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Abstract: By monitoring the chlorophyll a concentration (chla), it is possible to keep track of the
eutrophication status of a lake and to describe the temporal dynamics of the phytoplankton biomass.
Such monitoring must be both extensive and intensive to account for the short- and long-term biomass
variations. This may be achieved by the remote estimation of chla through an orbital sensor with high
temporal resolution. In this study, we used MODIS imagery to produce 21-year time series of chla for
three strategic lakes of the Brazilian semi-arid region: Eng. Armando Ribeiro Gonçalves, Castanhão,
and Orós. We used data collected in 13 lakes of the region to test new and published regression
models for chla estimation. The selected model was validated and applied to daily MODIS images
for the three largest lakes. The resulting chla time series revealed that the temporal dynamics of the
phytoplankton biomass is associated with the hydraulic regime of the lakes, with chla plummeting
upon intense water renewal and keeping high during persistent dry periods. The intense rainy season
of 2004 reduced the phytoplankton biomass and its effects even extended to the subsequent years.
Our results encourage the exploration of the MODIS archived imagery in limnological studies.

Keywords: algal biomass; remote sensing; satellite; water quality; drylands; reservoirs

1. Introduction

Eutrophication has affected lakes all over the world, with several negative conse-
quences in the ecological, economical, and sanitary areas, such as shifts in the phytoplank-
ton composition, higher treatment costs for drinking water, and the frequent growth of
potentially toxic cyanobacteria [1,2]. These consequences are associated with an exagger-
ated increase in the phytoplankton biomass, for which a common and reliable proxy is the
chlorophyll a concentration (chla) [3]. By monitoring chla it is possible to keep track of
the eutrophication status of a water body and to describe the temporal dynamics of the
phytoplankton biomass.

Ideally, a monitoring program should be extensive for long-term data is necessary
to evaluate the effects of climate and large-scale phenomena [4,5], and also intensive, for
only high-frequency sampling can account for the significant biomass fluctuations that the
phytoplankton may exhibit in a matter of days [6,7]. Such a complete monitoring program
is rarely achieved, however, because of the costs that are related to sampling [8]. A viable
alternative, which warrant both intensive and extensive data series, is the remote sensing
of chla through orbital sensors with high temporal resolution, such as the MODIS sensor,
which covers most of the globe daily and has been operating since 2000 [9]. There are orbital
sensors with better spatial or spectral resolution, such as OLI/Landsat 8, MSI/Sentinel-2,

Water 2022, 14, 400. https://doi.org/10.3390/w14030400 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14030400
https://doi.org/10.3390/w14030400
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-3281-8512
https://orcid.org/0000-0001-8947-9537
https://orcid.org/0000-0002-8721-8752
https://doi.org/10.3390/w14030400
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14030400?type=check_update&version=1


Water 2022, 14, 400 2 of 16

and OLCI/Sentinel-3, but they have worse temporal resolution or shorter time series. The
MODIS image archive is the only offering long-term series of daily global coverage. The
daily revisit greatly increases the chance of getting cloud-free images.

There are two MODIS sensors aboard of NASA satellites. One, that is aboard Terra, has
been operating since 2000. The second, in the Aqua satellite, has been operating since 2002.
The life expectancy of both satellites has been far exceeded, so the operation of the MODIS
sensors may end soon. But the image archive that has been produced so far is quite valuable
and can be transformed into a comprehensive time series of water quality parameters. For
example, a decade-long time series of suspended sediments were generated from MODIS
imagery for Lake Taihu (China) [10] and for the Ucayali River (Peru) [11]. In addition,
long-term water clarity time series were produced from MODIS imagery for 153 lakes in
China [12].

