studies, the results show that filtering
the measured drawdowns leads to variations of up to 49.97% in the values for T and 150% for S when
compared to the values determined by methodologies that neglect measurement and model errors. A
poor match between filtered and measured data reflects large measurement errors and considerable
deviations of the aquifer conditions with respect to the proposed model.

Keywords: Kalman filter; aquifer test; Cooper–Jacob solution; nonlinear optimization; transmissiv-
ity; storage

1. Introduction

It has been stated that numerical flow models represent the most advisable and
powerful available tool for the adequate evaluation, planning and management of ground-
water [1]. Most groundwater models are based on mass conservation and Newton’s second
and third laws (momentum and energy), and their analysis requires the solution of differen-
tial equations. To represent the heterogeneity of aquifer properties, the spatial distribution
of various hydraulic parameters needs to be established, such as: the hydraulic conductivity
(K, L1T−1), the hydraulic transmissivity (T, L2T−1), particularly for horizontal flow, the
storage coefficient (S, L3L−3), the specific storage (Ss, L−1), and the hydraulic diffusivity
(D, L2T−1), among others [2].

In order to calibrate a numerical flow model, the hydraulic parameters can be obtained
from aquifer tests, formerly known as pumping tests, which evaluate the response of
an aquifer (time-drawdown data usually measured at observation wells) by extracting
water (at a constant flow rate) through a pumping well. Another option to determine the
hydraulic parameters is the execution of permeability tests performed in the laboratory, or
alternatively with the use of tracers, from reference tables, or empirical formulas; however,
aquifer tests provide the most representative values for specific aquifer conditions [3–5].

A number of approaches have been proposed for the interpretation of aquifer tests; tra-
ditional methods based on analytical solutions for the interpretation of aquifer tests consist
of looking for the best match between a type-curve and plotted drawdown measurements
to obtain values that are substituted into simplified mathematical forms of the solution to
determine the hydraulic parameters. The type-curve for a specific flow solution represents
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a function of the theoretical relationships among the hydraulic parameters, the elapsed
time from the start of pumping and the distance between the pumping and the observation
well. Some classical analytical solutions for transient flow have been developed for: (a)
confined aquifers [6,7]; (b) unconfined aquifers [8,9]; (c) leaky confined aquifers [10–12];
and (d) fractured aquifers [13,14]. They represent the exact solution of a mathematical
model that describes the groundwater flow in the vicinity of a pumping well following
particular assumptions.

A variety of commercial software solutions based on analytical solutions have been de-
veloped, such as Aquifer win32 [15], AQUIFERTEST [16], AQTESOLV [17], ANSDIMAT [18],
and SATEM 2002 [19]; typically, field data are matched to type-curves through an optimization
method. Poor adjustment can be related to the fact that the actual conditions of the pumping
well and the aquifer do not satisfy the assumptions considered to obtain the analytical solution;
however, in other cases, this may be associated with measurement errors.

The approach is different when using numerical models for the interpretation of
aquifer tests; a model is constructed and calibrated by evaluating different values for
the hydraulic parameters to produce drawdown estimates that approximate the measure-
ments [20,21]. Even though numerical models represent a more general alternative for the
interpretation of aquifer tests due to their ability to consider additional field conditions
that analytical solutions neglect, the methodologies based on the latter continue to be
the most practical alternative for the determination of the hydraulic parameters if field
conditions do not deviate significantly from the assumptions employed for the derivation
of the respective solution.

In both approaches (analytical and numerical), measured drawdowns differ from the
estimated values, using the determined hydraulic parameters, mainly due to measurement
errors and deviations from the model assumptions; in this sense, these differences can
be reduced by filtering noisy measurements through data assimilation which consists
of combining a set of discrete measurements and a prediction model to obtain the best
estimates for a state variable.

The Kalman filter has been used for data assimilation in hydrogeology in different ap-
plications, such as: the calibration of groundwater numerical flow models [22], the optimal
design of monitoring networks [23–25], the estimation of hydrogeological variables [26,27],
and the interpretation of aquifer tests [28,29]. Recent studies proposed the use of artificial
neural networks to estimate hydrogeological variables [30].

