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Abstract: The periodic flexural-gravity waves propagating along a frozen channel are investigated.
The channel has a rectangular cross section. The fluid in the channel is inviscid, incompressible and
covered with ice. The ice is modeled by a thin elastic plate whose thickness varies linearly. Two cases
have been considered: the ice thickness varies symmetrically across the channel, being the smallest at
the center of the channel and the largest at the channel walls; the ice thickness varies from the smallest
value at the one wall to the largest value at another wall. The periodic 2D problem is reduced to the
problem of the wave profiles across the channel. The solution of the last problem is obtained by the
normal mode method of an elastic beam with linear thickness. The behavior of flexural-gravity waves
depending on the inclination parameter of the ice thickness has been studied and the results have been
compared with those for a constant-thickness plate. Dispersion relations, profiles of flexural-gravity
waves across the channel and distributions of strain in the ice cover have been determined. In the
asymmetric case, it is shown that for long waves, the most probable plate failure corresponds to
transverse strains at the thin edge of the plate, which can lead to detachment of the ice from the
corresponding bank. For short waves, the longitudinal stresses within the plate, localized closer to
the thick edge, become maximum. This can lead to cracking of the plate in transverse direction. In
the symmetric case, the maximum strains are achieved inside the plate—close to the center, but not
necessarily in the midpoint.

Keywords: flexural-gravity waves; channel; ice cover; non-uniform thickness of ice; elastic plate;
dispersion relations; critical speed

1. Introduction

The problem of flexural-gravity wave propagation in the ice covers has been actively
investigated for the last decades in the context of the development of Polar territories and
the possibility of long-term use of the Northern Sea Route. These studies have also become
particularly relevant in connection with the discovery and development of natural oil and
gas reserves in the Arctic and, possibly, Antarctic shelf. The main part of the flexural-gravity
wave research was carried out for ice sheets of infinite extent. However, majority of the ice
tanks, where scientific and technical experiments with ice cover are conducted, have finite
dimensions and rectangular cross-sections. For this reason, studying the features of waves
in channels and how they differ from waves in unbounded sheets is highly important. In
addition, channels can also be considered as a simple model of rivers in northern countries,
where they are frozen in winter time and can be used for transportation giving access to
remote areas. Maintaining the integrity of the ice cover is an important issue when moving
cargo and people on ice. In this context, there are many problems related to conditions of
ice cover preservation and/or destruction, including those caused by propagating waves
and moving load. The boundary conditions on the channel walls significantly affect the
results of these studies.
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One of the first consideration of flexural-gravity waves was done by Greenhill in [1].
Models of waves in ice cover were further developed by Kheysin [2] where ice was modeled
by a linear elastic plate. Reviews of works on hydroelastic waves in unbounded regions can
be found in [2–6]. The model of linear elastic plate is still the main one, although viscoelas-
tic and poroelastic models of the ice cover are also considered by many authors [7–12].
Nonlinear models, models that take into account ice compression and the presence of cracks
in ice sheets, also have been actively developed [13–23].

The presence of walls and particular conditions on them change the mathematical
formulation of the problem and, consequently, the properties of the solution [24,25]. It was
shown in [5,26] that for waves in the ice channel with rectangular cross-section, there is an
infinite number of hydroelastic waves with the same length and different forms across the
channel propagating along the channel. In this case, each waveform has its own dispersion
relation and critical velocity of propagation. The significance of critical speeds is clearly
demonstrated in the problems of load motion along the ice cover.

In the framework of the linear theory of elastic plates, if a load moves at the critical
speed, the deflection of the floating ice plate and the stresses in it increase beyond all
bounds. In reality, they are limited by dissipation or non-linearity, which linear models do
not take into account. In order to break the ice sheet by a moving load, such as hovercraft
or submarine, this load must move along the ice sheet at a certain speed, which is close
to the critical speed. Then, the stresses in the ice plate will be large enough to break the
ice. This method of ice destruction was called “resonant method of ice-breaking” and
was mentioned the first time in [27], among several patents for the ice destruction by
hovercraft. The resonant method was studied theoretically, numerically and experimentally
by Kozin and his group [28–31]. Experimental results on effective hovercraft motion
was provided in [32] with data being obtained in the ice tank at the Institute for Marine
Dynamics (IMD) in Newfoundland. It was shown that air-cushion vehicles can be effective
icebreakers. Investigations of critical speeds for loads moving along ice channels was
performed in [10,33,34]. It was shown that if the load moves at a speed lower than the first
critical speed, the ice plate deflection is formed in the vicinity of the load, and if the load
moves at a supercritical speed, a system of hydroelastic waves propagating from the load
is formed. The number of waves in this system is finite and depends on the relation of the
load velocity to the critical velocities for flexural-gravity waves in the channel. Effect of ice
cracks on ice destruction by a load moving with resonant speed was investigated in [35].
The possibility of ice destruction by turbulent fluctuations of atmospheric pressure in wind
conditions was studied. It was shown that an ice sheet with initial cracks can be destructed
more easily than a continuous one due to the possible growth of cracks.

However, under natural conditions, the ice cover is not homogeneous. Due to different
reasons, its thickness, density and stiffness are not constant. This paper considers the case
of an ice cover whose thickness varies linearly, and ice density and stiffness are assumed
to be constant. The problem is solved by the method of normal modes, see [5,26]. The
normal modes describe free oscillations of a dry elastic plate with appropriate boundary
conditions. Within this method, the problem reduces to a system of algebraic equations
with pre-calculated coefficients. Therefore, analytical formulae for normal modes of the
plate with linearly varying thickness will be an advantage of this method and is important
for successful solution of the problem.

Vibrations of the plate with varying thickness and beam with varying cross-sections
have been studied in engineering problems of narrow high-rise buildings. In [36], it is
written: “In fact, there are very few equations of vibrating plates with variable cross-section
where exact solutions can be obtained. These exact plate solutions are available only for
certain plate shapes and boundary conditions (e.g., Timoshenko and Woinowsky-Krieger,
1959)”. The vibrations of a beam of linear rigidity in longitudinal direction were studied
in the book by Timoshenko [37] by approximate methods through the representation of
the solution in the form of a power series on the parameter of cross-section variation. The
coefficients of this series are functions of the longitudinal coordinate. They are determined
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from a system of differential equations. These functions are sought in the form of series
using the method of separation of variables. The vibration characteristics of stepped
thickness plates of rectangular shape with simply supported edges were investigated
in [38].

The equations of static equilibrium of shear and flexural vibrations of a beam with
linearly or polynomially varying thickness (h + x)n along the beam were presented in [39]
in the form of a self-adjoint differential equation of second-order, here h is a minimum
value of a beam thickness and x is a coordinate along a beam. It has been shown in [36]
that for this varying thickness and rigidity of a beam behaving as (h + x)3n, equations
of vibrating plates can be reduced to Bessel’s equations or Euler’s equation. The general
solutions were derived in the form of Bessel’s and modified Bessel’s functions. Similar
functions for the investigation of free vibrations of plates with linearly varying thickness
were used in [40]. In [41], these functions are defined by using the shoot method.