MODIS data has been successfully used to estimate chla in oceanic waters thanks to its
bands 8 to 16, which were designed for ocean color, phytoplankton, n and biogeochemistry
applications [13,14]. A study in the Caspian Sea revealed a progressive eutrophication trend
from 2003 through 2017 from a MODIS-based chla product [15]. Yet the application of the
bands 8–16 to small and mid-sized water bodies is limited by their coarse spatial resolution
(1000 m) and their vulnerability to saturation [16,17]. The MODIS bands 1 to 7 were de-
signed for land applications, being less subject to saturation. Their better spatial resolution
(250–500 m) encourages their application to inland water bodies. Novo et al. [18] developed
an empirical model that was built by means of linear spectral unmixing, for predicting
chla in Amazonian lakes from the reflectance in the MODIS bands 1–7. Zhang et al. [19]
proposed an empirical model for prediction of chla in Lake Taihu from the reflectance in
MODIS band 2 (near infrared). Ogashawara et al. [20] developed a multiple linear regres-
sion with the MODIS bands 1 (red), 4 (green), 5 (near/mid infrared), and 6 (mid infrared)
for prediction of chla in the Itumbiara lake, a man-made lake in Brazil. Lins et al. [21] de-
veloped and validated an empirical model that was based on the near-infrared-red ratio to
predict chla in two lagoons in Northeastern Brazil. Their model was applied to a 2000–2016
series of MODIS 8-day composite images and allowed them to evaluate the influence of
environmental variables on chla spatiotemporal variability. Zhang et al. developed an
algorithm named BNDBI (baseline normalized difference bloom index) [22], a calculation of
the normalized difference between the heights of the MODIS bands 4 and 1 over a baseline
between the bands 3 (blue) and 2. It was validated for a chla range of 10–1000 µg/L in
Lake Chaohu.

Considering MODIS’s temporal resolution and its potential application to the study of
the phytoplankton biomass’ temporal dynamics, we aimed at selecting an algorithm that
was applicable to daily MODIS images and retrieving long-term chla time series in lakes of
the Brazilian semiarid region. Due to its climate and to frequent droughts, water supplying
in the region is highly dependent upon the water that is stored in man-made lakes. Yet,
despite such dependence, many of those lakes have unsatisfying water quality because of
eutrophication [23–26]. Chla assessment is infrequent or even absent in many lakes, so the
remote estimation of such parameter on a daily scale is of great utility for the region. Using
data that was collected in 13 lakes of the region, we tested new and published algorithms
and applied the selected one to MODIS images, generating 21-year series of chla in three
strategic lakes of the region: Eng. Armando Ribeiro Gonçalves, Castanhão, and Orós.

2. Materials and Methods
2.1. Study Sites

The Brazilian semiarid region extends over 1.189 cities of nine states. Its climate is
characterized by a low annual precipitation (<900 mm), a high potential evapotranspiration
(>2000 mm), and a high spatiotemporal variability of the precipitation, both within and
between the rainy seasons [27–29]. The rainy season is generally concentrated in two or
three months between January and July [30]. Extreme rainfall events occasionally occur
and account for a significant proportion of the annual precipitation [29]. The region is also
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characterized by severe droughts that may last several years. Because most streams are
naturally intermittent, water supply in the region relies on the water that is stored in man-
made lakes. Many of these lakes have poor water quality due to eutrophication, facilitated
by a combination of long water residence times (>1 year), high water temperatures (>25 ◦C),
high insolation throughout the year, and high nutrient loads due to soil erosion and
discharge of agro-pastoral effluents and domestic sewage [30].

We used data that was collected from 13 lakes of the region (Table 1, Figure 1). The use
of data from several lakes is justified by the need of having an as-wide-as-possible range of
chlorophyll-a concentration (chla) for model fitting and validation, as well as by the benefit
of having a more generic predictive model, possibly applicable to other lakes of the region.
The study sites include small, intermediary, and large lakes, with a water surface area
ranging from 1.85 to 441 km2 and a storage capacity ranging from 38 to 6700 hm3. Similar
to most man-made lakes of the Brazilian semiarid region, these lakes are shallow and warm
lakes, with temperatures that are higher than 23 ◦C and commonly around 30 ◦C [30,31].
They are also characterized by long water residence times (>1 year) [30]. Due to the high
spatial and temporal variability in the regional precipitation, the lakes are subject to high
variability in water inflow and outflow. Most of these lakes are critical for local or regional
water supply.

Table 1. Study lakes in the Brazilian semiarid region.

Lake ID Surface Area
(km2)

Storage Capacity
(hm3)

Mean Depth
(m)

Location
(Coordinates)

Castanhão CAST 441.00 6700 15 5.500◦ S, 38.470◦ W
Orós OROS 350.00 1940 6 6.250◦ S, 38.940◦ W
Eng. Armando Ribeiro Gonçalves EARG 195.00 2400 12 5.690◦ S, 36.880◦ W
Banabuiu BANB 102.00 1700 17 5.360◦ S, 38.950◦ W
Pedras Brancas PEDB 72.88 434 6 5.130◦ S, 38.880◦ W
Pacoti PACT 37.00 370 10 4.040◦ S, 38.540◦ W
Pacajus PACJ 35.56 240 7 4.220◦ S, 38.400◦ W
Santa Cruz do Apodi SCAP 34.13 600 18 5.770◦ S, 37.810◦ W
Umari UMAR 29.23 293 10 5.700◦ S, 37.240◦ W
Piató Lake PIAT 15.53 96 6 5.520◦ S, 36.940◦ W
Aracoiaba ARAC 15.06 171 11 4.400◦ S, 38.710◦ W
Mendobim MEND 9.70 76 8 5.650◦ S, 36.932◦ W
Malcozinhado MALC 1.85 38 21 4.108◦ S, 38.295◦ W

