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Abstract: The hydroelastic response of an elastic thin plate combined with a vertical porous flexible
plate floating on a single- or a two-layer fluid is analyzed in the two-dimensional Cartesian coordinate
system. The vertical and the horizontal plates are placed in an inverted-L shape and rigidly connected
together. The problem is studied with the aid of the method of matched eigenfunction expansions
within the framework of linear potential flow theory. The fluid is assumed to be inviscid and
incompressible, and the motion is assumed to be irrotational. Time–harmonic incident waves of the
traveling mode with a given angular frequency are considered. Then, the least-squares approximation
method and the inner product are used to obtain the expansion coefficients of the velocity potentials.
Graphical results show the interaction between the water waves and the structure. The effects of
several physical parameters, including the length and the complex porous-effect parameter of the
vertical plate, on the wave reflection and transmission are discussed. The results show that a vertical
plate can effectively eliminate the hydroelastic response of the very large floating structure. The
longer a vertical plate is, the more waves are reflected by the vertical plate. With the increase in
the porous-effect parameter, the deflection of vertical plate decreases. Besides the effects of the
flexural rigidity, the lateral stress, the mooring line angle, the fluid density ratio, and the position
of interface on the wave reflection and transmission are discussed. Numerical results show the
significant mitigation effect due to the presence of the additional vertical plate.

Keywords: the methods of matched eigenfunction expansions; hydroelastic response; vertical porous
flexible; very large floating structure

1. Introduction

Very large floating structures (VLFSs) have broad research prospects in the utilization
of ocean space to deal with insufficient land. VLFSs can modularly be constructed for
airports, storage facility, military base, etc. Thus, a VLFS is potentially able to alleviate the
land scarcity caused by urban development. The large floating ice sheets and floes also play
a similar role to build polar research bases and ice airports. According to the arguments
from [1–4], VLFS have following advantages: long design life, low environmental impact,
and ease of expansion and mobility. Due to the characteristics that a VLFS can follow the
motion of a wave, which may cause structural fatigue and failure, it is necessary to install
additional structures for suppressing the response of VLFS.

According to [5], excessive deformation of the VLFS would disrupt its feasibility
as a floating runway or a floating storage facility. Moreover, it is necessary to eliminate
low-frequency vibration of residential VLFS to ensure the comfort of residence. In order
to suppress the hydroelastic responses of a VLFS, several methods have been introduced
by Wang et al. [5] such as different kinds of breakwaters and the submerged plate anti-
motion devices. A simple and effective anti-motion device is a submerged vertical plate
attached with a VLFS, and it has been widely studied to suppress the hydroelastic response
of a VLFS. Takagi et al. [6] concluded that, when a box-shaped body is attached to an
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edge of a VLFS, it reduces not only the deformation but also the shearing force and
the moment of the platform, also attaining a good anti-motion performance. Masanobu
et al. [7] proposed the additional wall with slits and the inverted-L type structures to
mitigate the hydroelastic response of the VLFSs. They found that the drift force and the
vertical displacement can be suppressed by providing slits for the anti-motion device. A
composite grid method is adopted by Lee et al. [8] to solve the hydrodynamic forces and
the nonlinear behaviors of fluid motion around a submerged plate. The added mass and
damping forces on a VLFS were increased due to the generated vortex by the submerged
plate, hence the structural responses were decreased. Taking a circle plate, for example,
Pham et al. [9] utilized the modal expansion method to analyze the hydroelastic response
of a pontoon-type circular VLFS attaching a horizontal submerged annular plate. The
hydroelastic response reduction efficiency of VLFS edged with dual inclined plates has
been investigated by Cheng et al. [10] with the aid of the method of matched eigenfunction
expansions (MMEE). The finite element–boundary element method is utilized in research
of a Wave Energy Converter (WEC)-type attachment to reduce hydroelastic responses of
the VLFS [11,12]. Feng et al. [13] investigated the hydroelastic responses of a submerged
horizontal solid/porous plate connected to a VLFS. On basis of understanding the above
research, we think it is worth studying to suppress the deformation of VLFS with an
additional vertical flexible plate.

Due to the feature that the horizontal size of the VLFS is much larger than its thickness,
the flexible deformation of VLFS should be fully considered, while the rigid-body motion
can be neglected. The pontoon-type VLFS was regarded by Ohmatsu [14] as a huge flat
plate floating over the surface of water. Squire [15] claimed that there is a conspicuous
overlap between the research in VLFS and in ice sheets. Thus, the VLFS model is also
available for the analysis of floating ice sheets by using parameters of the ice. The MMEE
was utilized to study the interaction between surface waves and an ice sheet by Fox and
Squire [16], in which the unknowns coefficients were obtained by the error function method.
The key of MMEE, which is often used in hydroelastic problems, is to obtain the expansion
coefficients. Another method to find the expansion coefficients is to derive an orthogonal
inner product in the plate-covered region [17]. Furthermore, when the physical model has
an open region, the orthogonality of the eigenfunctions in the open region can be utilized.
Xu and Lu [18] directly dealt with the problem by using the inner product which involves
the orthogonal eigenfunctions in open region. In a two-layer fluid model, the dispersion
relation have two pairs of real roots which represent the surface and interfacial traveling
wave modes, and the interaction between surface waves and interface waves is important.
Xu and Lu [19] proposed a new inner product which utilizes the orthogonality of the
eigenfunctions in the open region on a two-layer fluid. Meng and Lu [20] investigated the
hydroelastic response of an elastic plate with lateral internal forces in a small amplitude
waves on a three-layer fluid.

The porous structures which can dissipate a part of wave energy are studied to
suppress the waves. Yu and Chwang [21] suggested a newly derived boundary condition
with a complex porous-effect parameter for the porous breakwaters in a semi-circular
harbor. Yip et al. [22] investigated the trapping of surface waves by submerged vertical
porous and flexible barriers near the end of a semi-infinitely long channel of finite depth.
The full reflection always occurs when the distance between the channel end-wall and
the barrier is an integer multiple of half-wavelength. Kumar and Sahoo [23] studied the
performance of a flexible porous plate breakwater in a two-layer fluid via the least-squares
approximation method which is widely used in research of vertical barrier. The highest
wave reflection and the lowest wave transmission amplitude in the surface and interface
modes can be observed for the case which has zero porosity. The wave reflection and
transmission in a two-layer fluid was found to be strongly dependent on the location of
interface and the fluid density ratio. Mandal et al. [24] studied oblique wave scattering
by multiple porous, flexible barriers in a two-layer fluid, and the condition for the Bragg
resonance was derived in the case of multiple barriers. Singla et al. [25] analyzed the
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effectiveness of vertical solid permeable barriers located at a finite distance from a VLFS.
The porosity of the structure can reduce 15–20% of the wave energy. However, the vertical
flexible porous plate to mitigate the response of VLFS has not been considered in previous
studies. Thus, a porous structure is also included in our research because it can dissipate
the wave energy.