Vibrations of plates with variable thickness were also studied in [42], where orthogonal-
ity of the modes with the weight equal to the plate thickness was proved. This orthogonality
property of the normal modes is used in the present paper.

In this paper, we shall study a problem of hydroelastic waves propagating along
a frozen channel with linearly varying ice thickness within two cases of the variation:
symmetric and assymmetric. The main attention is given to the effect of variable thickness
on characteristics of periodic waves. The formulation of the problem is given in Section 2.
The method of the solution is presented in Section 3. The problem using the described
methods is reduced to an eigenvalue and eigenvector problem in matrix form which we
solved numerically. The analysis of the numerical results is carried out for parameters
of the problem modeling an experimental ice tank at the Sholem Aleichem Amur State
University in Birobidzhan (see [31]). The results of the analysis are discussed in Section 4.
Dispersion relations, phase and group speeds, profiles of the waves across the channel,
maximum strains in the ice cover and their directions are studied.

2. Formulation of the Problem

Periodic hydroelastic waves propagating along a frozen channel are considered. The
channel is of rectangular section with a finite depth H (−H < z < 0) and a finite width 2b
(−b < y < b), the channel is of infinite extent in the x direction. Here, Oxyz is a Cartesian
coordinate system. The scheme of the channel is shown in Figure 1a. Liquid in the channel
is inviscid, incompressible and covered with ice. Flow beneath the plate is potential. The ice
is modeled by a thin elastic plate with given constant density ρi and rigidity D(y), where
D(y) = Eh3

i (y)/[12(1− µ2)], E is the Young’s modulus for ice, µ is the Poisson ratio for ice
and hi(y) is the non-uniform thickness of the ice cover. We are concerned with the linear
change in the ice thickness across the channel. The function hi(y) will be specified later.
The ice thickness is constant along the channel.

Figure 1. Scheme of the channel (a). Schemes of the profile of the ice across the channel (b).

The problem is studied within the linear theory of hydroelasticity. Deflections of the
ice plate are governed by the Kirchhoff–Love theory (see, e.g., [37]). The basic assumption
of this theory is that the plate is thin, and then, deflections of the plate are described by
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the vertical displacement of the midsurface of the plate z = w(x, y, t). It is also assumed
that the ice deflections are much smaller than all linear dimensions in the plate plane. In
the case of periodic hydroelastic waves propagating along the channel, it is expected that
the ice deflections w(x, y, t) caused by these waves have small amplitude compared to the
wavelength and width of the channel 2b. Another condition is that the wave frequencies
must be low so that the linearized Bernoulli equation can be used.

The mathematical formulation of the problem consists of two coupled parts. The first
part is related to the determination of ice deflections (vertical displacement of a plate from
a state of rest, z = 0). The ice deflection w(x, y, t) satisfies the equation of a thin elastic plate

∂Qx

∂x
+

∂Qy

∂y
− hi(y)ρi

∂2w
∂t2 + p(x, y, 0, t) = 0 (−∞ < x < ∞,−b < y < b, z = 0). (1)

Qx =
∂Mx

∂x
+

∂Mxy

∂y
, Qy =

∂Myx

∂x
+

∂My

∂y
. (2)

Functions Qx(x, y) and Qy(x, y) are transverse shears. Corresponding bending Mx(x, y),
My(x, y) and twisting moments Mxy caused by elastic forces are

Mx = −D
(

∂2w
∂x2 + µ

∂2w
∂y2

)
, My = −D

(
∂2w
∂y2 + µ

∂2w
∂x2

)
, Mxy = −(1− µ)D

∂2w
∂x∂y

. (3)

Here, p(x, y, 0, t)—liquid pressure at the ice/liquid interface—is determined through
the linearized Bernoulli integral

p(x, y, 0, t)
ρ`

= −∂ϕ

∂t
(x, y, 0, t)− gw, (4)

where ρ`—density of the liquid, g—acceleration of gravity and ϕ(x, y, z, t)—flow potential
in the channel. The ice plate is frozen to the channel walls. This is modeled by the clamped
conditions of ice deflection at the walls

w = 0, wy = 0, (y = ±b). (5)

The second part of the problem is related to the description of the hydrodynamics in
the channel. The potential ϕ(x, y, z, t) satisfies the Laplace equation in the channel domain

∂2 ϕ

∂x2 +
∂2 ϕ

∂y2 +
∂2 ϕ

∂z2 = 0 (−∞ < x < ∞,−b < y < b,−H < z < 0), (6)

boundary conditions of impermeability at rigid boundaries of the channel (walls and
bottom) and linearized kinematic condition at the ice/liquid interface

∂ϕ

∂y
= 0 (y = ±b),

∂ϕ

∂z
= 0 (z = −H),

∂ϕ

∂z
=

∂w
∂t

(z = 0). (7)

To justify the linearization of the interface condition, let us write out the original
nonlinear condition

∇ϕ ·~n = ~Vb ·~n,

where Vb is the body velocity, Vb = (0, 0, wt). This condition is satisfied at the lower surface
of the plate z = w(x, y, t)− hi(y)/2 with corresponding normal vector and can be written
in the form

∂ϕ

∂z
=

∂w
∂t

+
∂w
∂x

∂ϕ

∂x
+

(
∂w
∂y
− 1

2
dh′i
dy

)
∂ϕ

∂y
.

All derivatives ϕx, ϕy, ϕz, wx, wy, wt in this equation are small with the same order.
So, the second and third term on the RHS of this equation can be neglected as second-
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order terms. We can neglect the term with h′i(y) and use the linearized condition (7) if this
derivative is small with the same order, but we can state in advance that for the cases of
linear change of plate thickness considered in this paper (see Figure 1b), h′i(y) < h∗/b and
we should assume hi(y)� b. How small h′i(y) is in our calculations will be discussed in
Section 4.

Unknown functions w and ϕ are sought in the form of periodic hydroelastic waves
propagating along the channel with constant amplitude A, wavenumber k and frequency ω

w(x, y, t) = ARe(F(y)ei(kx+ωt)), (8)

ϕ(x, y, t) = ARe(iΦ(y, z)ei(kx+ωt)). (9)

Using this form, we shall determine the dispersion relations ω(k) and other character-
istics of the periodic waves. The main focus of the study is on the effect of the non-uniform
ice thickness hi(y) on the listed parameters.

