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Abstract: Flood vulnerability is estimated by Flood Damage Functions (FDFs), which are crucial
for integrated flood risk assessment for developing sustainable flood management, mitigation, and
adaptation strategies under global change. However, the FDFs, either empirical or synthetic, are not
available in Bangladesh. Therefore, this paper focused on developing the synthetic type of FDFs
for agriculture and rural households through the data of a well–structured questionnaire survey
conducted in two pilot sub–districts of northeastern Bangladesh in the Meghna River basin. Multiple
regression analyses were performed on the collected data, and the best performing models were
selected to establish FDFs. The FDF for agriculture (~196 samples) was developed concerning damage
to Boro rice, whereas the FDFs for households (~165 samples) were developed concerning damage to
the buildings and household property of three house types (Mud, Brick, and Concrete), separately.
The results revealed that there were no yield losses when the water levels were lower than 25 cm
(~rice tiller height), and the yield losses were ~100% when the water levels were 70–75 cm deep (~rice
grain height). Mud houses and their household property were found the most flood–vulnerable
and likely to experience total damage when the water levels exceeded 150 cm above the plinth
level, whereas the damage to Brick and Concrete houses and their household property was found
likely to remain partial even when the water levels exceeded 150 cm above the plinth level. The
developed FDFs can be used to assess potential flood risk in the study area for sustainable and
effective management of flood disasters and build back better under global change in the future.

Keywords: northeastern Bangladesh; Meghna basin; flood risk assessment; damage curves; questionnaire
survey; regression analysis

1. Introduction

Bangladesh is a deltaic country located at the confluence of three large transboundary
rivers, the Ganges, Brahmaputra, and Meghna; however, about 92–93% of their total
catchment area is situated outside Bangladesh [1,2]. Due to this complex geographical
location, flooding is the major and frequent natural hazard in Bangladesh, resulting in
devastating damage to the people and socio–economic sectors of the country [3,4]. The
northeastern part of the country, located downstream of the Meghna River basin, is suitable
for agricultural and aquaculture activities. The area contributes to producing more than
18% of the nation’s total rice grains and providing livelihoods for about 20 million people,
thus supporting the country and its economy significantly [5–8]. However, this important
area of the country is adversely affected by pre–monsoon (April–May) and monsoon
(June–September) floods every year. Particularly, frequent pre–monsoon flash floods
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damage the area in April and May due to heavy rainfall occurring in the foothills of the
Meghalaya Mountain range (the rainiest places of the world) near the Bangladesh–India
border [9]. Moreover, tidal and/or backwater effects that are prolonged during flooding
cause heavy damage to the area [4,10–12]. Additionally, floods in northeastern Bangladesh
are expected to increase due to climate change, making the area even more hazard–prone
in the future [11,13–17]. Therefore, flood disaster management in the area is among the
country’s top priorities to ensure the food security of the nation. However, effective
and timely management of flood disasters requires practical flood risk assessment that
can assist decision makers in drawing effective and sustainable disaster risk reduction
policies [18–21].

Flood risk assessment is an important tool to evaluate possible benefits and conse-
quences of a flood [22,23]. It can, thus, play an essential role in managing and mitigating
flood disasters and allotting resources to activities such as preparation, rescue, invest-
ment, restoration, and reconstruction [24]. Flood risk assessment mainly involves three
components: assessment of flood hazard, flood vulnerability, and flood exposure [25–27].
Flood hazards are usually estimated using flood depth, duration, and extent, which are
commonly obtained through hydrological model simulation using rainfall data. However,
hydrological modeling of the Meghna River basin is difficult because more than 60% of
the basin is located in India, and no reliable transboundary rainfall data are available for
hydrological simulation. To address this limitation, the authors previously developed a
reliable gridded rainfall dataset by combining locally available ground data and globally
available satellite data, exclusively for the Meghna River basin, and verified the dataset by
simulated river discharges at two locations of the basin [28].

The second component of flood risk assessment is the estimation of flood vulnerability.
It is usually estimated by flood damage functions that are derived by correlating flood
hazard characteristics with damage [29–31]. More specifically, flood damage functions
define a relationship between inundation depth and economic damage for a particular
type of land use (e.g., agriculture) or structure (e.g., house buildings); hence, they are
also called stage–damage functions [18,20,25,32]. These functions can be categorized into
two types: empirical and synthetic. Empirical flood damage functions are developed
using actual damage data, whereas synthetic damage functions are developed based
on damage data collected through questionnaire surveys [18,21]. The development of
empirical damage functions is a difficult task in Bangladesh, unlike in many developed
countries, since actual flood damage data recorded by the country’s different agencies
are limited, inconsistent, and fragmented. Therefore, the development of synthetic flood
damage functions is an alternative in Bangladesh. However, flood vulnerability estimation
using synthetic functions has not yet received much scientific attention in Bangladesh and
remains a challenge. This paper, thus, aims to develop synthetic flood damage functions
for agriculture and rural households through a questionnaire survey conducted in the
northeastern part of Bangladesh.

Many researchers and government agencies worldwide have attempted establishing
flood damage functions via questionnaire surveys for areas of different content characteris-
tics and accordingly established stage–damage relationships of various damage categories
(e.g., agricultural or residential damage) to assess flood risk [20,21,27,31,33–39]. For the as-
sessment of flood risk, some researchers used depth–damage functions obtained from other
countries when their study areas bore similar regional content characteristics [31,37–39].
None of the above studies bear similar regional content characteristics (e.g., seasonality of
floods, flood types, flood timing and duration, lead time, topography, land cover, crop type,
livelihood, etc.) to the areas of Bangladesh. Hence, the depth–damage curves established
by the above researchers are not likely applicable or spatially transferrable for flood risk
assessment in Bangladesh. In Bangladesh, a few researchers attempted to calculate the
potential flood risk in urban areas (mainly in Dhaka City) by assuming vulnerability as
proportional to the population density or by calculating vulnerability as indices assuming
several weight factors according to land use classes [40–42]. One study [43] developed a
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rule–based computerized decision support system to simulate rice yield loss through a
crop simulation model for monsoon flooding (June–September) in Bangladesh. The main
constraint of the study is that the model was run with site–specific input data, and, thus, a
national minimum dataset is required to support decision making. Another limitation is
that it only considered rice crops cultivated during the monsoon period in the region of
Bangladesh different from the rice crops and region considered in this study. In addition,
the validation of the simulated rice yield loss was not performed and, thus, the results are
likely to have uncertainties. Two recent studies [44,45] conducted for flood risk assessment
in the eastern part of Dhaka also estimated vulnerability by assuming land use–based
weight factors or using stage–damage relationships obtained from several other studies.
The fact is, in Bangladesh, no regional–scale damage functions with identical content charac-
teristics exist, and, thus, establishing such functions on a local scale is necessary. Therefore,
as a first attempt, this study established a synthetic type of flood damage functions for
agriculture and rural households through the data of a structured questionnaire survey
conducted in the two sub–districts of the northeastern region of Bangladesh for assessing
potential flood risk in the region.