In the present paper, we investigate the hydroelastic responses of a semi-infinite
floating plate combined with a vertical porous flexible plate under the wave action on a
single-layer or a two-layer fluid of finite depth with the aid of the MMEE. The floating
plate is much larger than the vertical plate. We neglect the rigid body motion of a VLFS.
We assume that there is no gap between the horizonal elastic plate and the surface of water.
The pressure from the elastic plate is included in the boundary conditions. Our focus is on
how the vertical plates affects the hydroelastic response of VLFS. The inner product and the
least square approximation are used to obtain a set of simultaneous equations for different
boundary conditions, and the edge conditions are included as a part of the equation system.
The conservation of energy is used to validate method of solution. In Section 2, we study
the interaction between waves with semi-infinite or finite plates on a single-layer fluid. In
Section 3, we extend the method to the case of a two-layer fluid. Numerical calculations
for the analytical expressions and graphical results are performed in Section 4. Finally,
conclusions are given in Section 5.

2. Hydroelastic Response on a Single-Layer Fluid
2.1. Wave Interaction with a Semi-Infinite Floating Plate
2.1.1. Mathematical Formulation

We consider the hydroelastic interaction between incident gravity waves and a semi-
infinite floating elastic thin plate combined with a vertical finite porous flexible plate
in a single-layer fluid bounded by a flat rigid seabead, as shown in Figure 1. A two-
dimensional Cartesian coordinate system oxz is chosen in such a way that the x-axis points
the horizontally rightward and the z-axis point the vertically upward. The fluid with the
constant density ρ occupies the region −H < z < 0 with z = 0 being the undisturbed
upper surface and z = −H a flat bottom. The horizontal semi-infinite elastic plate which
floats on the fluid with zero draft covers the region 0 ≤ x < ∞. The vertical elastic plate
is fixed with the horizontal plate at z = 0. The response of vertical plate is analyzed by
assuming that the plate behaves as a one-dimensional beam. A clamped-mooring edge
condition is used to describe the connection with the floating plate.

x

z
Incident wave

Porous flexible plate L

z = −H
θ

Figure 1. Schematic diagram for the wave scattering by a semi-infinite elastic plate in a single-
layer fluid.

The fluid is assumed to be inviscid and incompressible and the fluid motion is con-
sidered irrotational. In the case of the simply time–harmonic motion with a frequency
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ω, we can decompose the time factor and write the velocity potential Re
{

φ(x, z)e−iωt}
and the surface elevation Re

{
ζ(x)e−iωt}, where φ(x, z) is the spatial velocity potential,

ζ(x) the spatial elevation on the surface and t the time variable. The whole flow domain
is divided into two parts: the open water region (−∞ < x < 0) and the plate-covered
region (0 < x < ∞), for which the corresponding spatial velocity potentials are denoted by
φL(x, z) and φR(x, z), respectively. Thus, the governing equation is

∇2φ = 0, (−∞ < x < ∞, − H < z < 0). (1)

The boundary condition at the flat bottom is

∂φ

∂z
= 0, (−∞ < x < ∞, z = −H). (2)

Within the framework of linear theory for small-amplitude waves, the combined
kinematic and dynamic condition on the undisturbed surface (z = 0) for the open water
region is given by

−ω2φL + g
∂φL

∂z
= 0, (−∞ < x < 0, z = 0), (3)

where g is the gravitational acceleration.
Under the assumption of no gap between the fluid and the horizontal plate, the

combined kinematic and dynamic conditions for the plate-covered region on z = 0 can be
written as

− ρω2φR +

(
D̃

∂4

∂x4 − M̃eω2 + ρg
)

∂φR

∂z
= 0, (0 < x < ∞, z = 0), (4)

where M̃e = ρ̃ed̃, D̃ = Ẽd̃3/[12(1− ν̃2)], and Ẽ, d̃, ν̃, and ρ̃e are the flexural rigidity, the
effective Young modulus, the constant thickness, Poisson’s ratio, and the density of the
horizontal plate, respectively.

As the vertical barrier is assumed to be a thin elastic plate of uniform mass subject
to uniform rigidity, the equation of motion for the vertical plate acted upon by the fluid
pressure is given by

D
d4ξ

dz4 + Q
d2ξ

dz2−Meω2ξ = iωρ(φL − φR), (x = 0, − L < z < 0), (5)

where ξ = ξ(z) is the horizontal deflection of barrier, Me = ρed, D = Ed3/[12(1− ν2)],
and E, d, ν, L, and ρe are the flexural rigidity, the effective Young modulus, the constant
thickness, Poisson’s ratio, the length, and the density of the vertical plate, respectively. Q is
related to the lateral stress of the plate (with compression at Q > 0 and stretch at Q < 0).

With the aid of the Darcy law for describing the flow past a porous structure, the
boundary condition on the vertical plate is given by

∂φ

∂x

∣∣∣
x=0±

= ik0G(φL − φR)− iωξ, (x = 0, − L < z < 0), (6)

where

G =
ε( f + iS)

k0d( f 2 + S2)
(7)

is the complex porous-effect parameter defined by Yu and Chwang [21], k0 the wavenumber
of surface progressive wave mode, ε the porosity, f the linearized resistance coefficient,
and S the inertial force coefficient. It is assumed that the porous plate has negligible
storage capacity.
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The matching relations for the continuities of pressure and velocity and along x = 0
are given by

φL|x=0− = φR|x=0+ , (−H ≤ z ≤ −L), (8)

∂φL

∂x

∣∣∣∣
x=0−

=
∂φR

∂x

∣∣∣∣
x=0+

, (−H ≤ z ≤ −L). (9)

The vanishing of deflection and slope at the clamped edge of the horizontal plate are
given by

∂φR

∂z

∣∣∣∣
x=0+ , z=0

= 0,
∂2φR

∂x∂z

∣∣∣∣
x=0+ , z=0

= 0. (10)

With the requirements of the clamped-mooring edge conditions in Mandal et al. [24],
zero deflection and zero slope at the fixed edge require the conditions as follows:

ξ

∣∣∣∣
z=0

= 0, EI
∂ξ

∂z

∣∣∣∣
z=0

= 0. (11)

At the edge near the mooring line, the bending moment is zero and the mooring
tension relating to the elastic restoring force is added to the shearing force, which yields

∂2ξ

∂z2

∣∣∣∣
z=−L

= 0, EI
∂3ξ

∂z3

∣∣∣∣
z=−L

= 2Kmξ sin2 θ, (12)

where θ is the mooring line angle and Km the stiffness of the mooring line.