Figure 1. Location of the 13 study lakes (Table 1) in the Brazilian semiarid region (Ceará and Rio
Grande do Norte states).
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2.2. Field Data

A total of five datasets were used in this study, conveniently named as Datasets
1–5 (Table 2). Datasets 1 and 2 contain data of surface chla and the reflectance in the
MODIS bands 1–4 that were simulated from field remote sensing reflectance spectra (Figure
S1). They were tested for model fitting or validation whereas the others were only used
for validation. Dataset 1 also includes the concentration of surface suspended solids
(SSS) and surface inorganic suspended solids (ISS) data. Its data were collected during
seven field trips, the first in November 2008 and the last in August 2013, in the lakes
CAST, EARG, MEND, OROS, PACJ, PACT, and SCAP. The analyses were performed in
the Laboratory of Aquatic Ecology of the Department of Ecology of the Federal University
of Rio Grande do Norte (LEA/UFRN). Dataset 2 was collected during a field campaign
in November 2015 in the following lakes: ARAC, CAST, EARG, OROS, PACJ, PACT,
PEDB, SCAP, and UMAR. The analyses took place in the Geochemistry Laboratory of
the Federal Fluminense University (UFF). Dataset 3 is a synthetic chla dataset that was
generated through the application of a three-band predictive model (r2 = 0.99, Figure S2)
to the remote sensing reflectance data that were collected during the same field trips of
Dataset 1 and 2. Dataset 4 derives from observational studies that were conducted by the
Federal University of Rio Grande do Norte and is composed of monthly data that were
collected in EARG from Jul, 2006 through June 2008 and analyzed in LEA/UFRN. Due
to the imprecision of the informed date of collection, we discarded from Dataset 4 the
data from Nov./2006–Jan./2007, Mar.–May/2007, Jul.–Aug./2007, and Mar./2008. Finally,
Dataset 5 was made available by the Water Resources Management Company (Cogerh) of
Ceará state and is composed of data from their regular water quality monitoring program
and from specific field trips covering the 2004–2021 period and including the lakes CAST,
OROS, PACJ, PACT, BANB, and MALC.

Table 2. Descriptive statistics of the five datasets that were used for model fitting or validation.
Chlorophyll-a (chla) is in micrograms per liter (µg/L), whereas surface suspended solids (SSS) and
surface inorganic suspended solids (ISS) are in milligrams per liter (mg/L).

Statistics
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Chla SSS ISS Chla Chla Chla Chla

n 73 48 37 18 72 47 219
min 0.2 0.5 0.0 1.6 0.0 7.2 0.0
median 38.4 8.2 0.5 33.0 51.5 51.4 10.4
mean 37.4 10.3 2.6 30.9 51.1 48.3 18.1
max 101.0 39.0 18.7 68.0 229.9 82.3 251.6
std. dev. 25.8 8.1 5.2 21.5 41.6 21.2 27.7

In the larger lakes, there were three or more sampling points for determination of
chla, whereas in the smaller lakes there were one or two sampling points. The points
were positioned as far from the borders as possible. At each sampling point, two 500 mL
plastic bottles were filled with subsurface water and stored in a dark isothermal box
with ice until later in the evening when each subsample was separately vacuum filtered.
The samples that were processed at the LEA/UFRN laboratory (Datasets 1 and 4) were
filtered using borosilicate glass membranes of 1.2 µm pore size. The samples that were
processed at the laboratories that were associated with UFF and Cogerh (Datasets 2 and
5) were filtered using cellulose acetate membranes of 0.45 µm pore size. The membrane
filters were kept frozen in a dark flask with silica gel for later chlorophyll a extraction
in the laboratory (LEA/UFRN: 96% ethanol; UFF and Cogerh: 90% acetone). In the
LEA/UFRN and UFF analyses, the extract was not acidified for pheophytin a estimation,
in accordance with Stich & Brinker’s [32] conclusion that the non-pheophytin-corrected
samples were more accurate than the corrected (acidified) ones. The concentration was
determined spectrophotometrically [LEA/UFRN: Jespersen & Christoffersen [33]; UFF:
Jeffrey & Humphrey [34]; Cogerh: APHA, AWWA & WEF [35]]. As for the solid analyses
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(SSS and ISS, Dataset 1), Whatman 934-AH membrane filters that were previously weighted
and dried, were used to vacuum filter the water samples. They were dried once more
(105 ◦C for 24 h) and weighted for determining SSS. Part of these filters was glowed in a
muffle furnace at 500 ◦C for 3 h and weighted again for determination of ISS.