2. Study Area

The northeastern part of Bangladesh, located downstream of the Meghna River
basin, was chosen for this study. The Meghna River originates in the Meghalaya and
Manipur Mountain chains of India and flows down to agriculture–dominated northeastern
Bangladesh (Figure 1a). The basin topography in Bangladesh is characterized by relatively
flat plains comprising mostly cropland and paddy fields and gentle hills [46,47]. The Barak
River, the main source of the Meghna River, bifurcates into the Surma and Kushiyara Rivers
at the Amalshid point near the Bangladesh–India border (Figure 1a). Discharges from steep
and highly flashy rivers (e.g., the Lubachara, Jadukata, and Chela Rivers) originating in the
Khasi and Jaintia Hills, the wettest places in the world with an annual average rainfall of
about 12,000 mm [9,10], contribute to the Surma River through its right bank. On the other
hand, the Kushiyara River receives water from the rivers that originate in the Tripura Hills
(e.g., the Manu and Khowai Rivers).
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Figure 1. Salient features of the study area. (a) The Meghna River basin, showing the major rivers
entering into Bangladesh from India, joining the Padma River at Chandpur, and flowing down to the
Bay of Bengal, and also showing northeastern (NE) Bangladesh inside the Meghna basin (shaded
green); (b) the topography of northeastern Bangladesh, which shows the river system and chosen
sub–districts for a questionnaire survey (QS).

The study area, consisting of six administrative districts, mainly lies in the Surma–
Kushiyara river system (Figure 1b). Between the Surma and Kushiyara Rivers there are
many low–land regions, internal draining depressions (locally called Haors), meandering
flood channels, and abandoned river courses, which get flooded in every pre–monsoon
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(April–May) and monsoon (June–September) season. Many Haors (about 423), which are
typical wet– and low–lands in Bangladesh, are located in this region, and most of them
remain inundated for about 4–7 months a year. Thus, people of this area can cultivate one
crop a year, which is a type of rice locally called Boro rice. Unfortunately, almost every
year, the rice fields are affected just about a month before the harvesting time (at the time
of the rice’s flowering through maturity stage) by pre–monsoon floods, causing immense
socio–economic losses to the nation. In 2017, a massive pre–monsoon flash flood devastated
the study area, affecting about 1 million people and one–third of the households. The
flood exceeded the danger levels at various locations of both the Surma and Kushiyara
Rivers, inundating vast areas of rice fields. The Department of Disaster Management,
Bangladesh reported that 219,840 hectares of crops, mainly Boro rice at the nearly–ready–
for–harvesting stage, were damaged. Moreover, nearly 776,579 households were affected,
with approximately 30,000 of them fully or partially destroyed [48,49].

Two administrative sub–districts of the study area (namely, Dakkhin Sunamganj and
Balaganj in Figure 1b) were selected to conduct the aforementioned questionnaire survey
to collect flood damage data of three damage classes (i.e., Boro rice, house building, and
household property). The main reasons for selecting the two sub–districts are: (1) Boro rice
and households of the sub–districts were affected and damaged in a larger quantity during
the recent 2017 flood [48]; (2) since the study area is surrounded by two independent rivers
(i.e., Surma and Kushiyara), one sub–district each was chosen from these two river basins;
and (3) three types of house buildings are seen in the study area [50]. However, the houses
in the Dakkhin Sunamganj sub–district are mainly a mud type (~81%), whereas those in
the Balaganj sub–district consist of all three types proportionately [50]. Therefore, to get
more generalized results, these two sub–districts were selected.

3. Methods

Figure 2 shows the flowchart of the methodology used in this study. The methodology
consisted of the following steps: (1) Conducting a well–structured questionnaire survey in
the chosen sub–districts to collect flood damage data based on the calculated minimum
sample size for the three damage classes (i.e., Boro rice, house building, and household
property); (2) Investigating the similarity and variations of the collected datasets between
the two sub–districts for each damage category; (3) Evaluating the consistency of the
collected data statistically for each damage category; (4) Performing multiple regression
analyses with the data to fit the depth–damage relationship for each damage category;
and (5) Identifying the best regression function based on several performance indicators to
establish damage curves for the mentioned damage classes.

3.1. Outline of the Questionnaire Survey

During flooding periods, the people of the study area mainly experience losses of their
nearly–ready–for–harvesting Boro rice and their houses with household property [48,49].
The Bangladesh Bureau of Statistics and the Department of Disaster Management, Bangladesh,
reported that only Boro rice fields, households, and livestock were affected by the 2017
flood [48,50]. No other private and public property damage (e.g., local road damage,
embankment damage) was stated in the report. No casualties were reported as well.
Additionally, during the past floods of 2004, 2010, and 2016, damage to Boro rice and
households was only reported by the Bangladesh Bureau of Statistics [50]. Given those
reports, the damage to Boro rice and households was found as a major concern for the
government and policy makers to draw a roadmap for sustainable development in the
study area. Therefore, the three damage classes of Boro rice, house building, and in–house
property were considered in this study to conduct the aforesaid questionnaire survey.
Since Boro paddies at their flowering through maturity stage are usually damaged by
pre–monsoon flash floods in the month of April, just 20–30 days before harvesting time, the
maturity stage (‘flowering through maturity stage’ is termed as ‘maturity stage’) of the rice
was only considered for the survey.
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functions for agriculture and rural households of northeastern Bangladesh located downstream of
the Meghna River basin.