Two cases of linear change in the ice thickness are considered (Figure 1b). The first
case is a case of a symmetric change in the ice thickness with the smallest value at the center
line of the channel and the largest at the walls of the channel. The second case is a case
of an asymmetric change in the ice thickness with the smallest value at one of the walls
(in the considered case at the left edge of the plate) and the largest value at the opposite
wall. Further, we will refer to these cases as Case 1 (symmetric) and Case 2 (asymmetric),
respectively. The thickness of the ice is a function of the transverse coordinate y. The main
parameters of the thickness are its average h∗, minimum h0 and maximum h1 values (see
Figure 1b). Then, hi(y) can be written in the form:

Case 1

hi(y) = h0(1 + α1|y/b|), α1 =
h1 − h0

h0
, hi(0) = h0, hi(±b) = h1. (10)

Case 2

hi(y) = h∗(1 + α2y/b), α2 =
h1 − h0

h1 + h0
, hi(−b) = h0, hi(b) = h1. (11)

The results of the problem will be compared with each other in both cases for the same
values of h0, h∗ and h1. Note that for the same values of these parameters, α1 6= α2.

The problem (1)–(9) is solved in dimensionless variables. Further, all variables and
functions are written in dimensionless form and have the same notations as the dimensional
ones. Length scale is taken to be half the channel width b, the time scale is 1/ω, the
amplitude A is the scale of the ice deflection, ρ`gA is the scale of the liquid pressure, Abω
is the scale of the flow velocity potential. The scale hsc of the function hi(y) is chosen
depending on the case: in Case 1—h0, in Case 2—h∗. Note that the scales of the ice
deflection and the flow velocity potential are proportional to the amplitude A due to the
linearity of the problem, and the parameter A can be arbitrary. In dimensionless variables,
the channel cross-sectional boundaries are: (−1 < y < 1), (−h < z < 0), where h = H/b is
the dimensionless channel depth. The functions of the profiles of the ice deflection and the
velocity potential F(y) and Φ(y, z) are dimensionless. The functions F(y) are determined
up to the amplitude; therefore, a normalization condition should be imposed on them. In
general, the dimensionless wavenumber κ, κ = kb, and the profile function F(y) can be
complex. However, these solutions correspond to waves whose amplitude increases as
x → +∞ or x → −∞. Therefore, we will consider only solutions with positive and real k
and real F(y). Note that in the considered formulation, there are no initial conditions and
boundary conditions for |x| → ∞.

A similar problem for an ice plate of constant thickness was studied in [5]. In this
paper, we restrict ourselves to solving the problem with the clamped conditions at the
channel walls (5). Other boundary conditions can be investigated by a similar method, as
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it was done, for example, for a plate of constant thickness and free boundary conditions
in [5].

In the dimensionless variables equation of the plate, Equation (1) reads

β

[
h3

i (y)
(

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
+ 6h2

i (y)
dhi
dy

(
∂3w

∂x2∂y
+

∂3w
∂y3

)
+6hi(y)

(
dhi
dy

)2(∂2w
∂y2 + µ

∂2w
∂x2

)]
+ δγ

∂2w
∂t2 = p(x, y, 0, t), (12)

where β = D∗/[ρ`gb4], D∗ = Eh3
sc/[12(1− µ2)], γ = bω2/g and δ = hscρi/[bρ`]. The

problem (1)–(9) is rewritten in terms of F(y) and Φ(y, z). Substituting (8) and (9) into
(12) gives

β

[
h3

i (y)
(

κ4F− 2κ2F′′ + F′′′′
)
+ 6h2

i (y)h
′
i

(
−κ2F′ + F′′′

)
+6hi(y)(h′i)

2
(

F′′ − µκ2F
)
− δγ

β
F
]
= γΦ(y, 0)− F, (13)

where prime stands for the derivative with respect to y. Note that h′i = sign(y) · α1 in Case
1 and h′i = α2 in Case 2. The rest of the equations of the problem in the dimensionless
variables are

F = 0, Fy = 0 (y = ±1), (14)

Φyy + Φzz = κ2Φ (−1 < y < 1,−h < z < 0), (15)

Φy = 0 (y = ±1), Φz = 0 (z = −h), Φz = F (z = 0). (16)

The solution of the problem (13)–(16) depends on the three dimensionless parameters
β, γ and δ. We shall find dispersion relations ω(k) for some typical values of parameters
of the problem. The values of these parameters correspond to the parameters of the
experimental ice tank at the Sholem Aleichem Amur State University in Birobidzhan [31].
The only difference is the non-uniform ice thickness, the effect of which will be investigated.
In further calculations, the average ice thickness h∗ is usually equal to the declared constant
ice thickness in the ice tank.

All presented results are valid for the real parameters with conditions A << 2b, A <<
λ and hi << 2b, where λ is a wavelength of the propagating wave and the dimensionless
ice deflection w is of order 1. In addition, the square of the slope of ice deflections must
be negligible. If one wants to apply the results of this article to plates with large plate
thickness, one needs to take into account these conditions. For example, for the plate of
1 m thickness, the ice deflections comparable with the plate thickness should be caused by
hydroelastic waves with their wavelength greater than 10 m and the considered area of the
plate must be also greater than 10 m in both plane directions. Moreover, one needs to be
careful with possible large values of h′i(y) which can occur in a plate with large thickness
because, in this case, the kinematic condition for vertical displacement of the plate in the
form wt = ϕz cannot be used.

3. Method of the Solution

Rearranging terms in Equation (13), one can notice a combination of terms in the form

hi(y)[h2
i (y)F′′′′ + 6hi(y)h′iF

′′′) + 6(h′i)
2F′′]. (17)

The part in square brackets in (17) gives the LHS of the Bessel differential equation in
the considered case of linear change in thickness hi(y). Therefore, it is convenient to seek
the solution of Equation (13) in the form of the infinite series
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F(y) =
∞

∑
n=1

anψn(y), (18)

where an are principal coordinates and ψn(y) are the solutions of the spectral problem

h2
i (y)ψ

′′′′
n + 6hi(y)h′iψ

′′′
n + 6(h′i)

2ψ′′n = θ4
nψn (−1 < y < 1), (19)

ψn = 0, ψ′n = 0 (y = ±1), (20)

where θn are the eigenvalues of the problem (19)–(20). This spectral problem is obtained
from the problem of natural frequencies and clamped modes of an elastic beam with
linear thickness (see, e.g, [36]). It can be shown (see [36,40]) that the non-trivial solution of
Equation (19) is

ψn(y) =
1
ξ
[An J1(ηnξ) + Bn Y1(ηnξ) + Cn I1(ηnξ) + Dn K1(ηnξ)], n = 1, 2, 3. . . (21)

where ηn = 2θn/α, ξ =
√

1 + αy (α is equal to α1 or α2 depending on the case) and J, Y, I,
K are Bessel functions. Parameters An, Bn, Cn and Dn are determined from the boundary
conditions and the normalization condition for the functions ψn. The modes ψn(y) will be
determined for Case 1 and Case 2, separately. These functions for a beam with constant
thickness are well known, see, e.g., [5].