2.1.2. Method of Solution

In the framework of the MMEE, the vertical eigenfunction V(k, z) for a single layer
fluid reads

V(k, z) =
cosh[k(z + H)]

cosh(kH)
. (13)

Thus the spatial velocity potentials can be written as

φL(x, z) =
(

I0eik0x + R0e−ik0x
)

Z0 +
∞

∑
i=1

RiekixZi,

= (I0eik0x + R0e−ik0x)Z0 + ∑
i

RiekixZi, (x < 0)
(14)

φR(x, z) = T0eik̃0xZ̃0 +
II

∑
j=I

Tje
−k̃jxZ̃j +

∞

∑
j=1

Tje
−k̃jxZ̃j,

= T0eik0xZ̃0 + ∑
j

Tje
−k̃jxZ̃j, (x > 0),

(15)

where

I0 = −iωζ0

[
∂V(k0, 0)

∂z

]−1

, (16)

{Z0, Zi, Z̃0, Z̃j} = {V(k0, z), V(iki, z), V(k̃0, z), V(ik̃ j, z)}, (17)
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ζ0 is the amplitudes of surface incident wave; the reflection coefficients R0 and Ri and
the transmission coefficients T0 and Tj are complex numbers to be determined, where
(i = 1, 2, 3, . . . ; j = I, II, 1, 2, 3, . . .). Z0, Zi, Z̃0, and Z̃j the vertical eigenfunctions. The
symbols ∑i and ∑j are hereinafter defined as the summation signs for i = 1, 2, 3, . . . and
j = I, II, 1, 2, 3, . . ., respectively. Let positive real numbers k0 and k̃0 be the wave numbers
of progressive wave modes. The purely imaginary numbers ki and k̃ j (i, j = 1, 2, · · · ) are
the wave numbers of evanescent modes in the open water and the plate-covered regions,
respectively. Furthermore, k̃I and k̃II correspond to two decaying progressive waves in
the plate-covered regions. For a given frequency ω, the wave numbers k0, ki, and k̃ j in
Equations (14) and (15) satisfy

ω2 = gk0 tanh(k0H) = −gki tan(ki H), (i = 1, 2, 3, . . .) (18)

ω2 =
(1 + Γk̃4

0)gk̃0 tanh(k̃0H)

1 + σk̃0 tanh(k̃0H)

= −
(1 + Γk̃4

j )gk̃ j tan(k̃ j H)

1− σk̃ j tan(k̃ j H)
, (j = I, II, 1, 2, · · · ),

(19)

where Γ = D̃/ρg and σ = M̃e/ρ. Equations (18) and (19) are called the dispersion relations
for the waves in the open water and the plate-covered regions, respectively.

By substituting the velocity potentials in Equations (14) and (15) into Equation (5), a
general solution for the governing equation of the vertical plate is of the following form

ξ(z) = W − a0(I0 + R0)Z0 −∑
i

aiRiZi + ã0T0Z̃0 + ∑
j

ãjTjZ̃j, (20)

where

W(z) =
2

∑
n=1

[Cn cosh(κnz) + Sn sinh(κnz)], (21)

κn =

√
(−1)n

√
4DMe + Q2 −Q

2D
, (22)

ai =
iρω

(ki − κ2
1)(ki − κ2

2)
, (23)

ãj =
iρω

(k̃ j − κ2
1)(k̃ j − κ2

2)
, (24)

with the unknown coefficients Cn and Sn (n = 1, 2) to be determined by the boundary
conditions of the vertical plate from Equations (11) and (12).

After substituting of the spatial velocity potentials Equations (14) and (15) into the
matching relations Equations (8) and (9), it yields:

k0(I0 − R0)Z0 − i ∑
i

kiRiZi − k̃0T0Z̃0 − i ∑
j

k̃ jTjZ̃j = 0, (−H < z < 0), (25)

(I0 + R0)Z0 + ∑
i

RiZi − T0Z̃0 −∑
j

TjZ̃j = 0, (−H < z < −L). (26)

In order to deduce the linear algebraic equations for the unknown expansion coeffi-
cients, we employ the inner product of the vertical eigenfunctions for a single layer fluid,
which was defined by Xu and Lu [18] as follows,
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Pil =
∫ 0

−H
Zi · Zldz, (i, l = 0, 1, 2, · · · ). (27)

One can easily validate that

Pil =


0, (i 6= l),

=
2kH + sinh(2kH)

4k cosh2(kH)
, (i = l).

(28)

Applying the inner product on both sides of Equation (25) with the vertical eigenfunc-
tion Zi(z) in the open water region, we have

k0(I0 − R0)P0l = k̃0T0Q0l + i ∑
j

k̃ jTjQjl , (l = 0), (29)

− kl Rl Pll = k̃0T0Q0l + i ∑
j

k̃ jTjQjl , (l = 1, 2, · · · ), (30)

where

Qjl =
∫ 0

−H
Zl · Z̃jdz, (j = 0, I, II, 1, 2, · · · ). (31)

Substituting of the spatial velocity potentials Equations (14) and (15) into the boundary
condition on the vertical porous barrier Equation (6), we obtain

ωW − (ωa0 + Gk0)I0Z0 − (ωa0 + Gk0)R0Z0 −∑
i
(ωai + Gk0)RiZi

(ωã0 + Gk0 + k̃0)TjZ̃j + ∑
j
(ωãj + Gk0 + k̃ j)TjZ̃j = 0, (−L < z < 0).

(32)

Applying the least-squares method from [23], it is derived that∫ −L

−H
|H1(z)|2dz +

∫ 0

−L
|H2(z)|2dz = minimum. (33)

Minimizing the above integral in Equation (33) with respect to Ri, which are the
unknowns in the open region, we obtain

∫ −L

−H
H1(z)

∂H∗1 (z)
∂Ri

dz +
∫ 0

−L
H2(z)

∂H∗2 (z)
∂Ri

dz = 0, (34)

where the superscript “ ∗ ” denotes the complex conjugate. We truncate the system such
that the numbers of evanescent modes in the open water and plate-covered regions are N,
and Equation (34) provides N + 2 linear equations.

Substituting for the velocity potentials from Equations (14) and (15) to Equation (10),
we obtain two other equations[

T0
∂Z̃0

∂z
−∑

j
Tj

∂Z̃j

∂z

]
z=0

= 0, (35)

[
k̃0T0

∂Z̃0

∂z
− i ∑

j
k̃ jTj

∂Z̃j

∂z

]
z=0

= 0. (36)

Thus, we derive a system of 2N + 8 equations from Equations (11), (12), (29), (30),
(34), and (35) for 2N + 8 unknown coefficient Ri, Tj, Cn, and Sn (i = 0, 1, 2, 3, . . . , N;
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j = 0, I, II, 1, 2, 3, N, . . . ; n = 1, 2). The unknowns in the velocity potentials can be obtained
by solving numerically this closed system.