Before the ground survey, the minimum representative sample size for each damage
category (i.e., samples of farmers for Boro rice damage and households for house and
property damage) was calculated using a probability sampling technique [51]. Using this
technique, a population size of farmers with more than 0.05 acre of operating land and
that of households comprised of at least two members were obtained from the Bangladesh
Bureau of Statistics for the two selected sub–districts. The obtained population sizes were
39,941 for farmers and 86,279 for households, respectively [50]. Using a confidence level
of 90%, a margin of error of 6% for farmers and 6.5% for households, and considering a
response rate of 50%, the targeted minimum sample sizes were calculated. They were 188
for farmers and 160 for households, respectively. The actual number of samples collected
in the field during the questionnaire survey were 196 for farmers and 165 for households,
respectively. Therefore, the surveyed dataset for this study can be considered sufficient
and reliable. Table 1 shows the total population size and calculated and collected sample
sizes by sub–district. The samples of the questionnaires designed to collect Boro–rice and
household damage data are presented in Appendices A and B, respectively.

Table 1. Total population size, calculated minimum sample size, and size and percentage of collected
samples for farmers and households by sub–district.

Item Sample
Class

Sub–Districts

Dakkhin Sunamganj Balaganj

Population size Farmers 39,941
Households 86,279

Calculated minimum
sample size

Farmers 188
Households 160

Collected sample
Size

Farmers 131 65
Households 67 98

Percentage of
collected samples (%)

Farmers 66.84 33.16
Households 40.60 59.40
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The survey to collect flood damage data for each of the target classes was conducted
by the first author for 12 days (25 November to 6 December 2018); 7 days in the Dakkhin
Sunamganj sub–district of the Sunamganj district and 5 days in the Balaganj sub–district
of the Sylhet district. As depicted in Table 1, Boro–rice and household damage data were
collected, respectively, from 131 farmers and 67 households in the Dakkhin Sunamganj
sub–district. On the other hand, the total samples collected in the Balaganj sub–district for
Boro rice and household damage were 65 and 98, respectively. An average of 30 samples
was collected each day from dawn to dusk by spending an average of 15–20 min per
sample. An average of 5 min was spent to make the questionnaire understandable for the
respondents, and the remaining time was used to collect answers to the questions.

Three employees (sub assistant engineers and surveyors) from the Bangladesh Water
Development Board (BWDB; https://www.bwdb.gov.bd/, accessed on 10 January 2022)
constantly supported the first author in conducting the survey. Every morning, the Boro
damage survey was first conducted at a local village Bazaar (marketplace) by gathering 5 to
10 farmers. The farmers were notified beforehand to gather in such a place with the help of
the BWDB staff. An average of ~30% Boro damage samples were collected from this kind of
gathering. The remaining ~70% samples were collected from individual farmers by moving
from one village to another. While collecting Boro damage data from individual farmers
and households in a village and paddy fields, household damage data (damage to house
buildings and in–house property) were also collected at the same time. Sometimes the
same individuals answered questions about both Boro rice damage and household damage.
All of the respondents who answered the questionnaires of Boro damage were male; only
about 5% of the respondents who answered the household damage questionnaires were
female. Almost all of the respondents were of 30–50 years of age.

It is worth mentioning that about 2 months before the actual survey, draft ques-
tionnaires were prepared by the authors and sent to the BWDB employees to carry out
discussions with farmers and households as to whether the questions in the draft ques-
tionnaires were understandable to the respondents. The BWDB staff went to sample areas,
where 60 potential farmers and households (30 for each sub–district) were randomly se-
lected and directly asked to discuss the draft questions to examine actual responses. From
such discussions, the recommendations and corrections made by the respondents over
the draft questionnaires were collected by the BWDB staff and sent back to the authors to
consider them for improvements. Based on the obtained feedback, the design of the sample
questionnaires was finalized by making them easily understandable for respondents and
accordingly used in the actual questionnaire survey. During the actual survey, all the
questions in the questionnaires were asked to the respondents by the first author with the
help of the BWDB staff, and the answers were written down mostly by the first author. No
questionnaire was given to the respondents to answer the questions by themselves. In such
a way, the subjectivity of the respondents was significantly avoided in the questionnaire
survey, which increased the accuracy of the survey [52].

In this study, the questionnaire survey was mainly conducted considering the re-
cent 2017 flood. However, the sample questionnaires also included some comprehen-
sive questions for other floods, such as ones in 2004, 2010, 2016, and 2018 (refer to
Appendices A and B). However, during the survey, the respondents seemed to have diffi-
culty answering the questions related to flood depths, duration, and damage for the flood
years of 2004, 2010, and 2016. Due to their forgotten memory, most of the respondents could
not provide adequate information on flood depths, duration, and damage to Boro rice and
households for the floods of 2004, 2010, and 2016. However, the respondents were able to
recall such information about the recent 2017 flood and answer the questions. Therefore,
the damage data (considering flood depths and duration) collected for each damage class
via the questionnaire survey in this study were based on the 2017 flood.

https://www.bwdb.gov.bd/
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3.1.1. Boro Rice Damage Survey

Boro rice is the major crop of the study area, usually planted in mid–December to early
January and harvested by late April [53,54]. Flood damage to Boro rice usually takes place
in its flowering through maturity stages, just about a month before the harvesting time.
Therefore, in the questionnaire survey, other growth stages of the rice were not included
and only the maturity stage of the rice was considered. In this study, a total number of 196
flood–affected farmers were interviewed to collect Boro damage data. Each interviewee was
requested to answer the reduced amount of rice yield in terms of varying flood depth and
duration, particularly during the 2017 flood. During the survey period, many other data
were also collected, including the standard height of Boro paddies, the average expected
yield per unit area, and the value per unit weight. Refer to Appendix A for the sample
questionnaire.

