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Abstract: Chemical oxygen demand (COD), reflecting the degree of waterbody contaminated by
reduction substances, is an important parameter for water quality monitoring. The existing mea-
surement method of waterbody COD takes time and is a complex system, which cannot meet the
real-time monitoring requirements of river pollution indicators. We developed the vortex t-structure
microfluidic detection chip with the help of microfluidic technology and designed the COD detection
system with a high integration degree based on the principle of ozone chemiluminescence, and we
have also carried out research on a waterbody COD quantitative detection test. The test results
show that the detection chip can generate quantitative and controllable ozone-based bubbles; it also
shows the advantages of a simple system and short test time without environmental pollution, which
provides some technical support for the online real-time monitoring of river water quality.

Keywords: ozone base micro-fine bubbles; chemiluminescence method; microfluidic chip; COD
detection

1. Introduction

Chemical oxygen demand (COD) refers to the oxidation dose consumed when water
samples are treated with strong oxidants under certain conditions, which is used as an
international standard index to evaluate the degree of organic pollution [1,2]. The tradi-
tional COD analysis method is to use dichromate or potassium permanganate and other
strong oxidation reagents to make organic matters in water or wastewater degrade and
oxidize, and these reagents have been established and standardized in many countries.
However, this method is not environmentally friendly [3,4], is inconvenient to operate [5],
and is difficult to carry out large-scale measurements quickly (in 2–4 h) [6].

In recent years, rapid, sensitive and eco-friendly COD determination methods have
been developed. At present, there are new COD determination methods reported, includ-
ing the electrochemical method [7–10], photocatalytic method [11], direct spectroscopy
method [12] and fluorescence detection method [13]. Compared with traditional meth-
ods, these methods are simple, fast and sensitive. However, for electrochemical methods,
many electrodes developed in the past, such as PbO2, AgO/CuO, Cu/CuO or diamond,
nanocopper grade electrodes, either have the potential to release toxic metal ions (such as
lead) or they are expensive to manufacture and use. As for photocatalytic method, due
to the limited light energy conversion of semiconductor materials, the oxidation capacity
of organic matter in water samples is not high, and most TiO2 based methods have some
shortcomings, such as limited amount of dissolved oxygen in the sample and narrow
analysis range. In addition, for optical detection methods, the cost is high, and it usually
requires large and expensive instruments and is difficult to apply to field monitoring.

It is a relatively novel online monitoring technology—ozone chemiluminescence
determination of COD in the waterbody. In other words, ozone dissolves in water and
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decomposes, resulting in a series of strong oxidizing active free radicals. The organic matter
oxidizes in water and the characteristic of chemiluminescence is generated [14] to realize
the determination of COD in the waterbody. However, ozone itself is difficult to dissolve in
water and is easy to decompose into oxygen at room temperature, and excessive ozone is a
toxic gas. Therefore, the premise of using ozone chemiluminescence to detect COD value
of water involves improving the utilization rate of ozone and realizing the quantitative and
controllable generation of ozone. Microfluidic technology can use microfluidic chips to
prepare microbubbles with controllable volume and generation frequency, and the device
has a simple structure with low power consumption [15–17]. In addition, the generated
microbubbles have the advantages of a large specific surface area, small rise rate [18,19] and
high mass transfer efficiency [20]. Therefore, the introduction of microfluidic technology
combined with the principle of ozone luminescence can realize the detection of COD in
water [21], with the advantages of high sensitivity, fast processing, and no secondary
pollution.

In this study, a simple, low-cost, rapid and secondary contamination-free method
for COD detection in water samples was successfully established by combining ozone
chemiluminescence with microfluidic technology. In order to achieve the quantitative and
controllable generation of ozone-based bubbles, this paper first carried out an experimental
study on the bubble formation characteristics of a T-type microchannel and verified that
the T-type microchannel structure has certain advantages in the formation of bubbles.
Second, a vortex T-type microfluidic detection chip was developed to evenly detect the
luminescent signal. Finally, combined with the principle of ozone chemiluminescence, a
highly integrated COD detection system was built, and the detection test of simulated
water COD (glucose solution) was completed. The test results showed that the measured
values of the system are consistent with those of the traditional method, and it has the
advantages of a simple system, short test time, and environmental protection without
pollution, which all provide a certain technical support for the on-line real-time monitoring
of water quality.