Nearly simultaneous to the water sampling, radiometric data was collected through
a set of three TriOS RAMSES hyperspectral radiometers that were mounted on the boat.
Following the Mobley [36] protocol, the irradiance and radiance were measured in the
range 400–900 nm, with a resolution of 3.3 nm, and instantaneously combined in the TriOS
MSDA application to produce the corresponding spectrum of remote sensing reflectance,
calculated at each wavelength as Rrs = (Lu − Ld × 0.028)/Ed, where Ed is the downwelling
solar irradiance, Lu is upwelling radiance, and Ld is the downwelling radiance. The MODIS
spectral response function was then applied to the reflectance spectra to simulate the
reflectance in the MODIS bands 1–4. The simulated MODIS bands were rescaled by being
multiplied by pi × 104.

The samples of Dataset 2 were also analyzed for the absorption coefficient of the
seston and of the CDOM (colored dissolved organic matter) in the 400–700 nm range. The
measurements were taken with a TriOS OSCAR hyperspectral absorption meter. We first
measured the total absorption coefficient of the unfiltered sample and then repeated the
measurement with the sample filtered through a 0.45 µm membrane filter. The latter corre-
sponded to the CDOM absorption and its difference to the total absorption corresponded
to the seston absorption.

Finally, time series of daily water storage and inflow of the lakes were obtained from
the Brazilian National Water and Sanitation Agency (ANA) and the National Department
for Works Against Drought (DNOCS). Daily gaps were filled by linear interpolation. The
daily water renewal rate of a lake was calculated as the daily water inflow divided by the
stored volume.

2.3. MODIS Data

For model validation and time series generation, we used the collection 6 of the
products MOD09GA and MYD09GA, which are atmospherically corrected 500-m spatial
resolution images with seven bands in the visible and infrared regions, and with layers
containing, for each pixel, information on the quality of the data acquisition [37]. All the
lakes were located within the tile h14v09 of the MODIS sinusoidal grid.

The images were accessed through the Google Earth Engine (GEE) platform [38],
which provides, for noncommercial purposes, free access and processing of an extensive
catalog of image archives, encompassing some of the most important orbital sensors of
past and present days. Processing requests were executed through the GEE Python API. A
script named GEEDaR (Google Earth Engine Data Retriever) was developed to facilitate
the automation of the requests. Basically, for each site and sampling date, it extracted the
median water reflectance values within polygons representing the areas of interest. When
extracting the reflectance data for model fitting and validation, the smaller lakes had a
single polygon comprising the area near the dam and the intermediary portion of the lake,
whereas the larger lakes had two to three polygons: one delimiting the dam region, other
delimiting the intermediary portion of the lake, and, in the EARG lake, a third in the region
of the main river inflow. When extracting data for time series generation, only the polygon
that was close to the dam was used. A total of 185,978 image subsets were processed.

Before the calculation of the median reflectance at each band, a pixel selection proce-
dure was adopted to keep only the reliable water pixels. First, the pixels that were classified
in the layer State_1km (“surface reflectance Data State QA”) as affected by cloud, aerosol, or
shadow, were masked. Then k-means clustering (2–20 clusters) was applied to the MODIS
bands 1 and 2 (red and near infrared) and the cluster with the lowest NDVI was chosen.
In sequence, a simple reflectance correction that was proposed by Wang et al. [39] was
applied to the selected pixels and the median reflectance was calculated for bands 1–7.
Additionally, a simple quality flag varying from 1 to 3 was attributed to that record, based
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on the sensor view angle, the sunlight propensity, the proportion of valid pixels, and the
mean reflectance in the near infrared. Only data of quality 1 and 2 were used. Due to face
that MODIS’ low spatial resolution causes a significant spectral mixture, these steps were
important to maximize the chances of getting reflectance values that were representative of
the water leaving reflectance.

