
Citation: Cruz, K.M.S.D.; Ella, V.B.;

Suministrado, D.C.; Pereira, G.S.;

Agulto, E.S. A Low-Cost Wireless

Sensor for Real-Time Monitoring of

Water Level in Lowland Rice Field

under Alternate Wetting and Drying

Irrigation. Water 2022, 14, 4128.

https://doi.org/10.3390/w14244128

Academic Editors: Pavol Nejedlík

and Marco Napoli

Received: 19 November 2022

Accepted: 15 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

A Low-Cost Wireless Sensor for Real-Time Monitoring of Water
Level in Lowland Rice Field under Alternate Wetting and
Drying Irrigation
Kristelle Marie S. Dela Cruz 1,* , Victor B. Ella 1,* , Delfin C. Suministrado 2, Gamiello S. Pereira 1

and Edzel S. Agulto 1

1 Land and Water Resources Engineering Division, Institute of Agricultural and Biosystems Engineering,
College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños,
Los Banos 4031, Philippines

2 Agribiosystems, Machinery and Power Engineering Division, Institute of Agricultural and Biosystems
Engineering, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños,
Los Banos 4031, Philippines

* Correspondence: ksdelacruz3@up.edu.ph (K.M.S.D.C.); vbella@up.edu.ph (V.B.E.)

Abstract: The use of wireless sensors for real-time monitoring of field water level would greatly
facilitate the application of alternate wetting and drying (AWD), an irrigation water management
technique proven to result to significant water savings and reduced methane emissions in lowland
rice production systems. However, most of the commercially available wireless sensors are generally
costly. This study developed a low-cost wireless sensor that can perform real-time monitoring of
water depth and surface temperature in lowland rice fields under an AWD irrigation regime. The
sensor is composed mainly of an ultrasonic depth sensor, a waterproof temperature sensor, a humidity
sensor, and a Wi-Fi-enabled microcontroller enclosed in a PVC cap that can be mounted in AWD
pipes. The sensor was tested under laboratory, pseudo-field conditions and actual field conditions.
Results showed a relatively high degree of agreement between sensor and manual measurements
of water depth under all testing conditions, with the error ranging from only 5.2% to 6.6% and
RMSE of 5.0 mm to 13.5 mm. The performance of the low-cost sensor also proved to be comparable
with that of the high-end sensor, exhibiting practically similar measurement accuracy and higher
precision. The wireless sensor developed in this study can provide a low-cost alternative to the
high-cost and high-end sensors and other commercially available counterparts for efficient irrigation
water management in lowland crop production systems during water-scarce conditions induced by
climate change and climate variability.

Keywords: low-cost wireless sensor; alternate wetting and drying; irrigation water management

1. Introduction

Lowland rice irrigation systems are known to consume a considerable amount of
freshwater resources, comprising a 34–43% share of the world’s total irrigation water
and 24–30% of the world’s developed freshwater resources [1]. Rice cultivation is also
identified as a significant source of methane emissions (CH4) due to anaerobic process
brought about by its flooding nature, accounting for about 10% of the global non-CO2
emissions in agriculture [2]. In the face of climate uncertainties and hydrological extremes,
it is therefore imperative that we adopt efficient water management practices in countering
water scarcity issues to carry on with the production of food staple of about half of the
global population [3]. Among the many alternative water saving techniques developed
is the alternate wetting and drying (AWD) technology, a form of irrigation management
where the field water level is being brought to a water level threshold in the soil subsurface,
with 15 cm being the safe maximum, before triggering another irrigation event [4]. The
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AWD has been proven to be effective in reducing irrigation water consumption without
significant yield compensations [5–7]. It was also reported to reduce CH4 emissions [8–14],
and is therefore considered as a promising option in mitigating global warming potential
from rice cultivation.