Şen [28] applied the Kalman filter for the interpretation of aquifer tests in confined
aquifers using the Theis equation; this updates the estimation of T and S (and their respec-
tive estimate error variances) each time newly recorded time-drawdown data are input
within the procedure. Leng et al. [29] used the extended Kalman filter (EKF) to interpret
aquifer tests for confined and unconfined aquifers; a cubic spline was used to estimate
values at regular time intervals, which were used to estimate the hydraulic parameters.
An important advantage of both procedures is that the length of time for aquifer tests
can be reduced since the employed adaptative processes help to determine the hydraulic
parameters using only part of the observed drawdown data; however, as with traditional
methods for the interpretation of aquifer tests, the drawdown measurement errors are
neglected, which in some cases could lead to high uncertainty in the results, providing
values of the hydraulic parameters that would not be representative of the aquifer in the
vicinity of the pumping well where the aquifer test was carried out.

In this paper, the Cooper–Jacob solution [7] was selected as the mathematical flow
model to implement the dynamic Kalman filter [31]. This model for confined aquifers
express drawdowns as a function of the elapsed time from the start of pumping; the
constant values for this relationship are the flow rate in the pumping well, the distance
between the pumping and the observation well, and the hydraulic parameters (T and
S). Theoretically, the drawdown estimates obtained when filtering the observed data
(considering the correct measurement and model errors) would produce values similar
to the drawdowns obtained with the Cooper–Jacob solution. This procedure was used to
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calibrate the model (determine T and S) and to evaluate uncertainties during the execution
of aquifer tests; the results were compared to those obtained following different approaches
for two previously published case studies.

2. Materials and Methods

The Kalman filter is a sequential mathematical procedure for data assimilation that
operates through a prediction and correction mechanism. The filter is sequential because it
recalculates the solution each time a new measurement is available without using old data
again. This procedure obtains a new estimate of the state from its previous estimate by
adding a correction term that incorporates the information provided by new measurements,
so that the prediction error is statistically minimized.

In the Kalman filter, three models are defined, the set of which is usually called the
process model, and two phases that constitute the Kalman filtering itself:

System model. Describes the evolution over time of the quantity to be estimated,
expressed by means of a state vector xn+1. The transition between states xn and xn+1 is
characterized by the transition matrix An+1 and the addition of a Gaussian white noise
wn+1 with covariance matrix Qn+1.

xn+1 = An+1xn + wn+1 , wn+1 ∼ N(0, Qn+1) (1)

Measurement model. Relates the measurement vector zn to the state of the system xn
through the measurement matrix Hn and the addition of a Gaussian white noise vn with
covariance matrix Rn.

zn = Hnxn + vn , vn ∼ N(0, Rn) (2)

Prior model. Describes prior knowledge about the state vector at the initial time x0
n in

terms of the expected value and the covariance matrix P0
n. Process and sensor noises are

assumed to be uncorrelated.

E[x0
n] =

^
x

0

n (3)

P0
n = E[(

^
x

0

n − x0
n)(

^
x

0

n − x0
n)

T

]

E[wn] = E[vn] = 0

E[wnvT
n ] = E[vnwT

n ] = 0

E[wnwT
n ] = Qn

E[vnvT
n ] = Rn

Propagation phase. The new value of the quantity to be estimated is predicted using the

system model. For this, the estimate of the previous state
^
xn and its covariance matrix Pn are

extrapolated to form the predicted state vector
^
x
−
n+1 and its covariance matrix P−

n+1, where

^
x
−
n+1 = An+1

^
xn (4)

P−
n+1 = An+1PnAT

n+1 + Qn+1 (5)

Update phase. In this phase, the new state vector
^
xn+1 and its covariance matrix Pn+1

are calculated. For this, the predicted covariance is used to calculate the Kalman gain

Kn+1. The new state vector
^
xn+1 is calculated adding to the predicted state vector

^
x
−
n+1 the

measurement residual zn+1 − Hn+1
^
x
−
n+1 scaled with the Kalman gain.