2. Experimental
2.1. Detection Principles

Organic compounds in sewage generally include nitrogen compounds (NOx), sulfur
compounds (Sox), hydrocarbons and so on, which can produce redox reactions with
ozone to produce chemiluminescence [22,23]. When different organic compounds react
with ozone, it is accompanied by chemiluminescence of different light intensities, and
waterbody COD values can be obtained indirectly according to the correlation between
luminescent intensity and waterbody COD [24]. Its detection principle is shown in Figure 1:
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Figure 1. Ozone chemiluminescence COD detection principle diagram. Figure 1. Ozone chemiluminescence COD detection principle diagram.

2.2. Detection System

We used the microfluidic chip as the test carrier to inject a certain concentration of
ozone and organic solution into the microchannel for the hybrid reaction. We also used the
microlight detection device to detect the produced chemiluminescence during the reaction,



Water 2022, 14, 328 3 of 13

which linearly fit the average peak of the electrical signal to the COD value detected by
potassium dichromate after the conversion of the photoelectric signal. The COD of the
organic solution to be tested was detected indirectly by using the fitting correspondence
between the two. The ozone chemiluminescence COD detection test process is shown in
Figure 2.
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The COD detection test system was constructed according to the flow chart of the
ozone chemiluminescence COD detection test, as shown in Figure 3.
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2.3. COD Detection Chip Design

In order to fully mix the ozone with the glucose solution in the microchannel, to
undergo chemiluminescence in a fixed area and to enable one to uniformly detect its
produced chemiluminescence by the optomultiplier tube, we developed a microfluidic
chip [25] with both a T-type and vortex structure, as shown in Figure 4. The width of all
microchannels in the chip is 0.5 mm, and the depth is 0.25 mm. The liquid and gas channels
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adopt a T-type flow focusing structure, and the size of the elliptic long and short axes in
the vortex region are 2.2 and 1.3 mm, respectively.
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Because there is a certain gap between the producing ozone base bubbles and the liquid
phase, we set four sets of “serpentine” microchannels at the end of the T-type microchannel
to achieve the full pre-mixing of gas-liquid two-phase fluids; the vortex microchannel
region is the core area of ozone chemiluminescence, and the aim of using the vortex-type
structure is to make the chemiluminescence evenly diverge; there are several elliptical
grooves evenly distributed in the vortex region to achieve the short residence mixing and
full reaction of the gas–liquid two-phase fluid to enhance the chemiluminescence intensity.

By using a vortex-type T-type structure microfluidic chip to perform ozone chemi-
luminescence testing, the chemiluminescence sinusoidal signal can be detected under
appropriate liquid flow and gas pressure ratio conditions. We selected a specific working
condition of liquid flow rate 4 mL/h and gas pressure 50 kPa, and the chemiluminescent
sinusoidal voltage signal detected by the photomultiplier is shown in Figure 5.
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3. Results and Discussion
3.1. Bubble Formation Characteristic Test in T-Type Channel

T-type structural microchannels are the typical channel configuration, where gas
and liquid flow through two microchannels and meet at T-type junctions, and where gas
will form micro-fine bubbles, whose diameter is smaller than the cross section size of
microchannel under the action of liquid flow shear. Compared with other configurations,
the T-type microchannel configuration is simple and easy to realize the control of the size
and formation frequency of micro-fine bubbles.
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In order to explore the formation characteristics of micro-fine bubbles under T-type
flow-focus, we selected polydimethylsiloxane (PDMS) as the microfluidic chip material.
We developed a T-type flow-focused microfluidic chip according to the structure and
distribution of the T-type flow-focused gas-liquid two-phase microchannel. The shape
structure and size of the chip are shown in Figure 6a, and the test system is shown in
Figure 6b.
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(1) Bubble Formation Time Test. During the test process of exploring the formation
time of micro-fine bubbles, we fixed the gas channel width to 0.15 mm, and selected three
gas pressure regulation gradients at 60, 65 and 70 kPa. We adjusted the liquid flow of the
equal gradient rate under any gas pressure and explored the bubble formation time under
different liquid flows and gas pressure. The change laws of bubble formation time under
different working conditions is shown in Figure 7.