2.2. Wave Interaction with a Finite Elastic Plate

In real situations, VLFS can also be modeled as a finite elastic thin plate. In this section,
we will investigate the interaction of water waves with a finite floating plate combined with
an attached vertical plate. The length of horizontal elastic plate is L̃, and the horizontal
elastic plate has no draft floats on the fluid and covers the region (0 ≤ x ≤ L̃). The whole
flow domain is divided into three parts: the left open water region (−∞ < x < 0), the
plate-covered region (0 ≤ x ≤ L̃), and the right open water region (L̃ < x < ∞). The
corresponding spatial velocity potentials are denoted by φL(x, z), φM(x, z), and φR(x, z),
respectively. The governing equation, linearized boundary conditions, and the matching
relations for the continuities of pressure and velocity for this case are the same as those
given in Section 2.1.

The matching relations for the continuities of pressure and velocity at x = L are
given by

∂φM

∂x

∣∣∣∣
x=L̃

=
∂φR

∂x

∣∣∣∣
x=L̃

, (37)

φM
∣∣∣∣
x=L̃

= φR
∣∣∣∣
x=L̃

. (38)

The clamped-free edge conditions of the horizontal plate read

∂φM

∂z

∣∣∣∣
x=0, z=0

= 0,
∂2φM

∂x∂z

∣∣∣∣
x=0, z=0

= 0, (39)

∂2φM

∂x∂z

∣∣∣∣
x=L̃, z=0

= 0,
∂3φM

∂x2∂z

∣∣∣∣
x=L̃, z=0

= 0. (40)

According to the method of eigenfunction expansion, the spatial velocity potentials
φL(x, z), φM(x, z), and φR(x, z) can be written as

φL(x, z) =
(

I0eik0x + RL
0 e−ik0x

)
Z0 + ∑

i
RL

i ekixZi, (−∞ < x < 0), (41)

φM(x, z) = TM
0 eik̃0xZ̃0 + ∑

j
TM

j e−k̃jxZ̃j

+ RM
0 e−ik̃0(x−L̃)Z̃0 + ∑

j
RM

j ek̃j(x−L̃)Z̃j, (0 ≤ x ≤ L̃),
(42)

φR(x, z) = TR
0 eik0(x−L̃)Z0 + ∑

i
TR

i e−kj(x−L̃)Zi, (L̃ < x < ∞), (43)

where RL
i , RM

j and TM
j , TR

j (i = 0, 1, 2, 3, . . . ; j = 0, I, II, 1, 2, 3, . . .) are the reflection and
transmission coefficients to be determined, respectively. The derivation and calculation for
the unknown coefficients RL

i , RM
j and TM

j , TR
j can be found in Appendix A.

3. Wave Interaction on a Two-Layer Fluid

Compared with the case of a single-layer fluid, the two-layer fluid has an interface
which divides the upper and lower layers at z = −h. The densities of the upper and lower
fluids are denoted by ρ1 and ρ2, respectively. Next, we choose the case of the semi-infinite
plate as an example, as shown in Figure 2. The matching relations of velocity and pressure
at the interface (−∞ < x < ∞, z = −h1) are given by
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∂φ

∂z

∣∣∣∣
z=−h+

=
∂φ

∂z

∣∣∣∣
z=−h−

, (44)

γ

[
Kφ− ∂φ

∂z

]∣∣∣∣
z=−h+

=

[
Kφ− ∂φ

∂z

]∣∣∣∣
z=−h−

, (45)

where γ = ρ1/ρ2 and K = ω2/g with 0 < γ < 1.

x

z
Incident wave

Porous flexible plate L

z = −H

z = −h

θ

Figure 2. Schematic diagram in a two-layer fluid.

The dispersion relations in the open water and the plate-covered regions on the
two-layer fluid are presented as follows.

ω4 − gkω2[tanh(kh) + tanh(kh2)] + [g2k2(1− γ) + γω4] tanh(kh) tanh(kh2) = 0, (46)

ω4 − k̃ω2
{

g
[
tanh(k̃h) + tanh(k̃h2)

]
+

D̃k̃4 −ω2M̃e

ρ1

[
tanh(k̃h) + γ tanh(k̃h2)

]}
+

{[
g2k̃2(1− γ) + γω4

]
+ gk̃2(1− γ)

D̃k̃4 −ω2M̃e

ρ1

}
tanh(k̃h) tanh(k̃h2) = 0.

(47)

Here, h2 = H− h. Let positive real numbers k01 , k02 , k̃01 , and k̃02 be the wave numbers
of progressive wave modes. ki and k̃ j (i = 01, 02, 1, 2, · · · ; j = 01, 02, I, II, 1, 2, · · · ) have the
same meanings as it in Section 2.

According to the method of eigenfunction expansion, φL(x, z) and φR(x, z) can be
written as

φL(x, z) =
2

∑
m=1

(
I0m eik0m x + R0m e−ik0m x

)
Z0m + ∑

i
RiekixZi, (48)

φR(x, z) =
2

∑
m=1

T0m eik̃0m xZ̃0m + ∑
j

Tje
−k̃jxZ̃j, (49)

where

I01 = −iωζ0

[
∂V(k01 , 0)

∂z

]−1

, (50)

I02 = −iωη0

[
∂V(k02 ,−h)

∂z

]−1

, (51)
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{Z01 , Z02 , Zi, Z̃01 , Z̃02 , Z̃j}
= {V(k01 , z), V(k02 , z), V(iki, z), V(k̃01 , z), V(k̃02 , z), V(ik̃ j, z)}.

(52)

The terms R0m , Ri and T0m Tj (i = 1, 2, · · · ; j = I, II, 1, 2, · · · ) are, respectively, the
reflection and transmission coefficients to be determined, whereas ζ0 and η0 are the ampli-
tudes of incident waves on the surface and interface, respectively. The vertical eigenfunction
V(k, z) in Equation (52) for a two-layer fluid is defined by Xu and Lu [19] as follows

V(k, z) =



1
2Kγ cosh kH

{K(1 + γ) cosh k(H + z)

+ (1− γ)[K cosh k(h− h2 + z)

+ k(sinh k(h− h2 + z)− sinh k(H + z))]}, (−h < z < 0),

cosh k(H + z)
cosh kH

, (−H < z < −h).

(53)

The inner product on the two-layer fluid is from [19]

Pil =
∫ −h

−H
Zi · Zldz + γ

∫ 0

−h
Zi · Zldz, (i, l = 01, 02, 1, 2, · · · ). (54)

The derivation and calculation for the unknown coefficients RL
i , RM

i and TM
j , TR

j can
be found in Appendix B.