Kn+1 = P−
n+1HT

n+1(Hn+1P−
n+1HT

n+1 + Rn+1)
−1

(6)
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^
xn+1 =

^
x
−
n+1 + Kn+1(zn+1 − Hn+1

^
x
−
n+1) (7)

Pn+1 = (I − Kn+1Hn+1)P−
n+1 (8)

The Kalman gain is constructed to obtain minimum variance estimates. After each
update, the process is repeated, taking as a starting point the new estimates of the state and
of the matrix error covariance.

2.1. Cooper–Jacob Solution for the Interpretation of Aquifer Tests

The Kalman filter’s implementation for the interpretation of aquifer tests was proposed
based on the Cooper–Jacob solution [7] derived from the Theis Equation (6). The decisive
factor for this choice was the relatively simple formulation of the Kalman filter equations
for this model.

For transient flow conditions in a confined aquifer, Theis considered the following
assumptions:

(a) The flow in the aquifer follows Darcy’s law.
(b) The aquifer is homogeneous, isotropic and of infinite areal extent.
(c) The piezometric surface before pumping is horizontal.
(d) Water is instantaneously removed from storage upon a decline in head.
(e) The pumping well is fully penetrating, and the aquifer is of uniform thickness with

horizontal bottom, and therefore flow is radial-horizontal everywhere within the
aquifer to the well.

(f) The discharge rate from the pumping well is constant.
(g) The diameter of the pumping well is infinitesimally small, meaning that storage

within it can be neglected.
(h) Well losses are neglected.

The Theis solution is
s =

Q
4πT

W(u) (9)

where:

s = drawdown in the observation well located at a distance r from the pumping well [L].
Q = constant flow rate [L3T−1].
T = aquifer transmissivity [L2T−1].
W(u) = well function.
u = auxiliar function.

u =
r2S
4Tt

(10)

where:
S = storage coefficient [L3L−3].
t = ellapsed time from the start of pumping [T].
r = distance between the pumping and the observation well [L].

The well function is defined as follows:

W(u) =
∫ ∞

u

e−u

u
du (11)

This integral can be expressed as the series:

W(u) = −0.577216 − ln (u) + u − u2

2·2!
+

u3

3·3!
− u4

4·4!
+ . . . (12)



Water 2022, 14, 522 5 of 16

Cooper and Jacob [7] noted that for small values of r and large values of t, u is small, so
that in these cases drawdown can be calculated using only the first two terms of Equation
(12). Therefore, Equation (9) can be approximated as:

s =
Q

4πT
[−0.577216 − ln (

r2S
4Tt

)] (13)

Re-writing the first term inside the parenthesis as logarithm and using the logarithm rules:

s =
Q

4πT
[ln 0.56146 + ln (

4Tt
r2S

)] =
Q

4πT
[ln (

4(0.56146)Tt
r2S

)]

which leads to the form of the Cooper–Jacob solution used in this paper for the Kalman
filter implementation:

s =
Q

4πT
ln [

2.25Tt
r2S

] (14)

In the Cooper–Jacob straight line method for the interpretation of aquifer tests, Equa-
tion (14) is converted to base 10 logs:

s =
2.3Q
4πT

log [
2.25Tt

r2S
] (15)

Equation (15) plots as a straight line on semilogarithmic paper. The first step of the
interpretation method consists of adjusting a straight line to the plot of drawdown (in m)
versus time (in minutes) in semi-logarithmic paper; this line is projected to intersect the
x-axis (s = 0).