Case 1. In this case, Equation (19) is separated and ψn(y) satisfies one of the two
equations depending on the sign of y

(1 + α1y)2ψ′′′′n + 6α1(1 + α1y)ψ′′′n + 6α2
1ψ′′n = θ4

nψn (0 ≤ y < 1), (22)

(1− α1y)2ψ′′′′n − 6α1(1− α1y)ψ′′′n + 6α2
1ψ′′n = θ4

nψn (−1 < y < 0). (23)

It is easy to show that both even and odd functions can be a solution of system of
Equations (22)–(23). These solutions will be found independently of each other using the
same algorithm. First, we find a solution of Equation (22), then, in the even or odd way,
depending on the case, we continue the found solution to negative values of y. For both
solutions, the boundary conditions at y = 1 are the same, but at y = 0, they are different.

Odd modes ψn(y) are solutions of spectral problem with governing Equation (22),
boundary conditions at (y = 1)

An J1(ηnξ+) + Bn Y1(ηnξ+) + Cn I1(ηnξ+) + Dn K1(ηnξ+) = 0, (24)

An J0(ηnξ+) + Bn Y0(ηnξ+) + Cn I0(ηnξ+)− Dn K0(ηnξ+) = 0, (25)

where ξ+ =
√

1 + α1 and boundary conditions of zero ice deflections and zero bending
moment at the center of the beam, (y = 0)

An J1(ηnξ0) + Bn Y1(ηnξ0) + Cn I1(ηnξ0) + Dn K1(ηnξ0) = 0, (26)

An J0(ηnξ0) + Bn Y0(ηnξ0) + Cn I0(ηnξ0)− Dn K0(ηnξ0)− ηnψ1n(ξ0) = 0, (27)

ψ1n(ξ0) = −An J1(ηnξ0)− Bn Y1(ηnξ0) + Cn I1(ηnξ0) + Dn K1(ηnξ0).

Here, ξ0 = 1. Even modes ψn(y) are the solutions of the same spectral problem with
conditions (26)–(27) replaced by conditions of zero slope and zero transverse shears of a
beam with non-uniform thickness at its center

An J1(ηnξ0) + Bn Y1(ηnξ0) + Cn I1(ηnξ0) + Dn K1(ηnξ0)− ηnψ0n(ξ0)/2 = 0, (28)

ψ1n(ξ0)− ηnψ2n(ξ0)/2 = 0, (29)

ψ0n(ξ0) = An J0(ηnξ0) + Bn Y0(ηnξ0) + Cn I0(ηnξ0)− Dn K0(ηnξ0),
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ψ2n(ξ0) = −An J0(ηnξ0)− Bn Y0(ηnξ0) + Cn I0(ηnξ0)− Dn K0(ηnξ0).

Case 2. Modes ψn(y) are the solutions of the spectral problem

(1 + α2y)2ψ′′′′n + 6α2(1 + α2y)ψ′′′n + 6α2
2ψ′′n = θ4

nψn (−1 < y < 1), (30)

with boundary conditions (20) in the form

An J1(ηnξ±) + Bn Y1(ηnξ±) + Cn I1(ηnξ±) + Dn K1(ηnξ±) = 0, (31)

An J0(ηnξ±) + Bn Y0(ηnξ±) + Cn I0(ηnξ±)− Dn K0(ηnξ±) = 0, (32)

where ξ± =
√

1± α2. Note that there are no even or odd solutions in Case 2.
The system of the equations for An, Bn, Cn and Dn (for example, Equations (31)–(32)

in Case 2), can be written in a matrix form with the matrix denoted by A for both cases. The
eigenvalues ηn are the solutions of the equation det(A) = 0. Parameters An, Bn, Cn and
Dn are the coordinates of the corresponding eigenvectors. There will be infinitely many
solutions of this system.

The functions ψn(y) are orthogonal with respect to a weighted inner product, where
the weight function is equal to hi(y)

1∫
−1

(1 + αy)ψn(y)ψm(y)dy = 0 (n 6= m) (33)

and An, Bn, Cn, Dn are normalized in such a way that the integral in (33) is equal to 1 for
n = m. The orthogonality condition (33) is correct in both cases, if the weight (1 + αy) is
replaced by (1 + α1|y|) in Case 1 or by (1 + α2y) in Case 2. In Case 1, this orthogonality can
be considered on the segment [0, 1]. It is easy to show that for both even and odd solutions,
in Case 1, the following condition holds

1∫
0

(1 + α1y)ψn(y)ψm(y)dy = 0 (n 6= m).

To check this condition, one should use the boundary conditions for ψn at y = 0. When
n = m, the last integral product is normalized by 1/2.

The modes ψn(y) depend on α1,2. One can estimate that ψn(y) tend to normal modes
of the thin elastic beam with constant thickness h∗ when α → 0. The calculations show
that dispersion relations for both cases of the non-uniform beam approximate dispersion
relations of the beam with constant thickness, hi = 0.0035 m, with visual accuracy for
h∗ = 0.0035 m, h0 = 0.00345 m and h1 = 0.00355 m in both cases. These values correspond
to α2 ≈ 0.028 and α1 ≈ 0.014.

The kinematic condition (16) shows that the profile Φ(y, z) of the flow potential in the
cross-section of the channel can be sought in the form

Φ(y, z) =
∞

∑
n=1

anΦn(y, z) (34)

and Φn are the solutions of the boundary value problems

∂2Φn

∂y2 +
∂2Φn

∂z2 = κ2Φn, (35)

∂Φn

∂y
= 0 (y = ±1),

∂Φn

∂z
= 0 (z = −h),

∂Φn

∂z
= ψn (z = 0).
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It can be shown that

Φn(y, z) =
1
2

Φc
n0(z) +

∞

∑
k=1

Φc
nk(z) cos(πky) +

∞

∑
l=1

Φs
nl(z) sin[(πl − π/2)y],

where

Φc
nk =

ψc
nk

µc
k

cosh µc
k(z + h)

sinh µc
kh

, Φs
nl =

ψs
nl

µs
l

cosh µs
l (z + h)

sinh µs
l h

,

ψc
nk =

1∫
−1

ψn(y) cos(πky)dy, ψs
nl =

1∫
−1

ψn(y) sin[(πl − π/2)y]dy,

µc
k =

√
κ2 + (πk)2 µs

l =
√

κ2 + (πl − π/2)2.

In Case 1, only one type of coefficient should be considered, Φc
nk or Φs

nk, depending
on the even or odd solution, respectively. In Case 2, both series of coefficients should be
taken into account.