Aside from the increased water productivity and environmental benefits, the appli-
cation of the AWD irrigation has also been known to reduce labor requirements with less
frequent irrigation [15], although the tradeoff brings about the challenge in constantly
monitoring the field water level, often done manually, to ensure that the level will never get
below the safe threshold. The advent of sensor technology and its application in irrigation
has greatly alleviated this challenge by enabling remote monitoring. Recent developments
in real-time monitoring of field water level have aided farmers and researchers alike in
coming up with sound and efficient irrigation water management plans and decisions.

Wireless sensors applicable for irrigation water management in rice fields have evolved
in recent years. Most of the previously developed sensors are capable of monitoring field
water level [16–19], together with soil moisture [20,21] and other climatic variables [22,23].
The developed technologies greatly vary in the usage of sensor types, communication
protocols, and system architecture. While a number of wireless sensors have been devel-
oped, most of them are costly, especially those that make use of high-end hardware and
cutting-edge technologies. Other sensor development studies of the low-end type, on the
other hand, did not include rigorous sensor testing or published sensor performance results,
thus failing to unravel potential problems associated with field implementation. Some
other sensors are not user-friendly such that widespread adoption may become a challenge.
With the availability of open-source software, different sensor types and wireless communi-
cation protocols, the opportunities remain vast in coming up with a variety of options for
affordable, user-friendly, and effective monitoring systems for real-time water information.

This study aimed to develop an alternative to existing costly sensors for real-time
monitoring of water level in lowland crop production systems employing AWD. This
paper presents the details of the sensor development and rigorous testing under laboratory,
pseudo-field, and actual field conditions. Ultimately, the sensors developed in this study
are intended to facilitate the wider application of AWD in lowland crop production systems
in order to address issues of water scarcity and inequitable water distribution induced by
climate change and climate variability.

2. Materials and Methods
2.1. Sensor Development
2.1.1. Hardware

The sensor unit was enclosed in a 4′′-diameter PVC cap that was mounted on top
of a 4′′-diameter AWD pipe. The low-cost sensor is composed mainly of four sensor
modules: HC-SR04 ultrasonic distance sensor, DS18B20 waterproof temperature sensor,
DHT11 temperature/humidity sensor, and the microSD card adapter module. Data from
the sensor modules are integrated by the ESP8266 microcontroller which sends data to
the online database through Wi-Fi. The sensor unit was also equipped with two Li ion
batteries, a solar charger, and two mini solar panels. Figure 1 shows the connection of the
sensor circuitry.
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duino-compatible and has 11 digital input/output (I/O) pins. It has a built-in ESP8266 
Wi-Fi module that enables the microcontroller to connect to the Wi-Fi network. With 
this, the sensor data can be accessed via the cloud. A microSD card adapter module was 
also integrated into the circuit to contain data in a text file for manual retrieval. The 
DS18B20 waterproof temperature sensor was used to monitor the soil surface tempera-
ture that could handle the field’s day-to-night temperature fluctuations very well. The 
sensor has a 4.7 kΩ resistor connected in parallel between the power cable and data ca-
ble for the sensor to work properly. For the measurement of the field water level, the 
HC-SR04 ultrasonic distance sensor was used. Since the microcontroller has an operating 
voltage of 3.3 V while the distance sensor works on 5 V, voltage dividers were placed in 
the form of 1.2 KΩ and 2.2 KΩ resistors. This is to ensure that the output voltage coming 
out from the echo pin is in the voltage level that the microcontroller can safely handle. 
Additionally, since the Wemos D1 mini Pro board has a very limited number of I/O pins, 
the distance sensor was configured to perform under a single pin operation with the use 
of the NewPing library function. Accuracy of distance readings was improved through 
iterations. For the power source, one TP4056 battery charger was used to charge two 3.7 
V–2100 mAh 18650 Li-ion batteries connected in parallel, while two IN5819 diodes were 
used to prevent backflow current from the batteries to the solar panels. A 180 KΩ resis-
tor was installed between the analogue pin (A0) and 5 V pin to serve as a battery gauge. 
The voltage readings of the sensor measured from the analogue pin were successfully 
validated by the multimeter readings. A printed circuit board was designed to inter-
weave the sensor components altogether using less wires. It has also made the entire 
sensor unit to be compacted, conveniently space-wise for circuit packaging and field de-
ployment.  Figure 2 shows the fabricated prototype of the sensor and its intended instal-
lation with the AWD pipe. In total, 10 sensors were exclusively tested under different 
conditions: laboratory, pseudo-field, and actual field. The methodology of the testing 
process is elaborated in a separate subsection (Sensor Testing). 