As it can be seen in Equation (15), the slope of the adjusted straight line for a log cycle
is 2.3Q

4πT . This slope is calculated as ∆s
log [10] = ∆s (the value of the drawdown difference per

log cycle), therefore:

T =
2.3Q
4π∆s

(16)

On the other hand, the intercepted positive value of time in the x-axis (s = 0) is
designated t0. Substituting s = 0 and t = t0 into Equation (15), the following is obtained:

0 =
2.3Q
4πT

log [
2.25Tt0

r2S
] (17)

Since 2.3Q
4πT cannot be zero, for the above to hold true, it is necessary that log[ 2.25Tt0

r2S ] =0,

then 2.25Tt0
r2S = 1. Rearranging Equation (16), the following is obtained:

S =
2.25Tt0

r2 (18)

Thus, the procedure uses Equation (16) to solve for T and then Equation (18) to solve
for S. Care must be taken to maintain consistency with the units used for the different
values substituted in Equations (16) and (18). In order to avoid large errors, the critical value
of u required to achieve reasonable accuracy with the Cooper and Jacob approximation is
u ≤ 0.05 [4,5].

2.2. Development of Cooper–Jacob Solution for the Kalman Filter

The implementation of the Kalman filter required the mathematical work to express
the Cooper–Jacob solution in the manner that this estimation method demands. Drawdown
(s) and drawdown rate ( ∂s

∂t ) were selected as the state variables that compose the estimation
vector, which is updated each time a new drawdown measured during the aquifer test is
filtered. Therefore, it was necessary to develop the equations for the components of the
transition matrix that describes the evolution of these variables through time.
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First, Equation (14) is differentiated with respect to t:

∂s
∂t

=
Q

4πT
(

1
t
) (19)

Substituting t1 (time elapsed from the beginning of the aquifer test to the moment of
the first drawdown measurement) and s1 (the first drawdown measurement taken at time
t1) into Equation (19), the instantaneous drawdown rate at time t1 is obtained:

∂s1

∂t
=

Q
4πT

(
1
t1
) (20)

For B = Q
4πT , then:

B = t1(
∂s1

∂t
) (21)

In an analogous manner, for t2 (time elapsed from the beginning of the aquifer test
to the moment of the second drawdown measurement) and s2 (the second drawdown
measurement taken at time t2):

∂s2

∂t
=

Q
4πT

(
1
t2
) = B(

1
t2
) (22)

Substituting (21) in Equation (22):

∂s2

∂t
= (

∂s1

∂t
)(

t1

t2
) (23)

Therefore, the drawdown rate at time tn+1 can be computed with the previous draw-
down rate at time tn as follows:

∂sn+1

∂t
= (

∂sn

∂t
)(

tn

tn+1
) (24)

Equation (24) is valid only for tn > 0.
Solving Equation (19) for s, using as integration limits s1, s2, t1 and t2.∫ s2

s1

∂s =
Q

4πT

∫ t2

t1

(
1
t
)∂t

s2 − s1 =
Q

4πT
ln(

t2

t1
) (25)

Rearranging Equation (25) to isolate s2 and substituting (21), the following obtained:

s2 = s1 + t1(
∂s1

∂t
)ln(

t2

t1
) (26)

Therefore, the drawdown at time tn+1 can be computed with the previous drawdown
at time tn as follows:

sn+1 = sn + tn(
∂sn

∂t
)ln(

tn+1

tn
) (27)

Equation (27) is valid only for tn > 0.

2.3. Adaptation to the Kalman Filter

The propagation phase initiates with the use of Equation (4) constructed in the follow-
ing manner:

^
x
−
tn+1

=

[
ŝ−n+1
∂ŝ−n+1

∂t

]
=

[
1 tnln( tn+1

tn
)

0 tn
tn+1

][
ŝn
∂ŝn
∂t

]
(28)
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For Equation (5), the covariance matrix Pn includes the estimate error variances of sn

and ∂sn
∂t , as well as the covariance among these variables for time tn (in the first iteration it

is used the prior covariance matrix). The covariance matrix Qn+1 comprises the variances

for the model errors (smod∗
n+1 and

∂smod∗
n+1
∂t ) and the covariance of these errors corresponding to

time tn+1. Therefore, Equation (5) is applied as:

P−
tn+1

=

[
1 tnln( tn+1

tn
)