Water 2022, 14, x FOR PEER REVIEW 5 of 13 
 

 

form micro-fine bubbles, whose diameter is smaller than the cross section size of micro-

channel under the action of liquid flow shear. Compared with other configurations, the T-

type microchannel configuration is simple and easy to realize the control of the size and 

formation frequency of micro-fine bubbles. 

In order to explore the formation characteristics of micro-fine bubbles under T-type 

flow-focus, we selected polydimethylsiloxane (PDMS) as the microfluidic chip material. 

We developed a T-type flow-focused microfluidic chip according to the structure and dis-

tribution of the T-type flow-focused gas-liquid two-phase microchannel. The shape struc-

ture and size of the chip are shown in Figure 6a, and the test system is shown in Figure 

6b. 

Liquid flow direction

gas flow 

direction

Bubble 

formation zone

Gas 

entrance

Mixture 

export

Liquid 

entrance

 

high-speed 

camera

microscope

Secondary 

pressure relief 

valve

Primary 

pressure relief 

valve

Micro-injection 

pump

 
Microfluidic chip 

(a) 

Test system diagram 

(b) 

Figure 6. Test environment for micro-fine bubble formation characteristics. 

(1) Bubble Formation Time Test. During the test process of exploring the formation 

time of micro-fine bubbles, we fixed the gas channel width to 0.15 mm, and selected three 

gas pressure regulation gradients at 60, 65 and 70 kPa. We adjusted the liquid flow of the 

equal gradient rate under any gas pressure and explored the bubble formation time under 

different liquid flows and gas pressure. The change laws of bubble formation time under 

different working conditions is shown in Figure 7. 

G
en

er
a

te
d

 t
im

e/
(m

s)

 

Figure 7. Micro-fine bubble formation time under different liquid flows and gas pressure. 

In Figure 7, when the pressure value of each liquid is fixed, the formation time of the 

micro-fine bubbles increases if the liquid flows with a trend of dramatic increase. Con-

versely, the bubble formation time all decreases with the increase in gas pressure. 

Figure 7. Micro-fine bubble formation time under different liquid flows and gas pressure.

In Figure 7, when the pressure value of each liquid is fixed, the formation time of
the micro-fine bubbles increases if the liquid flows with a trend of dramatic increase.
Conversely, the bubble formation time all decreases with the increase in gas pressure.

(2) Bubble Disengagement Volume Test. During the process of exploring the test of
micro-fine bubble disengagement volume, the fixed gas channel width was 0.15 mm. The
test was conducted according to the adjustment range of the liquid flow and gas pressure
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in the test planning, and finally, we obtained the change law of the micro-fine bubble
disengagement volume along with the liquid flow and gas pressure as shown in Figure 8.
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It is easy to find, by analyzing Figure 8, that when the gas pressure is constant, the
bubble disengagement volume shows the trend of an approximately linear decreasing with
the increase in the liquid flows. Conversely, when the liquid flows is fixed, the bubble
disengagement volume increases with the increase in the gas pressure and the trend to
increase is non-linear.

Through the above test, we further verified that the T-type structural microchannel
has some advantages for the formation of micro-fine bubble. Moreover, the microfluidic
chip based on PDMS material can basically achieve the stable control of bubble volume and
formation frequency, which provides a reference value for the subsequent microchannel
structure design of an ozone chemiluminescence-based COD microfluidic detection chip.