When a VLFS is modeled as a finite elastic thin plate, φL(x, z), φM(x, z) and φR(x, z),
can be written as

φL(x, z) =
2

∑
m=1

(
I0m eik0m x + RL

0m
e−ik0m x

)
Z0m + ∑

i
RL

i ekixZi, (−∞ < x < 0), (55)

φM(x, z) =
2

∑
m=1

TM
0m

eik̃0m xZ̃0m + ∑
j

TM
j e−k̃jxZ̃j

+
2

∑
m=1

RM
0m

e−ik̃0m (x−L̃)Z̃0m + ∑
j

RM
j ek̃j(x−L̃)Z̃j, (0 ≤ x ≤ L̃),

(56)

φR(x, z) =
2

∑
m=1

TR
0m

eik0m (x−L̃)Z0m + ∑
i

TR
i e−kj(x−L̃)Zi, (L̃ < x < ∞). (57)

We can also use the least-squares method as Equations (A19) and (A22) in which Ri is
replaced with RL

i , for m = 1, 2

Hm(z) =−
2

∑
n=1

(ωa0n + Gk01)(I0n + RL
0n
)Z0n −∑

i
(ωai + Gk0)RL

i Zi

+
2

∑
n=1

(ωã0n + Gk01 + k̃0n)T
M
0n

Z̃0n + ∑
j
(ωãj + Gk0 + k̃ j)TM

j Z̃j

+
2

∑
n=1

[
(1 + eik̃0n L̃)ωã0n + eik̃0n L̃Gk01 − eik̃0n L̃ k̃0n

]
RM

0n
Z̃0n

+ ∑
j

[
(1 + eik̃j L̃)ωãj + eik̃j L̃Gk01 − eik̃j L̃ k̃ j

]
RM

j Z̃j + ωW,

(58)

H3(z) =
2

∑
n=1

(I0n + RL
0n
)Z0n + ∑

i
RL

i Zi −
2

∑
n=1

TM
0n

Z̃0n −
∞

∑
j=0

TM
j Z̃j

−
2

∑
n=1

eik̃0n LRM
0n

Z̃0 −∑
j

eik̃j LRM
j Z̃j.

(59)
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4. Results and Discussion
4.1. Rate of Energy Flux

We take the case on the two-layer fluid as an example. For the sake of clarity, the total
depth of the two-layer fluid H, the gravitational acceleration g and the density of the upper
fluid ρ1 are chosen as the characteristic quantities to non-dimensionalize relative quantities.
The nondimensional variables and parameters are

x̂ =
x
H

, ŷ =
y
H

, ẑ =
z
H

, k̂ = kH, ω̂ = ω

√
H
g

, ζ̂0 =
ζ0

H
, η̂0 =

η0

H
,

ˆ̃d =
d̃
H

, ˆ̃ρe =
ρ̃e

ρ
, ˆ̃D =

D̃
ρ1gH4 , d̂ =

d
H

, ρ̂e =
ρe

ρ
, D̂ =

D
ρ1gH4 ,

ĥ =
h
H

, L̂ =
L
H

, ˆ̃L =
L̃
H

, φ̂ =
φ

H
√

gH
, Q̂ =

Q
ρ1gH2 , K̂m =

Km

ρ1gH
.

(60)

The symbol “ˆ” over the nondimensional variables and parameters will be dropped
hereinafter for clarity. The parameters used for the computation are d̃ = d = 0.01,
ρ̃e = ρe = 0.9, D̃ = D = 0.05, Km = 0.01, and θ = 45◦. We assume that the incident waves
predominantly consisting of surface and interfacial modes have the same frequency ω.

According to the kinematic boundary conditions, the amplitudes of surface and
interfacial elevations, AS(x) and AI(x), can be given by

AS(x) =
1
ω

∥∥∥∥∂φ(x, 0)
∂z

∥∥∥∥, (61)

AI(x) =
1
ω

∥∥∥∥∂φ(x,−h1)

∂z

∥∥∥∥. (62)

The amplitudes of the bending moment M(x) and the shear force Q(x) on the hori-
zontal plate can be given by

M(x) =
D
ω

∣∣∣∣∣∣∣∣∂φ(x, 0)
∂x2∂z

∣∣∣∣∣∣∣∣, (63)

Q(x) =
D
ω

∣∣∣∣∣∣∣∣∂φ(x, 0)
∂x3∂z

∣∣∣∣∣∣∣∣, (64)

The amplitudes of the bending moment M(z) and the shear force Q(z) on the vertical
plate can be given by

M(z) = D
∣∣∣∣∣∣∣∣ ∂

∂z2 ξ(z)
∣∣∣∣∣∣∣∣, (65)

Q(z) = D
∣∣∣∣∣∣∣∣ ∂

∂z3 ξ(z)
∣∣∣∣∣∣∣∣. (66)

To validate the above-mentioned method of solution, numerical examples are pre-
sented here. The conservation of the energy for the two-layer fluid under consideration can
be written as

EO = EP, (67)

where EO and EP are the rates of energy flux in the open water and plate-covered regions,
respectively. EO and EP can be written as



Water 2022, 14, 294 12 of 25

E{O,P} =
∫ −h

−1
Re

∂Φ{O,P}
2
∂t

(
∂Φ{O,P}

2
∂x

)∗
+

(
∂Φ{O,P}

2
∂t

)∗
∂Φ{O,P}

2
∂x

dz

+ γ
∫ ζ0

−h
Re

∂Φ{O,P}
1
∂t

(
∂Φ{O,P}

1
∂x

)∗
+

(
∂Φ{O,P}

1
∂t

)∗
∂Φ{O,P}

1
∂x

dz,

(68)

where Φm(x, y, z, t) is the velocity potential for the upper (m = 1) and lower (m = 2)
fluids, and the superscripts “O” and “P” denote the open water and plate-covered regions,
respectively.

4.2. Response on a Single-Layer Fluid

In the present subsection, we consider the case of the semi-infinite plate model on a
single-layer fluid, and set ζ0 = 0.01, ω = 1.25, G = 0, L = 0.9, and N = 15 for calculations.
The relative error of the energy is

|EO − EP|
min[EO, EP]

≈ 1.964%. (69)

Figure 3 illustrates the variation of the amplitudes of surface versus x and the horizon-
tal deflection of the vertical plate versus z for various values of N, where N is the number
of terms for the evanescent modes. It is obvious in Figure 3a that the changes of the curves
are tiny enough to neglect. Figure 3b displays the horizontal deflection of the vertical plate
which decreases slowly with the increment of N. It is depicted that the curves keep almost
the same for N ≥ 15 which reveals that the results of surface amplitudes converge quickly
and the higher-order terms have a tiny contribution to the solution. Therefore we choose
the parameter N = 15 in the following cases.

(a) Surface wave amplitude (b) The deflection of vertical plate

Figure 3. Wave amplitudes AS(x) and deflection of vertical plate ξ(z) for the different number of
terms N.