0 tn
tn+1

][
var(ŝn − sn) cov( ∂ŝn

∂t − ∂sn
∂t , ŝn − sn)

cov(ŝn − sn, ∂ŝn
∂t − ∂sn

∂t ) var( ∂ŝn
∂t − ∂sn

∂t )

][
1 0

tnln( tn+1
tn

) tn
tn+1

]

+

 var(smod∗
n+1 ) cov(

∂smod∗
n+1
∂t , smod∗

n+1 )

cov(smod∗
n+1 ,

∂smod∗
n+1
∂t ) var(

∂smod∗
n+1
∂t )

 (29)

In the update phase, Equation (6) (the Kalman gain) requires the predicted covariance
matrix (Equation (29)), the measurement matrix Hn+1, which has the following form:

Hn+1 = [ 1 0 ] (30)

and the covariance matrix Rn+1, which includes the variance of the drawdown measure-
ment error (smeas∗

n+1 ) for time tn+1. Therefore, the Kalman gain is obtained with:

Kn+1 = P−
n+1

[
1
0

](
[ 1 0 ]P−

n+1

[
1
0

]
+ var(smeas∗

n+1 )

)−1

(31)

Equation (7) uses the predicted state vector (Equation (28)), the measurement matrix
(Equation (30)), the Kalman gain (Equation (31)) and the measurement vector. The latter is
as follows:

zn+1 = [smeas
n+1 ] (32)

The new state vector is obtained with:[
ŝn+1
∂ŝn+1

∂t

]
=

[
ŝ−n+1
∂ŝ−n+1

∂t

]
+ Kn+1(smeas

n+1 − ŝ−n+1) (33)

The covariance matrix for the new state vector is obtained with Equation (8).
With this implementation, the model and measurement errors are provided. Therefore,

it is possible to include the measurement uncertainty (associated with the technique, utilized
instrument, or human error when measuring drawdown and its evolution) and evaluate
how far from the model (in this case, the Cooper–Jacob solution) the real aquifer conditions
are in the vicinity of the pumping well.

2.4. Optimization

To select the pair of T and S values that calibrate the Cooper–Jacob solution within
the proposed procedure, we used the generalized reduced gradient (GRG), which is an
algorithm for solving nonlinear optimization problems [32]. The objective is to minimize
the function:

N

∑
i=1

(ŝn − sC−J
n )

2

where ŝn and sC−J
n are the drawdown estimates at time tn using the Kalman filter and the

Cooper–Jacob solution, respectively.
The optimization procedure is subject to the following restrictions: 0.00001 ≤ S ≤ 0.001

(which corresponds to confined aquifers), T > 0, and sC−J
1 > 0. It is expected that filtered

measurements will approximate the flow model estimates if measurement and model errors
are adequately selected. The entire procedure was implemented in Microsoft Excel Version
2201 [33], using the solver tool for the optimization with a convergence of 0.0001 (solver
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stops if the values of the relative change in the objective function are smaller than this
number for the last five iterations).

The full procedure is explained in the flowchart of Figure 1.
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Figure 1. Flow chart of the Kalman filter-based procedure to interpret aquifer tests.

2.5. Case Study

The proposed approach was applied to confined-aquifer test data from two previously
published cases. Theoretically, the assumptions employed in the development of the
Cooper–Jacob solution are very approximate to real conditions for both cases.

(a) The aquifer test “Oude Korendijk” presented in [34].

This aquifer test was conducted in the polder “Oude Korendijk”, south of Rotterdam,
The Netherlands. The impermeable confining layer is composed of clay, peat, and clayey
fine sand for the first 18 m below the surface. The aquifer (between 18 and 25 m below
the surface) consists of coarse sand with some gravel. The base of the aquifer (considered
impermeable) is formed by fine sandy and clayey sediments.
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The well screen of the pumping well was installed over the whole thickness of the
aquifer, and one piezometer with a depth of 20 m was placed at 30 m from it. Since other
piezometers with a depth of 30 m showed a drawdown during pumping, it could be
concluded that the clay layer between 25 and 27 m is not completely impermeable. For
our purposes, however, we shall assume that all the water was derived from the aquifer
between 18 and 25 m, and that the base is impermeable [34].