For each of the two cases, its own pair of functions F and Φ are determined. Substitut-
ing (17) and (34) into Equation (13), we arrive at the infinite system of equations to find the
principal coordinates an

∞

∑
n=1

an

{
β(1 + α1|y|)θ4

nψn + κ4β(1 + α1|y|)3ψn

−2κ2β
(
(1 + α1|y|)3ψ′′n + 3α1 · sign(y)(1 + α1|y|)2ψ′n

)
−κ26α2

1µβ(1 + α1|y|)ψn − δγ(1 + α1|y|)ψn − γΦn(y, 0) + ψn

}
= 0. (36)

The last equation is written for Case 1. For Case 2, one needs to replace α1 with α2,
replace the absolute values of y with the usual ones, and remove the function sign(y).
Multiplying both sides of Equation (36) by ψn(y), integrating the result from −1 to 1 in y
and reducing the number of the equations to a finite value N, we arrive at the following
algebraic problem

N

∑
n=1

an

{
βDnδnm + κ4βKnm + 2κ2βSnm − δγδnm + M(1)

nm − γM(2)
nm

}
= 0, (37)

where

Dn = θ4
n − µκ26α2

1. Knm =

1∫
−1

(1 + α1|y|)3ψnψmdy, Snm =

1∫
−1

(1 + α1|y|)3ψ′nψ′mdy,

M(1)
nm =

1∫
−1

ψnψmdy, M(2)
nm =

1∫
−1

Φn(y, 0)ψmdy.

The resulting system of linear equations for the principal coordinates an in the series
(18) can be written in matrix form{

β
[

D + κ4K + 2κ2S
]
+ M1 − γ[δI + M2]

}
a = 0, (38)

where all matrices D = diag{Dn}, K = {Knm}, S = {Snm}, M1 = {M(1)
nm}, M2 = {M(2)

nm}
are symmetrical, I—identity matrix. Nontrivial solution of the resulting system of equations
exist if the determinant of the matrix in curly brackets is equal to 0. Considering this
condition, frequencies ω are calculated for each κ. In general, there will be infinitely
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many such relations, ωn(κ). In the reduced case, we calculate only first N frequencies.
The accuracy of the calculations increases with the number N. Dispersion relations are
numbered being the smallest for n = 1 and increasing with the number n for the same κ
in both cases. Each dispersion relation corresponds to the mode of ice oscillations in the
channel with unique profile Fn(y) across the channel.

4. Numerical Results and Discussion

Calculations of periodic hydroelastic waves and their characteristics were carried out
for parameters of the problem corresponding to the experimental ice tank at the Sholem
Aleichem Amur State University in Birobidzhan (see [31]): H = 1 m, 2b = 3 m, ice
thickness in the tank is chosen to be equal to 0.0035 m. The parameters of ice and liquid in
the calculations were: ρi = 917 kg/m3, ρ` = 1024 kg/m3, µ = 0.3, E = 4.2 × 109 Pa. The
units of all presented values of h0, h∗ and h1 are meter. The amplitude of the hydroelastic
waves A can be arbitrary. Minimum and maximum values of the ice thickness change
in the calculations. Typical values of the thickness and the corresponding values of the
parameters α describing the change in the thickness, which were used in our calculations,
are listed in Table 1. The average thickness h∗ in all calculations did not change and is equal
to 0.0035 m unless otherwise mentioned. Inclination angles of the plate surface are denoted
by η1 and η2 in Case 1 and in Case 2, respectively. For the considered parameters of the
problem in the presented calculations, the inclination angle never exceeds 0.002 rad. As it
was formulated in Section 2, the linearized kinematic condition at the ice/liquid interface
including inclination of the plate is

wt = 0.5h′i(y)ϕy + ϕz.

The derivative h′i(y) is equal to tan(η1,2) depending on the case. For the considered
parameters of the problem, η1,2 � 1 and tan(η1,2) is of order η1,2. Therefore, the term with
h′i(y) is negligible in the kinematic condition.

Table 1. Parameters of the thickness used in the study.

h0 (m) h1 (m) h0/h∗ α1 α2 η1 (rad) η2 (rad)

0.00345 0.00355 0.98 0.0028 0.014 0.00003 0.000016
0.0025 0.0045 0.7 0.8 0.28 0.00067 0.00033
0.0015 0.0055 0.43 2.7 0.57 0.001 0.00067
0.0005 0.0065 0.14 12 0.86 0.002 0.001

The algorithm of calculations has a few steps: first, the values of ηn are calculated from
the boundary conditions (20) in Cases 1 and 2, then, the functions ψn are determined in each
case and the dispersion relations ωn(k) are calculated as values for which the determinant
of the matrix in (38) is equal to 0. Hydroelastic waves with wavelengths λ > 0.63 m are
considered. It means 0 < k < 10 m−1. Frequencies ωn(k) are determined for each value
of k from this interval with a given step ∆k. The calculations were carried out for waves
with the frequencies from the interval 0 < ω < 100 s−1. For each k from the indicated
interval of wavenumbers, the frequency interval was divided into subintervals of length
1 and the determinant was calculated at the boundary points. We chose the subintervals
on which the determinant changes its sign, and the roots of the equation det(R) = 0,
where R is the matrix in Equation (38), were calculated by the bisection method with an
accuracy 10−12. The number of the modes N in the series (18) was varied from 5 to 50 to
validate the convergence of the results. The first dispersion curves coincide with visual
accuracy already starting from N = 5. In general, for most of the presented results, N =
10–15. The profiles of the hydroelastic modes Fn(y) are calculated by Equation (18) with
the coefficients an calculated as eigenvectors of the matrix Equation (38), and normalized
so that max|Fn(y)| = 1. Some of the calculations will be compared with the corresponding
parameters for an ice plate with constant thickness, calculated by the method from [5].
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Normalized profiles Fn of the hydroelastic modes for different values of h0 and with
k = 3 m−1 are shown in Figure 2. The blue lines on the left show the results for Case 1, the
red lines on the right show the results for Case 2. Black lines show the results for the plate
with constant thickness h∗ (note that these line are covered by the solid colored lines for
h0 = 0.00345 m). The parameter h0 increases from a small value up to the value of h∗ and is
shown on the legend. For h0 = h∗, the ice plate is of constant thickness. Corresponding
values α are listed in Table 1. In Case 1, an increase of the change in ice thickness leads
to narrowing of visible oscillations of the ice and increasing in the curvature of the ice
deflections near the center line of the channel, where the ice has the smallest thickness. In
the even case, when several local extrema exist, the maximum deflections will always be at
the center of the channel. While h0 is decreasing, the local extrema of the ice deflections
shift towards the center of the channel in Case 1. In Case 2, an increase of the change in
ice thickness leads to a shift of the point of maximum deflections to the left edge of the
ice plate, where ice becomes thinner. In the same place of the plate, the curvature of the
deflections increases. On the opposite wall, the ice deflections become smaller. In the case
of several local extrema, the maximum deflections will also be in a place on the plate with
the smallest ice thickness.

Figure 2. Profiles Fn(y) of the first three hydroelastic modes across the channel for different values of
h0 and k = 3 m−1. Blue lines (left column)—Case 1, red lines (right column)—Case 2. Black lines
show the results for the plate with constant thickness h∗ (note that these line are covered by the solid
colored lines for h0 = 0.00345 m).