In the subsequent COD test process, if the ozone amount is insufficient, the organic
matter cannot be fully oxidized to produce chemiluminescence; and if the ozone is excessive,
it is easy to leak and pollute the environment. Therefore, the COD detection chip can also be
designed as a T-type structure microchannel and can form the ozone base bubbles through
flowing shear. In addition, wrapping the ozone with bubbles can effectively control the
ozone equivalent per unit of time and can realize the full and effective reaction of ozone
and organic matter to produce the best intensity of chemiluminescence.

3.2. COD Calibration

Before COD measurement, the glucose solution with fixed concentration gradient
needs to be COD calibrated by the standard method. Since glucose solution in simulated
water is used in this test, there will be no interference of BOD. According to the Environmental
Quality Standard of Surface water of the People’s Republic of China, the surface water quality in
China can be divided into Classes I, II, III, IV, V, and inferior Class V, and the COD indexes
of various water quality tolerance are specified as shown in Table 1.

According to the COD values of various water qualities in the table, the corresponding
relationship between glucose quality and COD is obtained through the standard chemical
equation of glucose oxygen consumption. Namely, 1 g glucose corresponds to 1.067 g cod,
in order to obtain the quality of glucose required to meet the COD indexes of each water
quality. Then, 10 groups of fixed concentration glucose solutions were prepared, and the
COD value of each concentration glucose solution was detected by potassium dichromate
standard method. Some test results are shown in Figure 9, and the detailed glucose solution
concentration and COD test data of standard method are recorded in Table 1.
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Table 1. Corresponding relationship between surface water quality standard tolerance COD and
glucose standard detection COD.

Water Quality Classification
(mg/L)

Class
I

Class
II

Class
II

Class
III

Class
IV

Class
IV

Class
V

Class
V

Inferior
Class V

Inferior
Class V

Tolerance COD 5 10 15 20 25 30 35 40 45 50
Glucose Concentration 4.69 9.37 14.06 18.74 23.43 28.12 32.8 37.49 42.17 46.86
Detection of COD by

Potassium Dichromate Method 4.3 10.2 15.3 19.7 25.5 31.2 35.5 39.8 45.1 50.8
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3.3. Optimal Gas–Liquid Flow Selection

In addition, before carrying out a COD detection test, it is necessary to find the ratio
group that can obtain the maximum average peak value of voltage waveform from the
array capacity and pressure ratio and take this group of working conditions as the standard
to detect COD.

In order to obtain the waveform signal that can significantly produce large chemilu-
minescence voltage, 150 mg/L glucose solution is configured as the reagent to be tested,
and the optimal gas production power of ozonator is 600 W; second, the ozone chemilumi-
nescence COD detection between 10 liquid flows with different gas pressures and fixed
gradients was carried out by using the control variable method, fixing the gas pressure of
40~70 kpa and changing the liquid flow of 1~10 mL/h.

After obtaining the waveform of chemiluminescence voltage conversion sinusoidal
signal under different working conditions, the discrete data of voltage sinusoidal waveform
was collected by LabVIEW data acquisition software; then the positive value data of all
voltage peaks under each working condition for statistical sorting was selected, which
enabled the obtainment of the average peak value of ozone chemiluminescence signal
under different working conditions, as shown in Table 2.
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Table 2. Average peak value of chemiluminescence voltage signal under different liquid capacity and
gas pressure (V).

Liquid Capacity (mL/h) 1 2 3 4 5 6 7 8 9 10

Gas Pressure (kPa)

40 1.61 1.03 1.68 1.71 3.09 1.23 1.31 1.09 0.52 0.45
45 1.38 0.64 1.68 1.56 1.15 1.99 0.89 1.85 0.68 0.57
50 0.31 0.31 2.31 3.68 1.77 1.62 1.58 1.84 0.82 0.74
55 1.35 1.76 0.45 1.86 2.27 0.24 1.02 1.66 1.6 1.35
60 0.46 0.9 1.57 1.32 1.09 1.15 0.97 2.14 1.34 1.25
65 0.37 0.48 0.123 0.63 1.02 1.87 0.58 1.31 0.74 0.69
70 0.45 0.09 0.51 0.56 1.41 1.88 0.92 0.54 0.5 0.23