During the execution of the aquifer test, the data in Table 1 were collected in the
piezometer located 30 m from the pumping well, and the well was pumped at a constant
discharge of 9.12 L1s−1 (or 788 m3d−1) for nearly 14 h.

Table 1. Aquifer test data from the aquifer test “Oude Korendijk” [34].

Time after Pumping
Started (min) Drawdown (m) Time after Pumping

Started (min) Drawdown (m)

0.10 0.040 18.00 0.680
0.25 0.080 27.00 0.742
0.50 0.130 33.00 0.753
0.70 0.180 41.00 0.779
1.00 0.230 48.00 0.793
1.40 0.280 59.00 0.819
1.90 0.330 80.00 0.855
2.33 0.360 95.00 0.873
2.80 0.390 139.00 0.915
3.36 0.420 181.00 0.935
4.00 0.450 245.00 0.966
5.35 0.500 300.00 0.990
6.80 0.540 360.00 1.007
8.30 0.570 480.00 1.050
8.70 0.580 600.00 1.053
10.00 0.600 728.00 1.072
13.10 0.640 830.00 1.088

(b) The aquifer test of Todd and Mays corresponding to exercise 4.4.2 of [4].

This case study consists of an aquifer test in a well penetrating a confined aquifer that
was pumped at a uniform rate of 2500 m3d−1. Time-drawdown data measured during the
pumping period in an observation well 60 m away are presented in Table 2. In this case,
there was no additional information about the aquifer conditions, and the constructive
characteristics of the pumping and the observation well.

Table 2. Aquifer test data from the aquifer test of Todd and Mays [4].

Time after Pumping
Started (min) Drawdown (m) Time after Pumping

Started (min) Drawdown (m)

1 0.2 24 0.72
1.5 0.27 30 0.76
2 0.3 40 0.81

2.5 0.34 50 0.85
3 0.37 60 0.9
4 0.41 80 0.93
5 0.45 100 0.96
6 0.48 120 1
8 0.53 150 1.04
10 0.57 180 1.07
12 0.6 210 1.1
14 0.63 240 1.12
18 0.67
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3. Results

For the implementation of the proposed procedure in the case studies, the following
values were used:

- Initial values: T = 100 m2d−1 and S = 0.00001 m3m−3.

- The prior estimate errors covariance matrix [
0.25 5

5 100
]

- The model errors covariance matrix [
0.0001 0.001
0.001 0.1

]

- The variance of the drawdown measurement error (VDME) = 0.01 m2.

3.1. The Aquifer Test “Oude Korendijk”

To construct the prior estimate vector required in Equation (28), it is necessary to select
initial estimates for the drawdown and the drawdown rates. The drawdown measured
at time t1 (smeas

1 = 0.040 m) was taken as the initial estimate for the drawdown (ŝ1). The
initial estimate for the drawdown rate was calculated with Equation (19), resulting in:

∂ŝ1

∂t
=

Q
4πT

(
1
t1
) =

788 m3d−1

4π(100 m2d−1)
(

1
0.10

60×24 d
) = 9029.81 m1d−1.

In this manner, the constructed prior estimate vector was [
0.040

9029.81
].

Once we had applied the GRG nonlinear optimization for the proposed procedure,
T = 510.59 m2d−1 and S = 0.000089 m3m−3 were determined.

In Figure 2, a mismatch between the simulated drawdowns and the Cooper–Jacob
solution before and after the 600 min point can be observed, although both follow the
general evolution of the measured data.
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When using a VDME = 1.00 m2, T = 505.76 m2d−1 and S = 0.000088 m3m−3 are
obtained. The magnitude of this considered measurement error helps to filter the mea-
surements in a manner that allows us to obtain a better adjustment between the simulated
values and the Cooper–Jacob solution (Figure 3). However, simulated drawdowns and the
Cooper–Jacob solution deviate significantly from the measurements for times greater than
500 min.
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For comparison purposes, in Table 3 are also presented the values for T and S reported
in [27] obtained with traditional methods (Theis and Cooper–Jacob procedures) and using
an adaptative pumping test analysis based on the Kalman filter (the Şen procedure); the
results of using the software AquiferWin32 version 4.00 [16] are also included.