3.1.2. Household Damage Survey

The household damage survey was conducted for house building and household
property damage. Classifying households by type, age, and social status is the primary
step of undertaking such a survey [25]. The Bangladesh Bureau of Statistics groups the
households of the study area into three classes according to their building materials [50].
They are shown in Figure 3a–c and are called (a) Mud houses (locally called Kaccha), (b)
Brick houses (locally called Semi–Packa), and (c) Concrete houses (locally called Packa). It
is worth mentioning that the majority of houses observed in the study area were Mud–type,
one–story houses.
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During the survey, the damage to house buildings was calculated considering the
repairing and/or reconstruction costs of flood–damaged or destroyed houses. On the other
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clothes, radios, televisions, and other household goods was considered for household
property damage estimation. A total of 165 flood–affected households were interviewed
to gather information on the damage to houses and household property according to
varying flood inundation depths, considering mainly the duration of both pre–monsoon
and monsoon floods. Several other questions, such as the average building value of each
type of house, the plinth levels (floor height from the ground level) of houses, and the
accumulated value of the household property, were also asked at the time of the household
damage survey. Since the collected data were based on the recent past floods, it was
assumed that the respondents were like to have clear picture on the damage data of the
house and household property. Refer to Appendix B for the sample questionnaire.

3.2. Development of Flood Damage Functions

The collected data were used to establish damage functions for the target damage
classes. Damage data on Boro yield were collected as per the local measurement unit
called Maund per Bigha (equivalent to 330 kg per hectare). As suggested by several
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researchers [21,27,31,37–39], Boro yield damage data were converted into relative terms as
percent damage using Equation (1), to make them clear for all readers and applicable to
different times and spaces.

PRDi = 100 ∗ RRYi/MEY (1)

where PRDi is the percent rice yield damage for sample i, RRYi is the reduced rice yield
due to flood inundation for sample i, and MEY is the maximum expected rice yield with
no inundation.

The house and household property damage data, on the other hand, were collected
in thousand Bangladesh currency (Bangladesh Taka = BDT). In this study, to make it
independent of changes in market values and make it applicable to different times and
areas, the damage to houses and household property was normalized and expressed in
percent damage using the following equations, as also suggested by [20,55]:

PHDi,j = 100 ∗ HDVi,j/HVi,j (2)

PHPDi,j = 100 ∗ HPDVi,j/HPVi,j (3)

where PHDi,j and PHPDi,j, respectively, are the percent house damage and percent house-
hold property damage for house type i and sample j, HDVi,j is the house building damage
value, HVi,j is the house building value, HPDVi,j is the in–house property damage value,
and HPVi,j is the total in–house property value for house type i and sample j.

With the collected data, regression analyses were performed to establish flood damage
functions (or depth–damage relationships), as suggested by many researchers [21,27,35,56].
Five regression models were used in this regard, as shown in Table 2.

Table 2. Names and equations of the regression models used in this study.

Regression Models Equations of Functions

Linear y = a + bx
Logistic y = a/

(
1 + be−cx)

Natural Logarithm y = a + b ln(x)
Polynomial (3rd order) y = ax3 + bx2 + cx + d

Power y = axb

y = dependent variable = Damage of Boro rice, house building, and household property; x = Independent
variable = Depth of inundation; a, b, c and d are parameters of the functions.

To evaluate the performance of the models and identify the best one, four indicators,
i.e., the Coefficient of Determination (CD), Correlation Coefficient (CC), Standard Error
(SE), and Akaike’s Information Criterion (AICC), were used. A perfect model should have
the CC and CD indices of 1. In addition, the lower the SE and AICC indices, the better the
model performance.

4. Results and Discussions
4.1. Development of Agricultural Damage Curves

The agricultural damage curve for Boro rice was developed in this study using the
survey data. The data revealed that the average height of the Boro paddies is about 85 cm,
and its initial flood damage usually starts after 2–3 days of inundation at a depth of about
30 cm. Some characteristics of Boro rice revealed from the survey are depicted in Table 3.

Table 3. Characteristics of Boro rice in the sample area.

Rice Type Average Height (cm)
Max. Expected

Yield
(MT/Hectare)

Depth at which
Flood Damage

Starts (cm)

Duration at
which Flood

Damage Starts
(Day)

Boro 85 4.95 30 2–3
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During the survey, information on Boro yield damage was collected in the two sub–
districts, considering varying flood depths of 30, 45, 60, 75, and 90 cm and flood durations
of 1–3, 4–7, and more than 7 days. To investigate data variability between the sub–districts,
the damage data collected for each sub–district (i.e., 131 samples for Dakkhin Sunamganj
and 65 for Balaganj) were compared using four statistical indices (mean, median, mode,
and standard deviation). This comparison was performed for each set of flood duration and
is shown in Figure 4a–c. The results showed only slight variability between the datasets
of the sub–districts according to the four indices. This might be because the topography,
land use, households, and people’s livelihoods in the study area are very similar. It, thus,
suggests that the damage curves that this study attempted to develop for Boro rice, can be
used for flood damage and risk assessment not only in the pilot sub–districts but also in
other regions of similar characteristics.
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Figure 4. Comparison between the collected datasets of the two sub–districts using four statistical
indices for the selected flood durations of (a) 1–3 days, (b) 4–7 days, and (c) more than 7 days.

To depict the relationship between Boro yield loss and flood depths, box and whisker
plots were plotted with the aggregated datasets of the two sub–districts (i.e., 196 samples)
for each set of the selected flood durations. The plots are shown in Figure 5a–c. Several
statistics of the datasets, such as the mean, median, mode, and standard deviation, are also
drawn in the figure.

The Boro yield loss at depths of 45, 60, and 75 cm showed larger variability in the data
for the flood duration of 1–3 days (Figure 5a). The same variability for the depths of 45
and 60 cm was also shown in the case of a flood that lasted more than 7 days (Figure 5c).
However, the data for a 4–7 day flood showed minimum variations (an average of 8%) in
yield loss at all depths of inundation (Figure 5b). The variability shown in the data might be
due to the effect of selecting several days on a single set of flood duration. This might also
be caused by the interviewee’s responses that are subject to their individual experiences and
memories related to flood damage. Although variability and inconsistency were somewhat
observed in the collected data, their standard deviations (σ) were obtained as reasonably
small in quantity (an average of 9%) for each range of duration (Figure 5a–c, purple–colored
line), which indicates satisfactory reliability of the collected data. Regression analyses were,
thus, performed with the data using five models to establish a best–fit relationship between
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Boro damage and flood depths for each range of flood duration. The results of the regression
analyses are provided in Table 4.
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Table 4. Results of five regression models performed with 196 collected samples of Boro yield damage.