2.4. Modelling

For model fitting, in situ reflectance and chla records were paired and tested separately
for Datasets 1 and 2, whereas for model validation the MODIS median reflectance that was
extracted from the areas of interest was paired to the chla data in the same area (Datasets
1–5). Only images of the same date as the field sampling were considered. Through an
R script, one- and two-variable regression models were built upon 3306 combinations of
simple and complex spectral indices, such as single bands, band ratios, band differences,
second-derivative, and other calculations. In addition to simple linear models, we tested
log-linear and log-log-models by log-transforming the data and then used the equivalent
exponential and power equations in the validation step. We also tested the published
models and algorithms, as described below. Models with r2 ≥ 0.5 were then tested against
the validation dataset, which is the aggregation of all the datasets that were not used for
model fitting. The models were then sorted by the validation r2 and only those with r2 ≥ 0.4
were considered. The root mean square error (RMSE) was calculated for each model.

The list of tested models and algorithms from the literature (Table 3) included some
that were applied to land products of MODIS [19,21] and Landsat [40–43]. The relevant
algorithms that were available in the literature, such as the 3- and 4-band algorithms [44,45]
were not tested because the width and position of the MODIS’s land bands are not compat-
ible with such algorithms that were designed for sensors like MERIS and OLCI. We did,
however, test the BNDBI algorithm [22], which was developed from bio-optical simulations
and was validated for a wide range (10–1000 µg/L) of chla in Lake Chaohu. They used
reflectance values that were corrected only for the Rayleigh scattering, whereas we used
fully atmospherically corrected imagery. These models and algorithms were tested both
with and without the reflectance correction that was proposed by Wang et al. [39].

Table 3. Regression models for the estimation of chlorophyll-a concentration that was tested in this
study. The models’ result and the RMSE values are in micrograms per liter (µg/L). B, G, R, and IR
stand for the reflectance at the blue, green, red, and near infrared bands.

# Tested Model n r2 RMSE Ref.

1 9.17 − 44 × IR + 9800 × IR2 145 0.907 7.48 [19]
2 10 × (IR/R)1.8416 26 0.83 15.24 [21]
3 104,401.57 × R1.9742 16 0.954 - [40]
4 6.71 + 0.0537 × B − 1.559 × B/R 15 0.88 - [41]
5 21.79 − 0.1675 × B − 3.855 × B/G 15 0.86 - [41]
6 63.434 + 153.778 × B − 803.31 × G + 239.639 × R 44 0.71 - [42]
7 49.057 + 63.832 × B − 236.05 × G − 110.046 × IR 44 0.73 - [42]
8 49.428 − 183.033 × G − 103.798 × IR 44 0.73 - [42]
9 51.922 − 366.287 × G + 184.622 × R − 116.926 × IR 44 0.74 - [42]

10 54.658 + 520.451 × B − 1221.89 × G + 611.115 × R − 198.199 × IR 44 0.77 6.32 [42]
11 1.31 + 0.64 × (G/B2) 85 0.84 1.78 [43]
12 6.6 + 79.05 × BNDBI + 562.4 × BNDBI2 + 71.86 × BNDBI3 + 982.3 × BNDBI4 114 0.925 1.82 [22]

For models 1 and 3, the reflectance values were divided by pi × 104. BNDBI is the difference between the heights
of the reflectance in red and green bands over a baseline from the blue to the near infrared bands.

2.5. Time Series

The model with the best validation result was selected and applied to the MODIS
imagery to generate a time series of daily chla from 2000 through 2020 in the three largest
study lakes: EARG, CAST, and OROS. As previously explained, the median reflectance was
calculated for the lake’s area near the dam and only data with a quality flag 1 or 2 were used.
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When both the Aqua and Terra were available, the median chla was calculated. The daily
estimated concentrations were then used to determine the yearly frequency of trophic states
in each lake. A threshold of 15 µg/L was considered to separate two classes: mesotrophic
and eutrophic. Such a threshold corresponds to the lower limit that is suggested for the
eutrophic class in waters of semiarid man-made lakes [46] and is also close to the limit
(10 µg/L) that is suggested for subtropical and tropical lakes [47]. The chla time series were
also analyzed in comparison to the lakes’ series of stored water to qualitatively evaluate
the influence of water renewal and droughts.