Table 3. Hydraulic parameters determined for data of the aquifer test “Oude Korendijk” using
different interpretation procedures.

Parameter Theis
Procedure *

Cooper-Jacob
Procedure * Şen Procedure *

AquiferWin
(Theis

Solution)

KF-Based Proposed
Procedure (VDME =

0.01 m2)

KF-Based Proposed
Procedure (VDME =

0.01 m2)

T (m2d−1) 342–418 375–401 342–420 480.67 510.59 505.76
S (m3m−3) 0.00017 0.00022–0.00017 0.00016–0.0002 0.000112 0.000089 0.000088

* Values reported in [27].

In Table 3, it can be observed that the values reported in [27] for T and S differ
considerably from those found with the procedure proposed in this paper. When the
former parameters are used to obtain drawdowns with the Cooper–Jacob solution, sig-
nificant differences are obtained with respect to the measurements, especially for larger
times. As an example, in Figure 4, the Cooper–Jacob solution for T = 420 m2d−1 and
S = 0.00016 m3m−3 is compared with the drawdown data of the aquifer test “Oude Ko-
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rendijk”. A poor match is seen since the procedure for the selection of these hydraulic
parameters assumed error-free measurements.
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The plotting of measured drawdown data showed, from the initial moments of the
aquifer test, significant deviations with respect to the estimates with the Cooper–Jacob
solution using the T and S values obtained following the traditional and the adaptative
methods. This result implies that these values are not representative of the actual aquifer
conditions. When using the hydraulic parameters selected with the Kalman filter-based
procedure, a best match between measured drawdowns and the Cooper–Jacob solution
was obtained. Furthermore, increasing the value for the measurement errors produced
a better adjustment between the Kalman filter estimates and the Cooper–Jacob solution;
however, from 500 min after starting the aquifer test onwards, the measured drawdowns
are consistently smaller than the estimates. These differences could reflect systematic errors
for measurements, the non-compliance of the model assumptions, or a combination of
both. Apparently, some considerable measurement errors occurred during the execution of
the aquifer test, since the Kalman filter estimates and the Cooper–Jacob solution are more
similar when the measurement uncertainties are increased in the proposed procedure. On
the other hand, the smaller values of measured drawdowns for times greater than 500 min
could reflect that some water is entering into the aquifer due to the permeability of the
supposedly “confining” layers, as is stated in the description of this case study; in this case,
one fundamental assumption of the selected model is not fulfilled.

3.2. The Aquifer Test of Todd and Mays

The prior estimate vector for this case study was constructed taking the drawdown
measured at time t1 (smeas

1 = 0.20 m) as the initial estimate for the drawdown (ŝ1).



Water 2022, 14, 522 13 of 16

The initial estimate for the drawdown rate was calculated as:

∂ŝ1

∂t
=

Q
4πT

(
1
t1
) =

2500 m3d−1

4π(1000 m2d−1)
(

1
1

60×24 d
) = 2864.79 m1d−1

The prior estimate vector was then [
0.20

2864.79
].

Following the proposed procedure, T = 1180.43 m2d−1 and S = 0.00017 m3m−3 were
determined.

The Kalman filter estimates using these values for the hydraulic parameters are very
similar to the measurements and the Cooper–Jacob solution (Figure 5), which indicates that
the measurement and model errors are low for this aquifer test. The measurement taken at
60 min presents the largest error, but this is filtered during the simulation.
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The hydraulic parameters for the different interpretations reported in Table 4 are by
far more similar when compared to those corresponding to the “Oude Korendijk” case;
this lower variability is related to the smaller measurement errors during the execution
of the aquifer test and the high compliance of the model assumptions. For this reason, it
was considered unnecessary to present the comparison between the measurements and the
Cooper–Jacob solution for another pair of hydraulic parameters.