Regression
Models

No. of
Samples

Flood
Duration

Value of Parameters
SE CC CD AICC

a b c d

Linear 196
1–3 days −55.77551 1.78594 - - 12.98 0.95 0.90 5024.65
4–7 days −49.78231 1.78367 - - 13.20 0.94 0.89 5057.18

Above 7 days −33.66327 1.67166 - - 18.01 0.89 0.80 5666.35

Logistic 196
1–3 days 102.6640 943.202 0.114664 - 11.60 0.95 0.91 4803.59
4–7 days 102.1564 807.565 0.121528 - 10.62 0.97 0.93 4631.30

Above 7 days 99.83938 2356.29 0.165006 - 11.52 0.96 0.92 4791.76

Natural
Logarithm 196

1–3 days −336.0498 96.2824 - - 14.44 0.93 0.87 5233.51
4–7 days −337.7718 98.1660 - - 12.46 0.95 0.90 4944.93

Above 7 days −317.3191 95.4187 - - 14.53 0.93 0.87 5245.88

Polynomial
(3rd order) 196

1–3 days −0.001030 0.18343 −8.308795 113.05 11.54 0.96 0.92 4796.84
4–7 days −0.001014 0.16730 −6.569458 74.891 10.39 0.97 0.93 4590.75

Above 7 days −0.000425 0.04119 1.647864 −72.734 11.87 0.95 0.91 4851.83

Power 196
1–3 days 0.009635 2.07225 - - 14.93 0.92 0.86 5298.01
4–7 days 0.041036 1.75641 - - 15.89 0.92 0.84 5421.41

Above 7 days 0.275633 1.33925 - - 19.77 0.87 0.75 5849.49

Following the equations of their functions, each regression model could predict a
relationship of Boro yield loss with inundation depths. Figure 6a–c shows the depth–
damage relationships of Boro rice predicted by the five models for each set of flood duration.
The calculated performance indicators are shown in Table 4.

The results depicted in Table 4 and Figure 6a–c indicate that each regression model
for each range of flood duration performed reasonably well with satisfactory indices.
Even the simplest linear–type model showed good performance, with CC and CD values
ranging from 0.89 to 0.95 and from 0.80 to 0.90, respectively. However, the polynomial
regression model performed the best for 1–3 days of flood duration. It showed a higher
magnitude of CC (0.96) and CD (0.92) values together with the lower indices of SE (11.54)
and AICC (4796.84). For 4–7 days and more than 7 days of inundation, on the other hand,
the logistic model overtopped the other models and resulted with higher indices of CC
and CD (ranging between 0.96 and 0.97 and between 0.92 and 0.93, respectively) together
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with a lower range of SE (from 10.62 to 11.52) and AICC (from 4631.30 to 4791.76) indices.
Therefore, by considering their best performance among the selected models, the third–
order polynomial type for 1–3 days and the logistic type for 4–7 days and more than 7 days
of inundation were chosen to develop the damage function of Boro rice for this study.
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Figure 6. Damage curves fitted by five regression models for the flood durations of (a) 1–3 days,
(b) 4–7 days, and (c) more than 7 days.

To further verify the best selected three regression models, a validation approach was
conducted in this study by dividing the survey data of rice damage (196 samples) into two
groups. First, 100 samples were used as training data to set up the three models and the
next 96 samples were used as testing data to check the models. First, regression analysis
with the 100 samples was performed with the best three models and the damage functions
were derived for the flood durations of 1–3 days, 4–7 days, and more than 7 days. Then,
an average yield loss from the 96 sample was calculated according to the flood depths of
30, 45, 60, 75, and 90 cm and for the three sets of flood durations. Finally, a comparison
between the yield loss estimated from the 96 samples and the yield loss calculated from the
damage functions derived from the 100 samples is shown in Figure 7a–c.
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The results shown in Figure 7a–c indicate that the best performing models selected
for developing Boro rice damage curves produced the satisfactory results with a CD (R–
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squared) values ranging from 0.98 to 0.99. Therefore, it is evident that the best selected
regression models are likely to develop flood damage functions of Boro rice in the study
area. Figure 8a–c shows the developed damage curves of Boro rice for three sets of flood
duration. To incorporate the uncertainty of the collected data, an uncertainty band of
one standard deviation (±1σ) was integrated with the damage curves. As pointed out
earlier, this study considered only the maturity stage of Boro rice for damage estimation.
The damage curves developed at this stage of the rice showed the difference in the shape,
thresholds for damage occurrence, and range of expected damage ratios with the other
existing damage curves developed by various studies [31,37–39]. This might be due to the
fact of containing regional differences in various contexts such as crop type, flood timing
and duration, potential yield, cultivation practices, etc. The developed curves revealed that
the rice yield became nearly zero when the flood height exceeded 75 cm (the depth at which
rice grains start to flourish), regardless of the inundation duration. One finding revealed
from the developed curves was that there was no damage to Boro paddies when the water
level remained up to an average depth of 25 cm (at which the tiller of rice evolves). This
finding can effectively be used to facilitate excess water during the flood period to reduce
agricultural risk, as a huge volume of floodwater can be diverted into around 423 Haors (in
which Boro rice is cultivated) up to a 25 cm depth. However, flood inundation up to such a
depth in a Boro field usually delays the maturity of rice by about 15–20 days.
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show the uncertainty bands.

4.2. Development of Household Damage Curves

Household damage curves were developed for house and household property damage.
Of 165 flood–affected households surveyed in this study, 91 were categorized as Mud, 41
as Brick, and 33 as Concrete. The characteristics of these households observed during the
survey are shown in Table 5.

Table 5. Characteristics of different house types observed in the study area.