Figure 4 reveals the effect of the length L of the vertical plate on the amplitudes of
surface and the horizontal deflection of vertical plate. In this figure, the case without the
vertical plate is also depicted for comparison reasons. It can be derived from Figure 4a
that as L increases, the maximal amplitude of surface elevations increases in the left open
water region while it decreases in the region behind the wall. The graph shows that the
effect of the wall appears to increase reflection and decrease transmission. The changes
of the curves between L = 0.7 and L = 0.9 is tiny enough to neglect. The reason for this
phenomenon is that the energy of incident wave is mainly concentrated at the free surface
and is reduced shapely with the decrement of the depth, and there is no need to extend the
vertical plate to the bottom. From Figure 4b, it can be observed that the horizontal deflection
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and the rotating angle of vertical plate caused by fluid motion increase significantly with
the increment of the length of the vertical plate.

(a) Surface wave amplitude (b) The deflection of vertical plate

Figure 4. Wave amplitudes AS(x) and deflection of vertical plate ξ(z) for the different length of
vertical plate L.

Figures 5–7 show the variations of the amplitudes of surface versus x and the hori-
zontal deflection of the vertical plate versus z with different values of the frequency ω for
finite and semi-infinite plates. It can be observed from Figure 5a that for a low frequency,
i.e., ω = 0.75, the wave scattering due to the finite and semi-infinite plates is almost iden-
tical, except on the right open water region. It can be seen from the comparison among
Figures 5a, 6a, and 7a that as ω increases, the amplitudes in the left open water region
increase while an opposite trend is observed in the right open water region, indicating
that the wave with the low ω has good penetration. From Figures 5b, 6b, and 7b, it can be
observed that the horizontal deflection of vertical plate decreases with the increment of ω.
In summary, higher-frequency waves are more effectively suppressed by structures and
cause the smaller deformation of the vertical plate.

(a) Surface wave amplitude (b) The deflection of vertical plate

Figure 5. Wave amplitudes AS(x) and deflection of vertical plate ξ(z) with ω = 0.75.
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(a) Surface wave amplitude (b) The deflection of vertical plate

Figure 6. Wave amplitudes AS(x) and deflection of vertical plate ξ(z) with ω = 1.25.

(a) Surface wave amplitude (b) The deflection of vertical plate

Figure 7. Wave amplitudes AS(x) and deflection of vertical plate ξ(z) with ω = 1.75.

Figure 8 displays the variations of the bending moments and the shear forces along
the vertical and the horizontal plates. It is observed that the maximal amplitudes of the
bending moments and the shear forces have a small variation between two plate models
in Figure 8a,b. For the finite plate model, the bending moments and the shear forces is
zero at the free edges. The reflected wave from the right edge caused the periodic changes
in the bending moments and the shear forces. The additional vertical plate significantly
decreases the bending moments and the shear forces on the floating plate, and it can
reduce the load on the horizontal plate. Due to the clamped-mooring edge conditions, the
bending moments and the shear forces decrease from top to bottom of the vertical plate
in Figure 8c,d. The bending moments measure zero at the bottom of the vertical plate.
Figure 8d shows a small non-zero shear force caused by the mooring line at the bottom of
the vertical plate.

The porosity of a submerged plate has a significant effect in mitigating the wave
loads on the structure. Figure 9 shows the variations of the amplitudes of surface and
the horizontal deflection of the vertical plate with different values of the porous-effect
parameter G of the vertical porous flexible plate. The highest wave reflection and lowest
wave transmission are observed for the case with G = 0. With the increment of the porous-
effect parameter, the amplitudes in the plate-covered region and the right open water
region increase, as shown in Figure 9a. Thus, the effect of the vertical plate on reducing
the hydroelastic response is weakened. The reason for the phenomenon is that the higher
porous-effect parameter G means higher porosity, which indicates that more water can
flow through the vertical plate. Figure 9b illustrates that the deflection of the vertical plate
near the surface decreases with the porous effect parameter G 6= 0. With the introduction
of porous structure, the wave loads on the vertical board has been reduced, and a part of
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the total wave energy is dissipated by the porous structure. Thus, in the design of marine
structures, the reduction in wave loads and the effect of wave elimination need to be chosen
according to the specific situation.

(a) Bending moment of horizontal plate (b) Shear force of horizontal plate

(c) Bending moment of vertical plate (d) Shear force of vertical plate

Figure 8. Bending moment and shear force of the vertical and the horizonal plate.

(a) Surface wave amplitude (b) The deflection of vertical plate

Figure 9. Wave amplitudes AS(x) and deflection of vertical plate ξ(z) for the different G.

Figure 10 illustrates the variations of the amplitudes of surface versus x and the
horizontal deflection of the vertical plate versus z for different values of the flexural rigidity
D. Figure 10a shows that, as the flexural rigidity increases, the amplitude ratio of surface in
the region behind the wall decreases, and an opposite trend can be observed on the left
open water region. It can be observed that the horizontal deflection and rotating angle
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of vertical plate decreases while the flexural rigidity D increases in Figure 10b. Thus, the
increment of D is mainly affected in the region sheltered by vertical plates.

(a) Surface wave amplitude (b) The deflection of vertical plate

Figure 10. Wave amplitudes AS(x) and deflection of vertical plate ξ(z) for the different flexural
rigidity D.

Figure 11 demonstrates the variations of the amplitudes of surface versus x and the
deflection of vertical plate versus z with different values Q for the lateral stress of the
vertical plate (with compression at Q > 0 and stretch at Q < 0). In this case, we have

Q < Qcr = 2
√

ρ1gD̃ = 0.45. Figure 11a displays that the fluctuation of the surface
elevations decreases slightly on the plate-covered region when Q becomes bigger. With
the increment of Q, the horizontal deflection of vertical plate in the interface increases in
Figure 11b. In general, the lateral stress has a little effect to reduce the deformation of the
wall, unless the rigidity of the anchor chain is greatly increased.

(a) Surface wave amplitude (b) The deflection of vertical plate

Figure 11. Wave amplitudes AS(x) and deflection of vertical plate ξ(z) for the different lateral
stress Q.

Figure 12 displays the variations of the amplitudes of surface versus x and the hori-
zontal deflection of vertical plate versus z with different values of the mooring line angle θ.
From Figure 12a, it can be observed that the amplitudes of surface on the open water and
plate-covered regions exhibit no changes with an increasing θ. Figure 12b shows, with the
increment of θ, the horizontal deflection of vertical plate decreases. In fact, the effect of the
mooring line angle is tiny enough to ignore.



Water 2022, 14, 294 17 of 25

(a) Surface wave amplitude (b) The deflection of vertical plate

Figure 12. Wave amplitudes AS(x) and deflection of vertical plate ξ(z) for the different mooring line
angle θ.

4.3. Response on the Two-Layer Fluid

In this section, we analyze the hydroelastic response on a two-layer fluid. We calculate
the wave scattering due a semi-infinite plate and set ζ0 = 0.01, η0 = 0.0001, γ = 0.9,
h = 0.5, G = 0, L = 0.9, ω = 1.25, L = 12, and N = 15.