Dispersion relations for the first four hydroelastic modes in both cases are shown
in Figure 3. Blue lines show results for Case 1, red lines show the results for Case 2,
black—results for the plate with constant thickness equal to h∗. The dispersion relations
for the non-uniform plate are shown for two different values of h0, h0 = 0.0025 m and
h0 = 0.0005 m. It is seen that for h0 = 0.0025 m, all three lines are almost indistinguishable
if k < 3 m−1. In general, within the considered intervals of wavenumbers and frequencies,
the dispersion relations in Case 1 and in Case 2 are close to each other but can be rather
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different from the same parameters of a plate with constant thickness. When k is near to 0,
the dispersion relations in Case 1 are slightly larger than ones in Case 2, but with a further
increase in the wavenumber, the dispersion relations in Case 2 increase faster and become
larger. The change of h0 has the same effect on the dispersion relations in both cases. The
change in ice thickness increases rapidly when we decrease the minimum value h0 and
correspondingly increase the maximum value h1 of the ice thickness. This change leads
to a decrease in the wave frequencies for fixed wavenumbers. The lower modes are more
subjected to this change. For example, for h0/h∗ ≈ 0.7, the dispersion relations of the third
and fourth modes are visually identical with ones for a plate with constant thickness equal
to h∗, see Figure 3a.

Figure 3. Dispersion relations for the first four hydroelastic modes. Black lines show results for the
ice with constant thickness h∗ = 0.0035 m, blue lines—Case 1, red lines—Case 2. (a)—h0 = 0.0025 m,
(b)—h0 = 0.0005 m.

The effect of the change in ice thickness on the characteristics of hydroelastic waves
is shown in detail in Figure 4. This figure shows dispersion relations (a), phase (b) and
group (c) speeds for the first two modes in both cases. Blue lines correspond to Case 1, red
lines correspond to Case 2, black line corresponds to the results for a plate with constant
thickness h∗. Parameters of the ice thickness are listed in the Table 1 and on the legend
of the first picture. For the considered parameters, the results of calculations for the plate
with non-uniform thickness visually coincide with the results for the plate with constant
thickness when h0 = 0.00345 m, i.e., h0/h∗ ≈ 0.98. The dispersion relations, phase and
group speeds decrease as the change in ice thickness and parameter α increase. In general,
values of these waves parameters in Case 1, as noted in the previous section, are always
less than same values in Case 2, with the exception of a small interval of wavenumbers
near 0. Note that the phase and group speeds of the first mode when k→ 0 approach the
values of the same parameters for a plate with constant thickness from above in Case 1, and
from below in Case 2. The minimum phase speed of each mode changes insignificantly,
but the wavenumbers corresponding to the minimum of these speeds increase significantly.
For example, in the case h0 = 0.0005 m, the wavenumber for the minimum speed of the
first mode is greater than 10 (Figure 4b). In contrast to a plate with constant thickness, for
the plate with non-uniform ice thickness and for the same speeds of the waves, shorter
hydroelastic waves in the channel will propagate. In addition, as the change in thickness
increases, the waves will become even shorter.
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Figure 4. Dispersion relations (a), phase (b) and group (c) speeds of the first (left) and second (right)
modes for different values of h0. Red lines show the results for Case 1, blue—for Case 2. The black
line shows the results for the plate with constant thickness equal to h∗ = 0.0035 m.

One may think that the characteristics of hydroelastic waves for the plate with non-
uniform thickness are closest to the characteristics of a plate with constant thickness equal
to the average value h∗. Dispersion relations and phase speeds for the first and third modes
in comparison with the results for a plate with constant thickness equal to h0, h∗ and h1
are shown in Figures 5 and 6. The dispersion relations are shown in Figure 5. The phase
speeds are shown in Figure 6. The results presented in these figure on the left side are for
h0 = 0.0025 m for a plate with a linear thickness and for three cases of a constant thickness
plate hi = h0 = 0.0025 m, hi = h∗ = 0.0035 m and hi = h1 = 0.0045 m (thinner, middle
and thicker thickness values for the linear plate considered). The results presented in these
figure on the right side are for h0 = 0.0015 m for a plate with a linear thickness and the
corresponding three cases of a constant thickness plate. For modes with a large index, the
characteristics of hydroelastic waves actually behave as in the case of a plate with constant
thickness equal to average value h∗. This can be also correct for cases with a large change in
the ice thickness, compare the results between non-uniform plate and plate with constant
thickness (blue and red lines with black line in Figures 5 and 6b on the right side). These
conclusions are incorrect for lower modes. For these modes, the wave characteristics can be
a little closer to the values of characteristics for the ice plate with constant thickness equal
to h0 (blue and red lines in comparison with the green line in Figures 5 and 6a on the left).
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Figure 5. Dispersion relations of the first (a) and third (b) modes for h0 = 0.0025 m (left) and for
h0 = 0.0015 m (right) for non-uniform plate and for uniform plate with hi equal to values of h0, h∗
and h1 of the ice thickness of non-uniform plate (these values are shown in the legend). Red lines
show the results for Case 1, blue—for Case 2. Black line shows the results for a plate with constant
thickness equal to h∗ = 0.0035 m. Purple and green lines show the results for a plate with constant
thickness equal to h1 and h0, respectively.

Figure 6. Phase speeds of the first (a) and third (b) modes for h0 = 0.0025 m (left) and for
h0 = 0.0015 m (right) for non-uniform plate and for uniform plate with hi equal to values of h0,
h∗ and h1 of the ice thickness of the non-uniform plate. Colors of lines correspond to the same in
Figure 5.

One of the practical points of interest are so-called critical speeds. At this speed, ice
plate deflections are limited only by dissipation and nonlinearities. The critical speeds of
the hydroelastic waves in a frozen channel help understand and predict the response of
the ice cover to a moving load depending on its speed (see [10]). Squire [3] wrote about
the critical speed of hydroelastic waves: phase speed c has a minimum, denoted by cmin,
above which flexural-gravity waves can propagate freely and below which no such waves
are generated. The minimum is associated with the critical speed vcrit at which deflection
of the floating ice plate is greatest when a load travels by. The corresponding method of
icebreaking was studied theoretically, numerically and experimentally [28–31] by Kozin
and his group. In this method, called the “resonant method of ice-breaking”, an air-cushion
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vehicle moves at a speed close to the critical speed of hydroelastic waves on the ice sheet. It
was observed [7] that flexural waves, which are caused by a vehicle moving across a thin
elastic plate, occur if the speed of the vehicle exceeds the minimum cmin of the phase speed
of elastic-gravity free waves in the plate. The plate response is approximately quasi-static
for lower speeds of the vehicle. It was concluded in [7] that the amplified response at the
critical speed V = cmin corresponds to an accumulation of energy underneath the source,
since cmin coincides with the group speed. The speed c(0) has a similar effect on the ice
deflections and can be considered critical too. For the one-dimensional model of ice cover
in a channel [43] and the ice plate of infinite extent [3], there is only one dispersion relation
between frequency and the length of hydroelastic wave and, correspondingly, one value
cmin, one value c(0) and, therefore, two critical speeds. For a channel covered with ice,
there are infinitely many dispersion relations and corresponding critical speeds.