House Type
Proportion Avg. Plinth Level

(m)

Avg. Building
Value

(103 BDT/USD)

Avg. Property
Value

(103 BDT/USD)Size %

Mud 91 55 1.5 276/3247 110/1294
Brick 41 25 1.8 685/8059 191/2247

Concrete 33 20 1.8 1436/16,894 319/3753

BDT = Bangladesh currency = Bangladesh Taka; 1 USD = 85 BDT.

4.2.1. House Building Damage Curves

House building damage is mainly dominated by flood heights above the plinth level
(PL). Considering varying flood heights above PL of 30, 60, 90, 120, 150, 180, and 215 cm,
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damage data to house buildings were collected in a monetary value expressed in thousand
BDT. To be used for different times and space, they were normalized and expressed in
percent damage using Equation (2). The variability of the building damage data between
the sub–districts was also investigated and is presented in Figure 9a–c.
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Figure 9. Statistical comparison between the house damage datasets of two sub–districts for (a) Mud,
(b) Brick, and (c) Concrete buildings.

Because of the similar topography, land use, households, and people’s livelihoods in
the study area, an insignificant variation of the house damage data was observed between
the sub–districts (Figure 9a–c). Therefore, by considering the datasets of two sub–districts
as one, the depth–damage relationships were depicted for all three types of houses in
box and whisker plots and are presented in Figure 10a–c. The mean, median, mode, and
standard deviation of the dataset are also shown in the figure.
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Outliers are located outside the whiskers of the plot.

A Larger variation was observed in Mud house damage, particularly for 90 and 120
cm of flood heights. This might be due to the effect of household responses that were
dependent on the experience, knowledge, fatigue, and memories of the respondents [52].
Another reason could be the variety of building materials used for constructing Mud houses.
The roofs of some Mud houses are made of iron sheets, whereas some are of straws. The
walls are sometimes built with straws and sometimes with jute sticks or bamboo sticks.
The Brick and Concrete houses showed a mild variability within the damage data, which
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indicated the consistency of the collected data regardless of the regions. Although the house
damage data resulted in larger to mild variability for all three types of houses, the standard
deviations (σ) of the data were found satisfactorily low (an average of 7%) for each type
of house (Figure 10a–c, purple–colored line), which indicates that the collected date were
reliable. Hence, with these data, regression analyses with five models were performed to
identify the best depth–damage relationships for the three types of houses, and the results
are presented in Table 6 and Figure 11a–c.

Table 6. Results of five regression models performed with 165 samples of house building damage data.

Regression
Models

No. of
Samples

House
Type

Value of Parameters
SE CC CD AICC

a b c d

Linear
91 Mud −2.308075 0.5351 - - 16.27 0.89 0.80 3553.63
41 Brick −15.62295 0.4010 - - 8.55 0.94 0.89 1231.80
33 Concrete −6.782667 0.1649 - - 5.85 0.87 0.75 815.95

Logistic
91 Mud 99.00861 44.638 0.041039 - 12.46 0.94 0.88 3215.06
41 Brick 79.30398 62.377 0.029431 - 7.54 0.96 0.92 1160.66
33 Concrete 39.41865 47.180 0.023697 - 5.60 0.88 0.77 797.24

Natural
Logarithm

91 Mud −177.9507 51.972 - - 15.30 0.91 0.82 3474.91
41 Brick −131.2998 35.499 - - 12.70 0.87 0.76 1458.76
33 Concrete −53.69458 14.456 - - 7.13 0.79 0.63 907.54

Polynomial
(3rd order)

91 Mud −0.000033 0.0097 −0.118620 3.0656 12.53 0.94 0.88 3222.89
41 Brick −0.000018 0.0073 −0.476719 11.582 7.60 0.96 0.92 1165.95
33 Concrete −0.000002 0.0013 −0.043291 1.1611 5.61 0.88 0.77 798.68

Power
91 Mud 0.058441 1.4348 - - 16.24 0.89 0.80 3551.03
41 Brick 0.011702 1.6321 - - 8.14 0.95 0.90 1203.81
33 Concrete 0.002243 1.7762 - - 5.59 0.88 0.77 795.46
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The results, shown in Table 6 and Figure 11a–c, revealed the satisfactory performance
of each regression model to establish depth–damage relationships for all three types of
houses. However, the logistic model performed the best for Mud and Brick houses, produc-
ing larger CC and CD values with smaller SE and AICC values (Table 6 and Figure 11a,b).
For Concrete–type houses, on the other hand, the power, logistic, and polynomial models
produced identical CC and CD indices; however, the other two indices (SE and AICC)
showed better values for the power model than the logistic and polynomial models (Table 6
and Figure 11c). Therefore, flood damage curves for all the three types of houses were
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developed using the results of these best–performing models (i.e., the logistic model for
Mud and Brick houses and the power model for Concrete houses), as shown in Figure 12a–c.
To incorporate the uncertainty in the collected building damage dataset, an uncertainty
band of one standard deviation (±1σ) was integrated with the developed damage curves.
The curves revealed that the flood damage to Brick and Concrete houses did not reach
100% for any selected flood heights because of their building materials and construction
methods. On the other hand, the construction method and materials of Mud houses make
them most vulnerable to floods, compared to the other two types of houses.
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4.2.2. Household Property Damage Curves

Flood damage data for household property were collected in thousand BDT for all 165
samples. The data were converted into percent damage using Equation (3). This percent
damage data for each sub–district were statistically compared based on four indices, as
shown in Figure 13a–c. No significant variability was observed; hence, to see the flood
depth–damage relationship of household property, box and whisker plots were drawn for
the entire dataset and are presented in Figure 14a–c with the data’s mean, median, mode,
and standard deviation.
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Figure 14. Distribution of the damage to household property against selected flood heights for 165
samples for different house types of (a) Mud, (b) Brick, and (c) Concrete. Asterisks are the outliers of
the data. Outliers are located outside the whiskers of the plot.

The distribution of the in–house property damage dataset (Figure 14a–c) also showed
inconsistency and variability, as observed in Figure 10a–c for the building damage dataset,
and that may be due to the same reasons described in Section 4.2.1. However, the property
damage data produced an average of only 8% standard deviations. With such a minimum
value, regression analyses with the five models were also conducted using the property
damage data for all three types of houses to predict flood depth and property damage
relationships. The model results are presented in Table 7, and the damage curves predicted
by each model for the three types of households are shown in Figure 15a–c.