3. Results
3.1. Optical Properties

The lakes differed in their limnological properties, such as their contents of chlorophyll
a (chla)—some were mesotrophic, such as Santa Cruz do Apodi (mean chla = 6 µg/L, n = 7),
and others were clearly eutrophic, such as Eng. Armando Ribeiro Gonçalves (EARG) (mean
chla = 52, n = 37)—and inorganic suspended solids (ISS), which varied among the lakes
and sampling sites. Such variability was, in fact, important for us to be able to seek an
algorithm that was applicable to variable limnological conditions. On the other hand, their
optical properties were similar enough to allow for the adoption of a single chla estimation
model, as evidenced by seston and CDOM absorption measurements. As most reflectance
spectra (Figure S1) featured a conspicuous cavity around 680 nm followed by a peak around
700 nm, we used the difference in the seston absorption coefficients at 680 and 700 nm as
an indicator of the chlorophyll a concentration. And, in fact, both variables were highly
correlated (r2 = 0.96, n = 19). Also important, the CDOM absorption coefficient at 440 nm
was similar among the lakes, ranging from 0.44 to 0.93 m−1 (mean = 0.74 m−1, n = 19).

3.2. Modis Data Evaluation

A comparison between the field and satellite reflectance indicates that the adopted
algorithm for pixel selection and reflectance correction was effective (Figure 2, 78 images,
r2 = 0.67). The large dispersion that was observed in the graph was expected due to the scale
differences between the point measurements of field radiometry and the broad coverage of
the MODIS pixels, as well as to the limitations in the correction of atmospheric and adjacency
effects. The adjustment is satisfactory for the visible bands and degraded for the near infrared.

Figure 2. Reflectance that was extracted from subsets of MODIS products MOD09GA and MYD09GA
compared to the reflectance that was measured in the field at the same day (78 images, r2 = 0.67). The
field reflectance data was collected with hyperspectral radiometers and used to simulate the MODIS
bands 1 (red), 2 (near infrared), 3 (blue), and 4 (green).
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3.3. Modelling

A total of 1394 models had r2 ≥ 0.5 and were tested against the validation dataset (all
the datasets, except for the one that was used in the model fitting). Only 7 were validated
with r2 ≥ 0.4, all of them built upon bands and indices involving the green and red bands
(Table 4). Several models were fitted from the field reflectance data with r2 ≥ 0.9 (e.g.,
Figure S3) but none were successful in validation. Fitting and validation of the selected
model (#1) is presented below (Figure 3). All the models from the literature (Table 3) had
r2 < 0.1 and were discarded.

Table 4. Regression models for chlorophyll-a (chla) estimation, in µg/L, that matched the minimum
criteria for selection, namely r2 ≥ 0.5 for fitting and r2 ≥ 0.4 for validation. The models were fitted
with field reflectance and chla data from Dataset 2 and validated with chla from the other datasets
and with the surface reflectance from MODIS products MOD09GA and MYD09GA.

# Chla Predictive Model
Fitting Validation

n r2 n r2 RMSE

1 1624 × exp(−0.005497 × R − 993.9 × G−1) 18 0.59 86 0.62 18.1
2 118 − 115.3 × R/G − 4084 × R−1 18 0.50 86 0.60 20.7
3 88.87 − 0.1015 × R2/G − 14,170 × G−1 18 0.65 86 0.58 19.8
4 108.8 − 0.1045 × R − 17,160 × 1/G 18 0.66 86 0.55 20.1
5 171.4 × exp(−0.004107 × R2/G − 222.7 × R−1) 18 0.70 86 0.53 22.5
6 108.1 − 0.1958 × Rh − 17,390 × G−1 18 0.66 86 0.46 21.3
7 66.19 − 0.07716 × R2/G − 3507 × R−1 18 0.52 86 0.41 23.4

G and R stand for the reflectance in the green and red bands. Rh (model #6) stands for the height of the reflectance
in the red over a baseline between the blue and near infrared bands.

Figure 3. The selected model (#1, Table 4) for chlorophyll-a (chla) estimation from the MODIS images.
The model was fitted with field reflectance data and chla data from Dataset 2 and validated with the
remaining datasets and with reflectance data from the MODIS images of the same day of the chla
data. The dashed lines illustrate the 1:1 ratio and the dotted ones are the line of best fit.

3.4. Time Series

The model #1 (Table 4, Figure 3) was applied to the reflectance data extracted from
daily MODIS images (MOD09GA and MYD09GA) in the 2000–2020 period for all the study
lakes. Not surprisingly, the frequency of successfully retrieved data was higher for the
three largest lakes (Table 5), which we selected for the temporal analyses of the relationship
between chla and the hydraulic regime (Figure 4). From the chla series, we generated an
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annual series of the trophic state (Figure 5). Both time series show that EARG is almost
permanently eutrophic, whereas Castanhão was mesotrophic most of the time, and Orós
had a short period of mesotrophic state but was majority eutrophic. The historical mean
and standard deviation of chla in these lakes were 51 ± 20, 12 ± 17 and 39 ± 23 µg/L,
respectively. The time series also showed that during rainy periods when the water volume
rises quickly, the chla values fall quickly as well, such as in 2004.