Figure 1. Wiring diagram of the low-cost wireless sensor modules with labeled electronic components.

For the microcontroller of the circuit, the Wemos D1 mini Pro was used. It is Arduino-
compatible and has 11 digital input/output (I/O) pins. It has a built-in ESP8266 Wi-Fi
module that enables the microcontroller to connect to the Wi-Fi network. With this, the
sensor data can be accessed via the cloud. A microSD card adapter module was also
integrated into the circuit to contain data in a text file for manual retrieval. The DS18B20
waterproof temperature sensor was used to monitor the soil surface temperature that could
handle the field’s day-to-night temperature fluctuations very well. The sensor has a 4.7 kΩ
resistor connected in parallel between the power cable and data cable for the sensor to work
properly. For the measurement of the field water level, the HC-SR04 ultrasonic distance
sensor was used. Since the microcontroller has an operating voltage of 3.3 V while the
distance sensor works on 5 V, voltage dividers were placed in the form of 1.2 KΩ and 2.2 KΩ
resistors. This is to ensure that the output voltage coming out from the echo pin is in the
voltage level that the microcontroller can safely handle. Additionally, since the Wemos D1
mini Pro board has a very limited number of I/O pins, the distance sensor was configured
to perform under a single pin operation with the use of the NewPing library function.
Accuracy of distance readings was improved through iterations. For the power source,
one TP4056 battery charger was used to charge two 3.7 V–2100 mAh 18650 Li-ion batteries
connected in parallel, while two IN5819 diodes were used to prevent backflow current from
the batteries to the solar panels. A 180 KΩ resistor was installed between the analogue pin
(A0) and 5 V pin to serve as a battery gauge. The voltage readings of the sensor measured
from the analogue pin were successfully validated by the multimeter readings. A printed
circuit board was designed to interweave the sensor components altogether using less wires.
It has also made the entire sensor unit to be compacted, conveniently space-wise for circuit
packaging and field deployment. Figure 2 shows the fabricated prototype of the sensor and
its intended installation with the AWD pipe. In total, 10 sensors were exclusively tested
under different conditions: laboratory, pseudo-field, and actual field. The methodology of
the testing process is elaborated in a separate subsection (Sensor Testing).
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Figure 2. Low-cost sensor’s deployment setup and circuit assembly with labeled electronic components.

2.1.2. Sensor Programming

Sensor programming was made using the Arduino Integrated Development Envi-
ronment (IDE). Since the Wemos and Arduino boards have different pinout architecture,
adjustments on pin designations were employed to make the Wemos codes work in the
Arduino IDE. Necessary libraries were used for programming the different sensor modules.

Scripts were made for offline and online data logging. For every sensor reading, the
data are automatically sent to the cloud database and encoded into the text file created
into the SD card at the same time. This serves as a backup in case of internet connection
failure. With the microSD card adapter, most of the digital pins were used up to establish
communication between the microcontroller and the SD card module. This has greatly
limited the number of digital sensors that can be integrated in the circuit. Thus, the RX pin,
which originally serves for the purpose of serial communication, was converted to function
as a digital pin to accommodate DHT11. To save power, the sensors were programmed to
be in deep-sleep mode and only read data in one-hour intervals. This was made possible
by placing 220 Ω resistor between the D0 and RST microcontroller pins. Figure 3 shows the
logic of the sensor operation.
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2.1.3. Online Database and Alert Messaging Systems