Table 7. Results of different regression models performed with the household property damage data
collected for 165 samples.

Regression
Models

No. of
Samples

Household
Type

Value of Parameters
SE CC CD AICC

a b c d

Linear
91 Mud 2.338476 0.5389 - - 17.52 0.88 0.78 3647.89
41 Brick −10.90645 0.5616 - - 15.13 0.92 0.84 1559.52
33 Concrete −19.97812 0.5375 - - 12.73 0.93 0.87 1175.30

Logistic
91 Mud 101.1704 60.144 0.048048 - 11.50 0.95 0.91 3112.44
41 Brick 98.02995 98.029 0.042513 - 11.83 0.95 0.90 1419.41
33 Concrete 92.86422 114.31 0.038246 - 11.09 0.95 0.90 1112.76

Natural
Logarithm

91 Mud −180.1408 53.550 - - 14.95 0.92 0.84 3445.67
41 Brick −188.6330 53.116 - - 16.07 0.90 0.82 1594.08
33 Concrete −179.4930 48.546 - - 16.80 0.88 0.77 1303.46

Polynomial
(3rd order)

91 Mud −0.000027 0.0067 0.323612 −8.1503 12.08 0.94 0.89 3176.80
41 Brick −0.000043 0.0143 −0.685676 14.1977 11.88 0.95 0.90 1422.68
33 Concrete −0.000037 0.0139 −0.937985 19.9961 11.14 0.95 0.90 1115.94

Power
91 Mud 0.079741 1.3896 - - 17.05 0.91 0.82 3469.94
41 Brick 0.270495 1.1164 - - 15.68 0.91 0.83 1579.81
33 Concrete 0.034920 1.4796 - - 13.17 0.93 0.86 1190.88
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Among all performance indices stated in Table 7, the logistic and polynomial models
performed better than the other three models. However, the less complicated logistic model
was selected as the best model over the more complicated polynomial model through the
SE– and AICC–Test. Therefore, using the results of this best–performing logistic model,
flood damage curves for the household property of the three house types were developed
and are shown in Figure 16a–c. To incorporate the uncertainty of the collected data, an
uncertainty band of one standard deviation (±1σ) was integrated with the developed
damage curves. The damage curves revealed that the owners of Mud houses are unlikely
to save household goods when the flood height exceeds 150 cm, whereas the goods of Brick
and Concrete houses can be saved to some extent since they are usually constructed with
an attic (loft) and/or half ceiling at lintel height. It is, thus, evident that the construction
method and materials of Mud houses make the buildings and in–house property most
vulnerable to floods.
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5. Validation of the Damage Curves

This study verified the developed damage curves of Boro rice by conducting a damage
assessment of the 2017 flood. In doing this, a hazard assessment and an exposure assessment
were also performed. Hazard parameters such as inundation depths and duration were
simulated by a 2D hydrological Rainfall–Runoff–Inundation (RRI) model [57,58] forced
with distributed rainfall data previously developed by the authors [28]. Figure 17a shows a
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flood inundation map generated at a 500 m grid resolution for the 2017 flood of the study
area with a duration range of 28 days (from 1 April to 28 April). The map indicated that
the study area mostly experienced a range of flood inundation depth (FID) between 0.5 m
and 4 m during the 2017 flood. Figure 17b shows an exposure map of Boro rice fields at a
500 m grid resolution by administrative districts of the study area. The raster data of the
exposure map was prepared by using a previous study [59] that mapped rice area of the
South Asia using MODIS Multitemporal data.
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By combining the flood inundation map simulated by the RRI model (Figure 17a), the
depth–duration–damage relationship obtained from the developed Boro damage curves
(Figure 8a–c) and the Boro extent map (Figure 17b), a distributed flood damage map at a
500 m resolution for Boro rice was produced for the study area. As depicted in Table 3,
the flood depth at which the damage to rice starts is 30 cm. Therefore, the marginal
flooding areas considered in this study are the areas that experience less than 30 cm of flood
inundation. These types of marginal flooding areas in a hazard map were filtered and left
out for flood damage assessment by many other studies [60–62]. Therefore, by leaving out
the grid cells experiencing a marginal flooding of less than a 30 cm FID of the simulated
hazard map, the maximum, minimum, and an average total of rice damage were estimated
and compared with those of the reported damage obtained from three different sources.
Table 8 shows the comparison. The damage to Boro rice estimated by this study for each
case (maximum, minimum, and average total) was found to satisfactorily agree with the
reported damage. The developed damage curves of house and household property were
unlikely to be validated due to the lack of reported damage data.

Table 8. Comparison between estimated and reported damage of Boro rice during the 2017 flood.

Total Boro Damage Estimated
(Million USD)

Reported
(Million USD)

Maximum 589 612 [63]
Minimum 372 356 [48]
Average 468 450 [64]

6. Conclusions

The northeastern part of Bangladesh, which is located downstream of the Meghna
River basin, is frequently affected by flood disasters. To reduce such disasters and build
back better, flood risk assessment is an important tool for the policy makers to identify
effective counter–measures and formulate future adaptation plans. Of the three main
components of a flood risk assessment model, development of flood damage functions for
the estimation of flood vulnerability was the main focus of this study. Of the two types
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of flood damage functions, the empirical type has yet to be developed in Bangladesh due
to the lack of an integrated and consistent damage data bank. Therefore, development
of the other type, the synthetic type of damage functions, which are based on based
on questionnaire survey data, was the only alternative. However, to the authors’ best
knowledge, the synthetic type of flood damage functions has not been established yet in
Bangladesh. Therefore, as a first attempt, this paper developed a synthetic type of reliable
flood damage functions for agriculture and rural households using the data collected from
a well–structured questionnaire survey conducted in northeastern Bangladesh. The survey
data included a total of 196 and 165 samples, respectively, for agriculture and household
damage due to a flood. Agriculture damage considered the damage to Boro rice (the
main crop of the study area), and household damage included the damage to buildings
and household property for three types of houses (Mud, Brick, and Concrete). Variability
and inconsistency were observed to some extent in the collected data for each damage
class (i.e., Boro rice, house building, and in–house property). However, the standard
deviations (σ) of each class were obtained as reasonably small in quantity (an average of
7–9%), indicating satisfactory reliability of the collected data. With the data, five regression
models were performed to establish reliable depth–damage relationships. The best model
based on several performance indicators was used to draw damage curves of the three
damage classes.