The critical speeds Ucrit
n of the first four modes and the corresponding wavenumbers

as functions of the parameter h0/h∗ are shown in Figure 7. The more the thickness of
ice plate changes, the lower the critical speeds are. When h0/h∗ tends to 1, the critical
speeds approach the asymptote and the critical speeds for a plate with constant thickness
h∗. Wavenumbers for critical speeds increase significantly when h0/h∗ → 0. For example,
if h0 = 0.0005 m the values of the critical speeds and corresponding wavenumbers are:
Ucrit

1 = 0.77 m/s, kcrit
1 = 31.92 m−1, Ucrit

2 = 1.15 m/s, kcrit
2 = 23.38 m−1, Ucrit

3 = 1.6 m/s,
kcrit

3 = 15.85 m−1, Ucrit
4 = 2.07 m/s, kcrit

4 = 12.7 m−1. Note that the number of the mode
with the shortest wavelength of the critical speed changes in inverse proportion to h0/h∗.
For a large change in the thickness (small h0/h∗), critical speeds for modes with a large
index have greater wavelength; when h0/h∗ → 0, the values of the wavenumbers of critical
speeds are ordered in ascending order according to the mode number. Accordingly, it
can be expected that when an external load moves along an ice cover with non-uniform
thickness, starting its movement from a state of rest and progressively increases its speed,
firstly, short waves will be generated in the ice. The finite value c1(0) of the phase speed
when k→ 0 exists only for the first mode. In the considered case for the plate with constant
thickness h∗ = 0.0035 m, this speed is c1(0) = 3.47 m/s. This speed is weakly affected by
the non-uniform thickness of ice and the corresponding change of h0 (see Figure 6a). For
example, for the plate within Case 2, with h0 = 0.0015 m, c1(0) = 3.58 m/s, which means
the difference in these speeds is about 3% between plates with constant and non-uniform
thickness. Note that in all cases, the critical speeds of the first four modes are less than c1(0)
for the considered channel.

Figure 7. The critical speeds of the first four modes as a function of the parameter h0/h∗ (a). Corre-
sponding wave numbers of critical speeds (b).

Distribution of Strains in the Ice Cover

Deformations in the ice cover are described within the linear theory under the assump-
tion that the values of w2

x + w2
y are small and stresses in the plate are proportional to strains.

Note that ice is a rather brittle material; therefore, limiting stresses in the ice plate, leading
to its breaking, are reached earlier than the strains of the plate and go beyond the linear
theory.
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Since the solution to the problem is sought in the form of waves traveling along the
channel, it is a function of a phase θ(x, t) = κx + t and has the form

w(x, y, t) = F(y) cos(θ).

The absolute maximum strain in a hydroelastic wave is a function of the dimensionless
parameters α, β, γ, δ, κ, h and is calculated by the formula

εABS = max
−16y61

[εmax(y)], (39)

where
εmax = max

06θ62π
ε(y, θ). (40)

The magnitude h0 A/2b2 is chosen as the scale of the strains in Case 1, and h∗A/2b2 in
Case 2.

The strain field in the ice plate is described by the strain tensor [44]

Tε = −ζ

[
wxx wxy
wxy wyy

]
,

where ζ is a dimensionless variable varying over the thickness of the plate, −(1 + α1|y|) 6
ζ 6 (1 + α1|y|) in Case 1, −(1 + α2y) 6 ζ 6 (1 + α2y) in Case 2.

To estimate the maximum strain at a point (x, y) of the ice cover at time t, it is necessary
to determine the principal strains and find their maximum. Within the linear theory, the
maximum stresses and strains are achieved on the plate surface, at |ζ| = 1 + α1|y| in Case 1
and |ζ| = 1 + α2y in Case 2. The principal strains ε are determined through the eigenvalues
of the tensor Tε by the formula

ε(1,2)(y, θ) = ζ
2 [−a cos(θ)±

√
(b2 − c2) cos2(θ) + c2], (41)

where the notation is introduced

a(y) = F′′(y)− κ2F(y), b(y) = F′′(y) + κ2F(y), c(y) = 2κF′(y).

The functions (41) are smooth with respect to the variable θ; therefore, the maxi-
mum (40) is achieved at the extremal point from the condition

dε
dθ = ζ

2

[
a∓ (b2−c2) cos(θ)√

(b2−c2) cos2(θ)+c2

]
sin(θ) = 0. (42)

The solution of Equation (42) determines the maximum principal strains along the
phase in the form

ε
(1)
max = 1+αy

2 (|a|+ |b|), ε
(2)
max = 1+αy

2 |c|
√

b2−c2−a2

b2−c2 .

It is easy to show that εmax has the form

εmax =

{
ε
(1)
max, c2 − b2 6 |ab|;

ε
(2)
max, c2 − b2 > |ab|.

Note that, in fact,
ε
(1)
max = (1 + αy)max{|F′′|, κ2|F|},

that means the absolute maximum strain corresponds to the maximum transverse |wyy|
(possible cracks along the channel) or longitudinal |wxx| (possible cracks across the chan-
nel) strains relative to the channel axis. The value ε

(2)
max corresponds to the maximum
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strains, which are neither longitudinal nor transverse, forming a nonzero angle with the
channel axis.

The maximum scaled strains along the phase for the first three modes in both cases for
different values of k and for h0 = 0.0025 m are shown in Figure 8 as functions of y. Results
for Case 1 are shown on the left, for Case 2 on the right of the figure. The scale of the strains
is A/(2b2). In Case 1 for small k, the maximum strains are achieved at the channel walls
and correspond to longitudinal strains. This shows that the possible detachment of the ice
cover will be from both walls of the channel, at the same time. Further, with the increase
in k, the strains at the channel walls decrease and strains inside the plate increase. The
maximum strains inside the plate are close to the midpoint but not at it directly. It can be
seen that in Case 2, at small k, the absolute maximum of strains correspond to longitudinal
strains too and, for all hydroelastic modes, is achieved at the thinner (left) edge of the plate
y = ′1. This shows that the possible detachment of the ice cover will be from the left bank.
With the increase in k, longitudinal strains (dotted lines) inside the channel grow faster than
the transverse ones, and at a certain value of k, these strains become absolute maximum
and remain so with the further increase in k in both cases. This effect is observed for all
values of α considered in the calculations. At first, it appears only for the first hydroelastic
mode of the plate, then, with the increase in k, it also appears in the second mode and then
appears for all hydroelastic modes. It is interesting to note that, in Case 2, for the higher
modes, the internal maximum with increasing k shifts towards thicker edge. In Case 1, with
the increase in the mode number, the maximum strains can shift away from the central line
of the channel closer to the midpoints of the half-intervals to the left and right of the center
of the channel. Note that the combined strains for all considered values of α never become
absolute maximum.