A web app, whose algorithm is shown in Figure 4, was developed using the Google
App Script to receive data from the microcontroller. For every sensor reading, the mi-
crocontroller automatically sends the sensor data into the cloud. The data are directed
into the designated Google Sheet of the end user for remote and real-time monitoring of
temperature and water level in the farm. Real-time graphs of field water depth, temper-
ature and humidity were created using the Google Sheet charts, which come along with
other important information, such as date and time of data transmission, battery voltage,
and total number of data entries in the database. A sample of the dataset is shown in
Table A1, while the sample dashboard is shown in Figure 5. Currently, the database can
accommodate real-time data from five sensors simultaneously, with each sensor having its
own designated logging sheets. It can further be configured according to the number of
sensors desired for use.

Aside from the online data management system, an alert messaging scheme was
also incorporated in the script to notify the users during emergencies. The alert system is
triggered by the following conditions: when the water level is about to reach the safe AWD
threshold, thus warning the farmer that the irrigation operation is needed soon; when
the battery power is about to run out, thus urging the farmer to replace the batteries; and
when the sensor did not send data past its expected reading time, advising the farmer to
inspect the sensor on site. When one of the said conditions arises, an email is sent to the
end user indicating the type of emergency that happened and the specific actions to be
performed. The message also indicates the identification of the sensor that is currently
needing attention.
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The AWD threshold level exemplified in the code, i.e., 15 cm, is the safe threshold
usually adopted in most studies. Since the ultrasonic sensor measures the distance between
itself and the target surface, the reference elevation follows the relative height of the sensor
from the soil surface where it is being mounted. Thus, necessary adjustments have to be
made to properly reflect the safe AWD depth threshold in sensor readings with respect to
the soil surface. A 1 cm allowance was also given before the safe AWD threshold to set
a grace time period between the time of warning and the supposed irrigation schedule.
As for the battery, the voltage threshold was set to 3.2 V. An even lower voltage level may
already compromise the sensor performance since the Wemos D1 mini Pro requires a 3.3 V
operating voltage. And lastly, the alert system informs the user if a specific sensor has
failed to send data beyond its expected reading time. Once a new sensor data has entered
the database, the script will log the latest datetime of entry and update the next reading
time of the sensor by adding 1 h from the current date and time. After such, the script will
evaluate if the current date and time has exceeded the expected reading time of the other
sensors in the database. If a sensor has failed to send data for several consecutive hours,
manual inspection on the field site is therefore recommended.

2.2. Sensor Testing
2.2.1. Laboratory Test

The setup for the initial sensor testing was designed in such a way that the water
level sensor can capture the receding water level through time. The setup was made from
readily available and low-cost materials. The 8 cm deep soil was placed in a 6 L plastic
container with perforations at the bottom, equipped with graduations on the side, while
the sensor was positioned on top using a leveled platform. The container was placed above
a catchment basin that was designed to accommodate the water percolation losses. See
Figure 6a for reference.
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The container was periodically ponded with water of about 6 cm deep whenever the
surface water recedes to the soil surface. Two low-cost sensors were tested consecutively,
with each test taking place for at least a week. Manual measurements were also taken
hourly, at the same time the sensor data is transmitted to the cloud. Adequate manually
observed data were collected during the test run to achieve decent comparisons. The test
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run was performed in an open space where the sensor can sufficiently access a reliable
internet connection and experience no physical obstruction from sunlight. Sensor data and
manual observations were then compared and plotted through time.