Figure 13 illustrates the variations of the amplitudes of surface and interfacial ele-
vations versus x and the horizontal deflection of vertical plate versus z with different
values of the porous-effect parameter G of the vertical porous flexible plate. It is similar
to the situation in the single-layer fluid. The highest wave reflection and the lowest wave
transmission are observed for the case with G = 0. With the increment of the porous-effect
parameter, the amplitude in the plate-covered and right open water region increase. With
the introduction of porosity, the deflection of the wall decreases with the increment of
porous-effect parameter G from Figure 13c. Thus, the main function of porosity is to reduce
the load on the wall, and a medium porosity is a suitable choice to keep the balance between
the reduction in the load and the suppression of the waves.

Figure 14 shows the variations of the amplitudes of surface and interfacial elevations
versus x and the horizontal deflection of vertical plate versus z for different depth h of the
interface. It is observed that, as h increases, the interfacial elevations decrease. The reason
for this situation is that the wave energy decreases with a decreasing depth, and the wave
energy in the interface is correspondingly reduced. The change of the surface amplitude
with the increment of h is tiny enough to ignore. The deflection of the vertical plate changes
slightly with the increment of h in Figure 14c. In general, the position of the interface has a
small effect on the results.

Figure 15 illustrates the variations of the amplitudes of surface and interfacial eleva-
tions versus x and the horizontal deflection of vertical plate versus z for various values of
L in the case of the incident waves of interfacial wave mode, where L is the length of the
vertical plates. It reveals, in Figure 15a, that the interfacial incident wave has a small effects
on the surface. Figure 15b shows the interfacial waves is mostly reflected by the vertical
plate for L = 0.7 when the vertical barrier pierces through the interface. The interfacial
waves are almost unhindered for L = 0.3.
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(a) Surface wave amplitude (b) Internal wave amplitude

(c) The deflection of vertical plate

Figure 13. Wave amplitudes AS(x) and deflection of vertical plate ξ(z) for the different G.

(a) Surface wave amplitude (b) Internal wave amplitude

(c) The deflection of vertical plate

Figure 14. Wave amplitudes AS(x), AI(x), and deflection of vertical plate ξ(z) for the different depth
ratio h.
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(a) Surface wave amplitude (b) Internal wave amplitude

(c) The deflection of vertical plate

Figure 15. Wave amplitudes AS(x), AI(x), and deflection of vertical plate ξ(z) for the different length
of a vertical plate L in the case of the incident waves of the interfacial wave mode.

Figure 16 shows the variations of the amplitudes of surface and interfacial elevations
versus x and the horizontal deflection of vertical plate versus z for various values of γ in
the case of the incident waves of the interfacial wave mode, where γ is the density ratio
of the upper to the lower fluid layers. We set ω = 0.75 and L = 0.7. Figure 16b shows
that, with decrease in γ, the interfacial elevations decrease in the open region and increase
in the plate-cover region. The interfacial incident wave has a small effect on the surface
for γ = 0.9 in Figure 16a. The amplitudes of the surface significantly increases with the
decrement of γ. The deflection of the vertical plate also increases with the decrement of γ,
as shown in Figure 16c.

Figure 17 demonstrates the variations of the amplitudes of surface and interfacial
elevations versus x and the horizontal deflection of vertical plate versus z for various values
of γ. Figure 17b shows that with the increase in γ, the interfacial elevations decrease, and it
reveals that the density ratio significantly affects the wave amplitude in the interface. The
amplitudes of surface remain almost the same for γ = 0.7 and γ = 0.9 in Figure 17a. In
the case of γ = 0.5, it is observed that the amplitudes of surface vary periodically due to
the interfacial incident wave. The reason for the situation is that the energy of interfacial
waves, according to the wave number displayed on the graph, transfers to surface and
propagates in surface wave mode. The deflection of the vertical plate has little change due
to the increment of γ, as shown in Figure 17c.
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(a) Surface wave amplitude (b) Internal wave amplitude

(c) The deflection of vertical plate

Figure 16. Wave amplitudes AS(x), AI(x) and deflection of vertical plate ξ(z) for the different density
ratio γ in the case of the incident waves of the interfacial wave mode.

(a) Surface wave amplitude (b) Internal wave amplitude

(c) The deflection of vertical plate

Figure 17. Wave amplitudes AS(x), AI(x) and deflection of vertical plate ξ(z) for the different density
ratio γ.
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5. Conclusions

We have analytically studied the hydroelastic response of semi-infinite and finite
floating elastic plate combined with a vertical elastic porous plate in a single-layer and
a two-layer fluids with the aid of the method of matched eigenfunction expansions. The
vertical plate is fixed to an edge of the floating plate and moored at its lower edge. The
wave reflection and transmission by the structure was found to be strongly dependent on
the length L and the porous effect parameter G of the vertical plate. Due to the low wave
energy near the seabed, the changes of the curves between L = 0.7 and L = 0.9 is small,
hence a further extension of the vertical plate has little effect on the solution. The vertical
plate can decrease the bending moments and the shear forces on the floating plate.

The highest wave reflection and lowest wave transmission are observed for the case
with the zero porous-effect parameter (G = 0). For a higher porosity of the wall, more
water will flow through the vertical plate. Thus, the amplitudes of surface and interfacial
elevations increase as the value of G increases. The structural rigidity, the lateral stress and
the mooring line angle of the vertical plate mainly affect the response of the vertical plate,
and have a modest effect on the response of the floating plate. For a two-layer fluid system,
the fluid density ratio and the position of interface mainly effect on the interfacial waves.
As the lower position of interface descends, the interfacial amplitude decreases. When the
vertical barrier pierces through the interface, the interfacial waves is mostly reflected by the
vertical plate. With the decrease in γ, the interfacial incident waves have more effects on
the surface. In particular, in the case of γ = 0.5, the amplitudes of surface on the left open
water region vary periodically due to the fact that the wave energy transfers from interfacial
modes to surface ones and propagates in surface wave mode. The rate of energy flux in the
results is approximatively conserved, and the method has high rate of convergence.