The Boro damage curves revealed that the damage was mainly governed by flood
depths and duration. The yield of Boro rice became near zero at a flood depth of about
70–75 cm (~ rice grain height) and a flood duration of 7 days or longer. The Boro damage
curves also revealed that the Boro paddies can tolerate water without any damage up to
~25 cm depth (~ rice tiller height) at their flowering through maturity stage. However,
at this water depth, the maturity of the rice might be delayed by about 15–20 days. This
finding can effectively be used to facilitate a huge volume of excess water during a flood
time through diversion into Boro fields inside ~423 Haors up to 25 cm depth.

The house and in–house property damage functions revealed that the household
damage is mainly dependent on inundation height above the floor level and the type of
houses. Due to their construction method and building materials, Mud houses were found
to be the most vulnerable to floods, and the damage became 100% when the flood height
exceeded 150 cm. The damage to Brick and Concrete houses, on the other hand, never
reached 100%. Therefore, by constructing Mud houses (construction cost: ~3250 USD) in
an elevated place or upgrading them to Brick houses (construction cost: ~8060 USD) or
Concrete houses (construction cost: ~16,895 USD), the flood risk to Mud houses can be
reduced significantly.

The FDFs of Boro rice were validated to damage assessment caused by the 2017
flood. The total maximum, minimum, and average damage to Boro rice was found to be
satisfactorily agreeable to those calculated by the developed FDFs. The FDFs of households
were unlikely to be validated due to the lack of observed damage data.

This study has two limitations, which are likely to be addressed in future studies.
First is the building size of the houses that was not considered in the questionnaire survey
conducted by this study. Secondly, the changes in production costs of Boro rice due to
flood were not assessed, as done by several other studies [65–67]. Since the changes in
production costs due to flood are dependent on the growth stages of the rice and since the
maturity stage of the rice was only considered in this study, it is, therefore, likely that the
changes in production costs of rice may not play an important role in flood risk assessment.
However, this can be explored and addressed in the future studies.

Despite having few limitations, the flood damage functions/curves (FDFs) developed
in this study revealed several findings that can help to reduce flood risk in the study area.
In addition, the FDFs can be useful for pre– and post–disaster flood damage assessments
and potential flood risk assessment under global change for road–mapping sustainable
and effective management of flood disasters. In a future study, the FDFs will be further
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investigated for the applicability to potential flood risk assessment under global change in
the study area.
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Appendix A

Sample questionnaire for Boro rice production damage due to floods.
[Please consider maturity stage (20–30 days before harvesting) of Boro paddy (BR-

28/BR-29), only pre-monsoon flash flood (April flood) was considered]
Name of interviewee: District:

Occupation: Sub-district: Union:

(a) Please provide general information of Boro paddy at maturity stage

1. Type of Farm holding: � Small (5–249 decimal of operating land) � Medium
(250–749 decimal of operating land) � Large (>749 decimal of operating land)

2. Full Length/height of Boro paddy = __________ ft. __________ inch
3. Average expected yield = ______________ Maund/Bigha
4. How many days your Boro paddy was inundated for?

Floods 2004 2010 2016 2017 Comments
Days

5. What was the maximum inundation depth your Boro paddy experienced?
Floods 2004 2010 2016 2017 Comments

Depth (ft.)

6. How much was the actual Boro rice production (Maund/Bigha)?
Floods 2004 2010 2016 2017 Comments

Production

(b) Please provide information of reduced Boro production due to inundation depth and
duration

Inundation
depth (ft.)

Reduced Production (Maund/Bigha)
Comments1–3 Days 4–7 Days Above 7 Days

0.75 Average expected yield = _____ Maund/Bigha
1

1.5
2

2.5
>3

Unit conversion: 1 Maund = 37.3242 kg.;1 Bigha = 33 decimal;1 ft. = 12 inch;1 inch =
2.54 cm.



Water 2022, 14, 369 21 of 24

Appendix B

Sample questionnaire for house and household assets’ damage due to floods.
(Both Pre-monsoon and monsoon floods were considered)
Name of interviewee: District:

Occupation: Sub-district: Union:

(a) Please provide general information on house and household assets:

1. Type of house (with photograph): � Packa (made of brick, cement, sand;
concrete/CI sheet roof) � Semi-Packa (made of brick column and CI sheet; CI
sheet roof) � Kaccha (made of mud and clay; Straw/CI sheet roof)

2. Floor level from ground = _______ ft. _______ inch
3. Approximate value of house = Thousand taka ___________
4. Approximate value of household assets = Thousand taka ___________
5. How many days your house was inundated for?

Floods 2004 2010 2016 2017 2018 Comments
Days

6. How maximum the inundation depth above floor level your house was experi-
enced?

Floods 2004 2010 2016 2017 2018 Comments
Depth (ft.)

7. How much was the house recovery cost after flood (Thousand taka)?
Floods 2004 2010 2016 2017 2018 Comments
Cost

8. How much was the loss of household assets in the flood (Thousand taka)?
Floods 2004 2010 2016 2017 2018 Comments
Loss

(b) Please provide information on recovery cost of house according to inundation depth

Inundation depth (ft.)
Recovery cost (Thousand taka)

after floods
Comments

<* FL
No damage→ Value of house
= Thousand taka ___________

1
2
3
4
5
6
7

8 and above

(c) Please provide information on loss of household assets according to inundation depth

Inundation depth (ft.)
Recovery cost (Thousand taka)

after floods
Comments

<* FL
No damage→ Value of assets
= Thousand taka ___________

1
2
3
4
5
6

7 and above

* FL = Floor level from ground; Unit conversion: 1 ft. = 12 inch; 1 inch = 2.54 cm.
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