As can be seen from Table 2, for the 150 mg/L glucose solution (a set of glucose
solution concentrations is used to find the best gas–liquid flow), the average peak value
range of voltage signal obtained under different working conditions is between 0~4 V. The
data in the Table are further graphically processed to obtain the average peak value change
law curve of chemiluminescence voltage waveform signal, as shown in Figure 10.
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Figure 10. Law curve of average peak value change of chemiluminescence voltage waveform under
different working conditions.

Figure 10 describes the change law of the average peak value of chemiluminescence
voltage signal under different working conditions. Namely, the average peak value of
voltage increases gradually from low and then decreases gradually. According to Table 2,
when the liquid capacity is 4 mL/h and the gas pressure is 50 kPa, the maximum average
peak value of the voltage signal is 3.68 V; ignoring the test system error and measurement
error, the ozone chemiluminescence COD detection test is planned to be carried out under
this working condition.

3.4. Generation of Ozone Bubbles in Microchips

Before the ozone chemiluminescence COD detection test was carried out, the formation
of ozone-base micro-fine bubbles at the T-shaped structure in the microfluidic chip was
observed by the microscope. The results are shown in Figure 11.
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It can be seen from the figure that micro-fine bubbles with regular and clear shape
could not be generated in the COD detection chip but could finally separate in the form of
a “gas column”. The reason may be that the glucose solution and ozone used in this test are
prone to redox reaction; the concentration and viscosity of glucose will decrease after the
reaction, and the microchannel width of the chip is relatively large; thus, regular bubbles
cannot be generated.

Although the micro-fine bubbles with the volume of the micron cannot be generated in
the COD microfluidic detection chip, ozone bubbles with a slightly larger volume are still
generated based on the T-shaped microchannel structure; this phenomenon is conducive
to the long-term retention of ozone in the microchannel and the full mixing reaction with
glucose solution in the vortex region, in order to improve the chemiluminescence reaction
efficiency and enhance the chemiluminescence intensity.

3.5. Test Verification

According to the specifications in Table 1, 10 groups of glucose solutions with the
same concentration for later use were prepared, as shown in Figure 12. Then, the ozone
chemiluminescence COD detection test system was built, and 6 groups of 10 groups of
solutions were selected to carry out the ozone chemiluminescence COD detection test with
the optimal liquid flow rate and gas pressure.
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In the test process, the output voltage waveform of ozone chemiluminescence was
filtered by FIR low-pass digital filter at first, and the stable output sinusoidal voltage was
obtained. Then, according to the voltage of each group of glucose solution, the output
waveform was dynamically displayed for 10 s at the sampling rate of 1000 and the sampling
number of 60. The discrete value of voltage sinusoidal signal corresponding to each group
of solution was recorded and saved by LabVIEW file storage function. Finally, the average
of all positive peaks of sinusoidal voltage discrete values of each group of solutions within
10 s was taken to obtain the average peak values of chemiluminescence signals of glucose
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solutions at the corresponding concentration, and the average peak values of voltage of six
of the groups of solutions were recorded in Table 3.

Table 3. Average peak values of sinusoidal voltage corresponding to six groups of glucose solutions
and COD value detected by potassium dichromate.

Glucose concentration (mg/L) 4.69 14.06 18.74 23.43 37.49 42.17

Voltage average peak values (V) 1.55 1.62 1.64 1.67 1.76 1.79

Determination of COD by
potassium dichromate 4.3 15.3 19.7 25.5 39.8 45.1

The average peak value of chemiluminescence signal of six groups of glucose solution
in Table 3 linearly fits with the COD value detected by potassium dichromate method in
the least square method. The fitting results are shown in Figure 13.
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Figure 13. Linear fitting result of voltage average peak values and COD detection values by potassium
dichromate method.