These observations are of significant importance in the design for eliminating the
vibration of VLFS. Based on the discussion of the results presented here, we can conclude
that, in order to keep a balance between the reduction in the wave loads on the wall and
the suppression of the deflection on the VLFS, the addition of a submerged plate with the
length of L = 0.7 and a medium porous effect parameter is a suitable choice in design.
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Appendix A. Derivation Process of the Unknown Coefficients for a Finite Plate Model
in a Single-Layer Fluid

The derivation process of the unknown coefficients in the potential function expansion
in Equations (41)–(43) is shown in this appendix. Substituting of the velocity potentials
from Equations (41)–(43) into Equation (5), a general solution for Equation (5) is of the
following form



Water 2022, 14, 294 22 of 25

ξ(z) =W − a0(I0 + RL
0 )Z0 + ∑

i
aiRL

i Zi + ã0TM
0 Z̃0 + ∑

j
ãjTM

j Z̃j

+ (1 + eik̃0 L̃)ã0RM
0 Z̃0 + ∑

j
(1 + eik̃j L̃)ãjRM

j Z̃j.
(A1)

Substituting for the velocity potentials from Equations (41)–(43) into the matching
relations Equations (8), (9), and (38), and performing the inner product on both sides of to
obtain a set of simultaneous equations, we obtain

k0

(
I0 − RL

0

)
P0l = k̃0eik̃0 L̃TM

0 Q0l + i ∑
j

k̃ je
ik̃j L̃TM

j Qjl

− k̃0TM
0 Q0l − i ∑

j
k̃ jTM

j Qjl , (l = 0),
(A2)

−kl RL
l Pll = k̃0eik̃0 L̃TM

0 Q0l + i ∑
j

k̃ je
ik̃j L̃TM

j Qjl

− k̃0RM
0 Q0l − i ∑

j
k̃ jRM

j Qjl , (l = 1, 2, · · · ),
(A3)

klTR
l Pll = k̃0eik̃0 L̃TM

l Q0l + i ∑
j

k̃ jTM
j eik̃j L̃Qjl

+ k̃0RM
0 Q0l + i ∑

j
k̃ jRM

j Qjl , (l = 0, 1, 2, · · · ),
(A4)

TR
l Pll = eik̃0 L̃TM

l Q0l + i ∑
j

TM
j eik̃j L̃Qjl

+ RM
0 Q0l + i ∑

j
RM

j Qjl , (l = 0, 1, 2, · · · ).
(A5)

Applying the least-squares method, we obtain

∫ −L

−H
H1(z)

∂H∗1 (z)
∂RL

i
dz +

∫ 0

−L
H2(z)

∂H∗2 (z)
∂RL

i
dz = 0, (A6)

where the superscript “ ∗ ” denotes the complex conjugate,

H1(z) =(I0 + RL
0 )Z0 + ∑

i
RL

i Zi − TM
0 Z̃0 −∑

j
TM

j Z̃j − eik̃0LRM
0 Z̃0 −∑

j
eik̃j LRM

j Z̃j, (A7)

H2(z) =(−ωa0 − Gk0)(I0 + RL
0 )Z0 + ∑

i
(−ωai − Gk0)RL

i Zi + (ωã0 + Gk0 + k̃0)TM
0 Z̃0

+ ∑
j
(ωãj + Gk0 + k̃ j)TM

j Z̃j +
[
(1 + eik̃0 L̃)ωã0 + eik̃0 L̃Gk0 − eik̃0 L̃ k̃0

]
RM

0 Z̃0

+ ∑
j

[
(1 + eik̃j L̃)ωãj + eik̃j L̃Gk0 − eik̃j L̃ k̃ j

]
RM

j Z̃j + ωW.

(A8)

Appendix B. Derivation Process of the Unknown Coefficients in the Two-Layer Fluid

In this appendix, we take the case with a semi-finite plate to show how to dertermine
the unknown coefficients in a two-layer fluid. Substituting of Equations (48) and (49)
into Equation (8), and performing the inner product on both sides of to obtain a set of
simultaneous equations, we have
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k01

(
I01 − R01

)
P01l =

2

∑
m=1

k̃0m T0m Q0m l + i ∑
j

k̃ jTjQjl , (l = 01), (A9)

k02(I02 − R02)P02l =
2

∑
m=1

k̃0m T0m Q0m l + i ∑
j

k̃ jTjQjl , (l = 02), (A10)

− kl Rl Pll =
2

∑
m=1

k̃0m T0m Q0m l + i ∑
j

k̃ jTjQjl , (l = 1, 2, · · · ), (A11)

where

Qjl =
∫ −h

−H
Zl · Z̃jdz + γ

∫ 0

−h
Zl · Z̃jdz, (j = 01, 02, I, II, 1, 2, · · · ). (A12)

When the vertical barrier pierces through the interface (namely L > h), the deflections
of the vertical plate above (−h < z < 0) and beneath (−L < z < −h) the interface are
denoted by ξ1(z) and ξ2(z) as follows

ξ(z) =
{

ξ1(z), (−h < z < 0),
ξ2(z), (−L < z < −h).

(A13)

The vertical plate is continuous at z = −h, so we have

ξ1

∣∣∣∣
z=−h

= ξ2

∣∣∣∣
z=−h

,
∂nξ1

∂zn

∣∣∣∣
z=−h

=
∂nξ2

∂zn

∣∣∣∣
z=−h

, (n = 1, 2, 3). (A14)

By substituting the velocity potentials in Equations (48) and (49) into Equation (5) with
ρ = ρi (i = 1, 2), we have, for n = 1, 2,

ξm(z) =Wm −
2

∑
n=1

a0nm(I0n + R0n)Z0n −∑
i

aimRiZi

+
2

∑
n=1

ã0nmT0n Z̃0n + ∑
j

ãjmTjZ̃j,

(A15)

Wm(z) =
2

∑
n=1

[Cmn cosh(κnz) + Smn sinh(κnz)]. (A16)

Here, Cmn and Smn (m = 1, 2; n = 1, 2) are constants determined by the boundary
conditions of the vertical plate, and aim and ãjm are defined by

aim =
iρmω

(ki − κ2
1)(ki − κ2

2)
, (A17)

ãjm =
iρmω

(k̃ j − κ2
1)(k̃ j − κ2

2)
. (A18)

By applying the least-squares method, we obtain

∫ 0

−h
H1(z)

∂H∗1 (z)
∂Ri

dz +
∫ −h

−L
H2(z)

∂H∗2 (z)
∂Ri

dz +
∫ −L

−H
H3(z)

∂H∗3 (z)
∂Ri

dz = 0, (A19)
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where

Hm(z) =−
2

∑
n=1

(ωa0nm + Gk0n)(I0n + Ri)Z0n −∑
i
(ωaim + Gk01)RiZi

+
2

∑
n=1

(ωã0nm + Gk01 + k̃0nm)T0nmZ̃0nm + ∑
j
(ωãjm + Gk01 + k̃ j)TjZ̃j (A20)

+ ωWm, (m = 1, 2),

H3(z) =
2

∑
n=1

(I0n + R0n)Z0n + ∑
i

RiZi −
2

∑
n=1

T0n Z̃0n −∑
j

TjZ̃j. (A21)

Equation (20) can be applied to describe the deflection of the vertical plate when the
latter is assumed over the interface (namely L < h). By applying the least-squares method,
we obtain ∫ 0

−L
H2(z)

∂H∗2 (z)
∂Ri

dz +
∫ −L

−H
H3(z)

∂H∗1 (z)
∂Ri

dz = 0, (A22)

where H2 and H3 are given by Equation (A20) with m = 2 and Equation (A21), respectively.
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