Table 4. Hydraulic parameters determined for data of the aquifer test of Todd using different
interpretation procedures.

Parameter Theis Procedure * Cooper–Jacob
Procedure *

AquiferWin (Theis
Solution)

KF-Based Proposed Procedure
(VDME = 0.01 m2)

T (m2d−1) 1110 1144 1138.17 1180.43
S (m3m−3) 0.000206 0.000193 0.00019 0.00017

* Values reported in [4].
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4. Discussion

The values of T and S obtained with the Kalman filter-based procedure were compared
to those determined by other authors following previously developed approaches; the
largest differences between these values were obtained for the case study with larger
measurement and model errors. Following the proposed methodology for the interpretation
of aquifer tests (filtering the model and measurement errors), the largest T values and
the smallest S values were found for both case studies with respect to the methodologies
that neglect these errors. According to the new values determined for these hydraulic
parameters, water would flow easier, and the same amount of abstracted water would
increase the drawdowns within the aquifer. Differences between the values of the hydraulic
parameters for the different methods increase when measurement and model errors do
the same.

For the aquifer test “Oude Korendijk”, the largest value determined for T (510.59 m2d−1)
is 49.29% larger than the smallest (342 m2d−1), while the largest value for S (0.00022 m3m−3)
is 150% larger than the smallest (0.000088 m3m−3). These results reflect significant measure-
ment and model errors for the aquifer test; it is clear that even using an extremely large value
of 1.00 m2 for the variance of the drawdown measurement error, the filtered data do not
match the measured drawdowns, which reflects the considerable deviations in the aquifer
conditions with respect to the proposed model.

For the case of the aquifer test of Todd and Mays, the largest value for T (1180 m2d−1) is
6.34% larger than the smallest (1110 m2d−1), while the largest value for S (0.000206 m3m−3)
is 21.17% larger than the smallest (0.00017 m3m−3). In this case, measurement and model
errors can be considered to be low, since a value of 0.01 m2 for the variance of the drawdown
measurement error and the proposed values for the model errors covariance matrix helps to
adequately filter the measured drawdowns.

These results show the relevance of the proposed procedure for the interpretation of
aquifer tests, since it provides additional information about the compliance of the model
assumptions and the quality of measured drawdown data.

With the proposed methodology, drawdowns and drawdown rates can be estimated
at any time of the aquifer test with their respective estimate error variances, which could
be useful in cases where some aquifer test data need to be determined, are missing or seem
to be suspicious.

Future research could evaluate the confidence in the execution of an aquifer test
by exploring optimization methods to quantify measurement and model errors. Future
developments should also be made to obtain the estimate error variances of the determined
hydraulic parameters.

5. Conclusions

The Kalman filter-based procedure proposed in this paper represents a new alter-
native for the interpretation of aquifer tests in confined aquifers considering model and
measurement errors. It is based on the Cooper–Jacob solution due to its relatively simple
implementation in the Kalman filter estimation method.

The existing methods for the interpretation of aquifer tests produce virtually the
same hydraulic parameters when measurement and model errors are low; however, the
differences between the determined values of T and S increase for large measurement
errors, the non-compliance of the model assumptions, or a combination of both. Neglecting
these errors could lead to determining values for the hydraulic parameters that do not
adequately characterize the actual aquifer conditions.

One important advantage of the proposed Kalman filter-based procedure is that it can
help to quantify the measurement errors during the execution of aquifer tests and/or iden-
tify significant deviations in the aquifer conditions with respect to the model assumptions;
to complement this analysis, it is fundamental to provide a description of the execution of
the aquifer test (including the techniques and instruments used to measure the flow rate
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and drawdowns), the hydrogeological framework including the hydrostratigraphic units
and the constructive characteristics of the pumping and observation wells.

Furthermore, using the hydraulic parameters selected with this procedure produces a
best match between the measured drawdowns and the Cooper–Jacob solution; this result
shows that the determined T and S values calibrate more accurately the selected flow model.
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