Table 5. Comparison of the frequency of daily estimated chlorophyll-a data that were successfully re-
trieved from MODIS images. The period of comparison (1 January 2005–31 December 2011, 2555 days)
was chosen to avoid periods when some man-made lakes were dry or still under construction.

Lake Records Freq. (%) Records/Month

Eng. Armando Ribeiro Gonçalves (EARG) 1620 63 19.3
Orós (OROS) 1463 57 17.4
Castanhão (CAST) 929 36 11.1
Pacajus (PACJ) 588 23 7.0
Piató (PIAT) 532 21 6.3
Santa Cruz do Apodi (SCAP) 503 20 6.0
Pacoti (PACT) 394 15 4.7
Boqueirão de Pedras Brancas (PEDB) 357 14 4.3
Mendobim (MEND) 273 11 3.3
Umari (UMAR) 143 6 1.7
Banabuiú (BANB) 138 5 1.6
Aracoiaba (ARAC) 98 4 1.2
Malcozinhado (MALC) 64 3 0.8

Figure 4. Daily series of the estimated chlorophyll-a concentration (chla) in the three largest study
lakes. A smooth line for the chla estimations is shown. The field chla observations and the daily
records of lake storage, in percent of the storage capacity, are also shown. The Castanhão series start
later than the others because the dam was under construction until late 2002.
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Figure 5. The annual relative frequency of eutrophic and mesotrophic states in the three largest
study lakes.

3.5. Hydraulic Effects

The hydraulic effects on the chla is depicted below in the relationship between chla
variation and water renewal rate in 15 days (Figure 6). Under low water renewal, chla
may exhibit large fluctuations, whereas under higher renewal rates (>25% in 15 days),
chla variation is zero or negative. It is worthy to note that in EARG, which has an almost
permanent eutrophic state and is the lake with the highest mean chla, the water renewal
rates did not reach values as high as in the other lakes.

Figure 6. Chlorophyll a (chla) variation in 15-day periods as a function of the water renewal rate,
calculated as the total water inflow divided by the median stored volume in the same periods.
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4. Discussion

The estimation of the chlorophyll-a concentration (chla) from daily MODIS imagery
allowed us to produce long-term time series for the three largest study lakes. Although
the remote chla data is certainly less accurate than field observations, the produced series
have a much higher temporal resolution (>10 records/month) than the series that were
derived from the conventional monitoring programs in the Brazilian semiarid region,
whose sampling frequency vary from monthly to quarterly.

Of course, not all lakes can benefit from MODIS-based monitoring, as clearly shown by
the few successful chla estimations in Malcozinhado, the smallest study lake. In addition
to the lake’s surface area, its morphology and the presence of islands and peninsulas
can negatively interfere as well. For such cases, MODIS bands will carry much noise
due to a spectral mixture and adjacency effects. This can be minimized through spectral
unmixing procedures [48,49], which we have not tested though. For most of the lakes, a
mean frequency of at least three records/month was achieved.

The selected model, as well as the others in Table 4, included the reflectance in the
green and red bands. These two bands seem to be more appropriate for chla assessment in
turbid waters than the blue band because the reflectance in the latter is strongly affected by
light absorption processes from colored dissolved organic matter and suspended inorganic
material [50], not to mention its greater vulnerability to atmospheric interference [51]. In
Case 2 waters, the simple blue-green ratio that is used over open oceanic waters, will not
work [52]. The BNDBI algorithm [22], proposed by Zhang et al. for chla estimation in
turbid waters from MODIS images, is based on the normalized green-red difference, that
was taken in relation to a baseline between the blue and near-infrared bands. Despite its
promising original results, the algorithm was not successful with our data. We believe it
was a matter of scale. The BNDBI algorithm was developed and validated for a very large
chla range (10–1000 µg/L). Our data have a much narrower chla range (0–100 µg/L). For
this limited range, the relation between BNDBI and chla has a larger uncertainty than for
the 100–1000 µg/L range, as revealed by the data dispersion in Figure 2c of their article.
Another important difference is that they did not use atmospherically-corrected MODIS
products as we did.

An important methodological consideration refers to the differences among the analyt-
ical protocols for chla determination of the datasets we used. The different membrane filters
and extraction solvents that were used were a likely source of uncertainty when comparing
the results among datasets. Equal methods are certainly preferable when comparing or
combining data sets, but it is very difficult to achieve such homogeneity in environmental
monitoring programs in developing countries. However, this methodological drawback
may well be seen as an indication of the robustness of the validated model.