It can be seen from Figure 13 that the voltage average peak values corresponding
to the six groups of standard glucose solutions have a good linear fitting effect with the
detection of COD by the potassium dichromate method. The correlation between the COD
values of glucose solution and the voltage average peak values is y = kx + b, among which,
y is the COD detection value of glucose solution, x is the voltage average peak values, and
k and b are constants. According to the linear fitting results, the relationship curve equation
between the glucose standard solutions and the average peak values of chemiluminescence
voltage is as follows:

y = 170.6x − 260.2 (1)

In order to verify the detection accuracy of ozone chemiluminescence method, the
COD values of the remaining four groups of solutions are calculated by Equation (1), and
the calculation results are recorded in Table 4.

Table 4. Ozone chemiluminescence COD detection values of the remaining four groups of glucose
solutions.

Glucose Concentration (mg/L) 9.37 28.12 32.8 46.86

Voltage Average Peak Values (V) 1.58 1.70 1.73 1.82

COD Detection Values (mg/L) 9.3 29.8 34.9 50.2
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In order to observe the change trend and deviation between the COD detection value
of the four groups of glucose solutions and the detection value of potassium dichromate
method, the COD detection data of the two groups are further statistically sorted, as shown
in Figure 14.
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solutions.

Figure 14 describes the comparison between the COD test values of the potassium
dichromic method for four groups of standard glucose solutions and the COD test values
of this system and gives the deviation of the COD test values of each group of glucose
solutions. It can be observed from the figure that the test value is generally slightly less
than the standard value, and the average deviation of the COD detection value of the
four groups of glucose solution is less than ±5% by calculation, indicating that the COD
detection test system of ozone chemiluminescence has a good COD detection effect.

However, the deviation of detected values at the concentration of 9.37 mg/L glucose
solution in the figure is greater than ±5%. This phenomenon may result from the systematic
error brought by the current ozone chemiluminescence COD testing system. For example,
the poor isolation effect of the camera obscura on the external magnetic field, noise and
vibration result in signal interference, or ozone generator power instability results in ozone
concentration differences. In the future, the existing COD detection system of ozone
chemiluminescence should be further improved and optimized to further improve the
accuracy of COD detection.

4. Conclusions

In this paper, a vortex T-type microfluidic detection chip was developed by microflu-
idic technology. According to the principle of ozone chemiluminescence, we designed
a highly integrated COD detection system and carried out a quantitative test study on
simulated water COD (glucose solution). The specific contents and results are as follows:

(1) Bubble formation tests in T-shaped microchannels were carried out. The results
show that T-type microchannels have certain advantages for bubble formation. There-
fore, a T-type microchannel can also be designed for a COD detection chip, which can
generate ozone-based bubbles through flow shear action, and ozone equivalent per unit
time can be effectively controlled by bubble encapsulation of ozone, in order to achieve
full and effective reaction between ozone and organic matter and to produce the best
intensity of chemiluminescence as well as enabling avoidance of excessive ozone caused by
environmental pollution at the same time.

(2) The structural design and optimization of the COD detection chip were carried
out. Based on the T-type channel, the micro-channel structure was designed as a T-type
vortex structure with a width of 0.5 mm and a depth of 0.25 mm, and the luminous signal
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detection test was carried out. The results showed that the chip structure is beneficial in
the collection of chemiluminescence signals and can achieve a wide range of gas–liquid
flow regulation; in addition, the structure of COD testing chips also provides a reference
for the structural design of similar test chip samples.

(3) The experimental study of COD detection in a simulated water body was carried
out. The test system was used to carry out 10 groups of COD tests of glucose solution, and
the test value was compared with the standard value. The results showed that the average
deviation of the two was less than ±5%, which verified the reliability and accuracy of the
COD test system. Meanwhile, it has the advantages of a simple structure, short testing
time, and no pollution, which provides a certain technical support for on-line real-time
monitoring of water quality.
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