Figure 8. The scaled maximum strains εmax(y) in the hydroelastic wave along the phase for the first
three modes for different values of k (see legend) and with h0 = 0.0025 m. The results for Case 1 are
shown on the left of the figure, for Case 2—on the right. The longitudinal strains are shown by dotted
line (markers), transverse strains—by the solid line, combined strains—by the dashed line. The scale
is A/(2b2). Here, (a)—first mode, (b)—second and (c)—third one.
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The same results as in Figure 8, but for h0 = 0.0015 m, are shown in Figure 9. It
is interesting to note that for this minimum thickness of non-uniform ice, the maximum
strains remain the transverse ones at the thin edge of ice plate in Case 2. In Case 1 for
the third mode, the maximum strains at the center of the channel can be both transverse
(k = 5 m−1) or longitudinal k = 8, 10 m−1. In Case 2, the absolute value of maximum
strains is 1.5 times higher than in Case 1. If one compares Figures 8 and 9, it can be seen that
the strains have been increased for Case 2, but have been decreased for Case 1. Therefore,
the change in ice thickness has an important role in determining the absolute maximum
strains.

Figure 9. The scaled maximum strains εmax(y) in the hydroelastic wave along the phase for the first
three modes for different values of k and with h0 = 0.0015 m. Here, (a)—first mode, (b)—second and
(c)—third one. All notations are the same as in Figure 8.

Scaled absolute maximum strains εABS = max
−1≤y≤1

(εmax(y)) are shown in Figure 10

as functions of wavenumber k for 4 different values of h0 (see legend). For lower modes,
the behavior of strains is generally the same depending on k. First, the absolute strains
correspond to transverse ones near the walls (or the left wall in Case 2), and with an increase
in k, these strains decrease. Further, the absolute strains are replaced by longitudinal ones
inside the plate, which grow with an increase in k. For modes with a number 3 or more,
strains always grow with an increase in k, starting from k = 0. Note that for these modes, for
the considered interval of wavenumbers and for some values of h0, there are no changes in
directions of the absolute strains. The behavior of absolute strains depending on h0 differs
significantly for the considered cases. In Case 2, a decrease in h0 (an increase in the change
in ice thickness) leads to an increase in the absolute strains, in particular, to an increase
in the strains at the left wall, where ice becomes thinner. This is due to a large increase in
the curvature of ice oscillations near this wall. In Case 1, an increase in the change in ice
thickness leads to a decrease in absolute strains. For long waves, the maximum strains
are achieved at the edges of the plate and decrease with increasing thickness of the edge.
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For shorter waves, the maximum strains correspond to strains inside the plate. However,
these strains, usually located near the midpoint, do not grow fast enough. Their growth
depends on h0 in a non-obvious way. For example, for the third mode (see Figure 10c),
for h0 = 0.0005 m (strong change in thickness), the absolute strains do not change their
directions and, for different k, can be either more or less than the strains for h0 = 0.0015 m
(blue and red lines in the figure). For k ≈ 5.4 m−1 for the same mode, the absolute strains
in the considered range of h0 differ from each other by no more than 10 percent. In Case 2,
for the same mode and the same k, the absolute strains for h0 = 0.0005 m are 3 times higher
than those for h0 = 0.0034 m (purple and red lines for k ≈ 5.4 m−1 in Figure 10c on the
right). This emphasizes the importance of the distribution of non-uniform ice thickness
across a channel, especially when seeking places of possible ice breaking.

Figure 10. The scaled absolute maximum strains, εABS = max εmax(y) for the first three modes
as functions of k for 4 different values of h0 (see legend). Here, (a)—first mode, (b)—second and
(c)—third one. The results for Case 1 are shown on the left of the figure, for Case 2, on the right. The
longitudinal strains are shown by the dotted line (markers), transverse strains—by the solid line. The
scale is A/(2b2).

5. Conclusions

The linear problem of hydroelastic waves propagating along a channel with an ice
cover frozen to the walls of the channel was investigated for two cases of linear changes
in ice thickness. Case 1 is for symmetric ice thickness, and Case 2—for thin ice on one
bank of the channel and thick ice on the other bank (asymmetric case). Both problems were
solved by the normal mode method. The normal modes were presented analytically, which
make the general solution more accurate. The normal mode method allows us to reduce
the problem for periodic waves along the channel to a system of linear equations for the
coefficients of deflection expansion by modes. These systems are similar for both cases,
but the matrices in them are different for each of these cases. The resulting systems were
solved numerically by the reduction method.
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The shapes of ice plate oscillations, dispersion curves, phase, group and critical speeds
of the waves were obtained. All results were compared between the Cases 1 and 2 and
with the case of constant ice thickness for the different ration between minimum h0 and
average h∗ values of ice thickness. It was shown that all hydroelastic wave parameters tend
to corresponding ones for homogeneous ice thickness h∗ with h0/h∗ → 1.

As in the case of constant thickness ice in the channel [5,26], there is infinite number of
hydroelastic waves with the same length and different form across the channel propagating
along the channel. These waveforms have been obtained and it was shown that the
maximum deflection of the ice are displaced toward the thinner part of the plate as the ratio
h0/h∗ decreases (in Case 2 and for the odd waveforms in Case 1). It was shown that for long
waves (k < 3), the dispersion curves, and consequently the phase and group velocities, are
almost indistinguishable from the corresponding curves for a plate with constant thickness
h∗. As k increases, the frequencies ωn(k) decrease for both cases under consideration
compared to the case of ice of constant thickness. This deviation is most clearly seen for the
first modes of plate vibrations. Note that the frequency ωn(k) decreases as the thickness of
the plate. That is, for a plate with a linearly varying thickness, the dispersion curves, as the
ratio h0/h∗ decreases, show that the oscillations behave in a manner closer to those in the
thinner homogeneous plate.

The investigation showed that for the plates under consideration, the critical speeds
are lower than for a plate with constant thickness h∗ for all forms of propagating waves.
The greatest difference appears at h0/h∗ → 0. The critical velocities for the symmetric case
are slightly lower than for the asymmetric case. In addition, the wavenumbers k which
correspond to them essentially depend both on the ratio h0/h∗ and on Case 1 or 2.

The strain distributions in the propagating hydroelastic waves were analyzed. It was
concluded that strains are maximum at the bank of channel for long waves and move
inside of the channel for short waves. In case 1, the maximum stretch is achieved inside the
plate—close to the center, but not in the midpoint. For the asymmetric case, it was shown
that for long waves, the most probable plate failure corresponds to transverse strains at the
thinnest edge of the plate, which can lead to breakaway of the ice from the corresponding
bank. This character of variations in the distribution of strain across the channel is a feature
of the hydroelastic behavior of an ice plate with non-uniform thickness of the ice cover.

The results of the study show that not only the average and the smallest values of
the thickness of non-uniform ice are important, but also the specific distribution of the ice
thickness across the channel. This is indicated by the difference in dispersion relations and
other hydrodynamic characteristics in symmetric and asymmetric cases.
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