Still on the methodology, it must be mentioned that empirical models are often limited
to particular sites and/or sensors [53]. Furthermore, our validation dataset was restricted
to the 0–100 µg/L concentration range. As such, the operational application of the selected
model to other lakes that were not included in this study or with higher concentrations
would require an extra validation effort. On the other hand, empirical models are of easy
application and, in spite of their limitations, may have good accuracy and may even tolerate
seasonal variations in the phytoplankton composition [54].

A quick look at the produced time series shows that the three lakes exhibit quite
distinct trophic state histories. Eng. Armando Ribeiro Gonçalves (EARG) is almost all the
time under eutrophic conditions, Castanhão was mostly mesotrophic until 2015, and Orós
had prevalent mesotrophic conditions in 2005–2008 and 2020 but was eutrophic most of the
time. As shown in Figure 6, EARG did not have water renewal rates as high as the other
two, which is a possible explanation for the resilience of its eutrophic state. However, a
more attentive look at both the chla and lake storage time series reveals interesting common
patterns. A steep rise in water level is often accompanied by an abrupt descent in chla, as
dramatically seen in 2004, a very rainy year in which man-made lakes across the region
overflowed. The decline in chla was probably a joint effect of biomass dilution by the
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inflowing water, biomass loss in the outflowing water, and light attenuation by suspended
solids whose concentration increases during rainy events [26,55–61]. Although less dra-
matic, the same pattern can be seen in the rainy seasons of 2006–2011. Another pattern
is the tendency of chla rising and keeping high during dry periods. That was especially
evident during the multiannual drought that began in 2012, which appeared to favor a
stable maintenance of high chla values until the rainy season of 2020. Similar temporal
dynamics were observed in a 16-year study in the North Pine Dam [59], an Australian
man-made semiarid lake with high interannual variability in the hydraulic regime.

The described patterns were not unexpected since the hydraulic regime of a lake
plays a major role in the phytoplankton temporal dynamics, with low water renewal rates
favoring phytoplankton biomass accumulation and high renewal rates having the opposite
effect [23,58–64]. The significant water renewal in 2004 temporally shifted the trophic
state of EARG and Orós. In the latter, this effect even persisted trough the subsequent
years, as also observed in the cited North Pine Dam study [59]. It is worthy of mention,
though, that when the water inflow is not enough to promote a thorough water renewal, it
may act in the opposite way, bringing nutrients to the lake and favoring phytoplankton
growth [65,66]. That is probably why not all the rainy seasons led to a significant fall
in the phytoplankton biomass. On the other hand, the dry periods clearly favored the
phytoplankton biomass accumulation. A clear shift in the trophic state of Castanhão is
apparent from 2015 on, likely as a result of the severe drought that began in 2012. Extended
dry periods were shown to favor phytoplankton biomass accumulation also in other studies
in the region [24,26,61,67,68] and low water renewal rates or reduced water levels have
been associated with poorer water quality in man-made lakes elsewhere [57,64,69–71].

Due to climate changes, longer dry periods are expected to occur in the Brazilian
semiarid region with some simulations showing a reduced water volume in large man-
made lakes of this region [27,72]. Except for extreme droughts when the water level is so
low that the inorganic suspended solids reduces light availability and favors mixotrophic
plankton over cyanobacteria [73], a drier scenario worsens the water quality and increases
phytoplankton biomass, with dominance of potentially toxic cyanobacteria [26,60]. The
persistence of high biomass during the droughts of 2001–2003 and 2012–2019 supports
such a prediction. The “flushing” that is promoted by dam overflow, an important density-
independent mechanism controlling the phytoplankton biomass [26,58–60], is expected to
become a rarer event in a dryer regional climate. That will demand drastic improvements
on the water quality management and monitoring.

Our results demonstrated the great, and somewhat underestimated, potential of the
MODIS archive for studying the temporal dynamics of the phytoplankton biomass in
natural and man-made lakes. Even though the MODIS bands 1–7 were not designed for
water remote sensing, they are generally more suitable than its ocean color bands for
studying inland water bodies. Sensors such as those aboard of the missions Sentinel-2 and
Sentinel-3 from the European Spatial Agency, are currently the most promising options for
limnological studies, but the extensive MODIS archive, with daily images dating back to
2000, will remain a quite valuable source of data. We encourage the use of its archive for
studying lakes in the Brazilian semiarid region and elsewhere.
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