2.2.2. Pseudo-Field Test

A 2 m × 1.5 m × 0.9 m micropaddy plot, as shown in Figure 6b, was established to
serve as a test site for the low-cost sensor. The plot is situated inside the campus of the
University of the Philippines Los Baños, with sufficient exposure to sunlight, managed
with suitable pest control management, and has adequate access to the water distribution
system. The borders of the micropaddy were completely sealed and made up of reinforced
concrete. The plot soil structure was designed to resemble actual paddy field settings.
The soil profile was composed of several layers: a 15 cm-thick loose clay soil at the top,
followed by a 30 cm deep compacted clay layer, and a 5 cm-thick gravel at the very bottom.
A drainage pipe was also equipped at the bottom corner of the micropaddy box to enable
soil-water percolation, so as to simulate the water level fluctuations in the actual paddy field
conditions. The drainage pipe also facilitated the release of excess water during excessive
rainfall occurrences. Two AWD pipes were installed in the plot. One was used for manual
observation while the other one was for automated measurement. Prior observations
suggested that the ultrasonic sensor no longer performs reliably when mounted on pipes
with lengths beyond 30 cm. This could most likely be due to the tendency of sound waves
to bounce off on the sides of the pipe. When the ultrasonic transmitter is activated, the
sound signal is being thrown at a certain beam angle whose edges can get in contact with
the pipe perimeter. When this happens, the distance measured is the traversed distance
made by the sound wave between the sensor and the point of contact, which completely
misrepresents the field water level. Manual water level measurements were taken relative
to the top of the pipe, similar to how the low-cost sensor measures the water level depths.

During the implementation of the AWD irrigation, two sets of test runs were com-
pleted using two different units of low-cost sensors. One was performed during the early
wet season (June to July) while the other test was executed during the early dry season
(November to December). Each test run comprised about 15 days’ worth of observation
data. Since the sensor is not flood-proof, it was elevated at 15 cm above the soil surface as a
precautionary measure. Despite the occurrences of frequent rainfall and the application of
manual irrigation, sufficient drying cycles were achieved nonetheless to enable testing of
the sensor performance under the AWD irrigation regime in this setup.

2.3. Actual Field Deployment

The actual field deployment was performed in one of the paddy fields in a rice
production area located in Brgy. San Roque, Victoria, Laguna, Philippines, situated 700 m
from Laguna Lake. The area is characterized by predominantly clayey soils, and has an
intensive production of rice that is regularly cultivated during the wet and dry cropping
seasons. The rice field is irrigated using a shallow tube well (STW). The application of
AWD is more compelling in this system as the farmers can greatly reduce fuel costs in STW
pumping through less frequent irrigation during the dry cropping season. The field setup
was composed of a 14 × 44 m2 basin plot. Five AWD pipes equipped with low-cost sensors
were evenly spaced along the plot’s middle horizontal transect in line with the irrigation
inlet. The manually observed pipe was installed in a highly accessible location within the
plot, about a meter away from the bund to avoid measurement bias. A rain gauge was
also installed in the field to monitor water inputs in the basin aside from irrigation water.
The sensors were set to read water level data for every hour using Wi-Fi, while manual
observations were made twice a day, i.e., at 8:00 am and 2:00 pm. A Wi-Fi modem and
a 5 km-range Wi-Fi extender powered up by batteries were installed in the pump house
located 30 m away from the plot. The sensor deployment was continuous within two weeks,
except during the three consecutive days of a storm that transpired within the experimental
period. Figure 6c shows a photo of the sensor testing done under actual field conditions.
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2.4. Performance Comparison between the Low-Cost Sensor and the High-End Sensor

After several test runs, the performance of the low-cost sensor was compared with
a commercially available high-end sensor (Submersible Water Level Transducer). This
test was done under pseudo-field conditions during the dry cropping season. The high-
end sensor considered was a submersible probe that estimates water level based on the
hydrostatic pressure. It was initially calibrated in a 1 L graduated cylinder by subjecting the
sensor under different water level heads, both in descending and ascending manner, until
a representative calibration equation was obtained. The low-cost sensor and a high-end
sensor were deployed simultaneously in separate AWD pipes in the same micropaddy plot.
A separate AWD pipe was also allotted for manual measurements. Observation time lasted
for approximately 10 days. Several drying cycles were achieved in the micropaddy plot
over the observation period to generate sufficient number of data points for comparison
purposes under both wetting and drying conditions in the micropaddy plot.

2.5. Statistical Analysis

The performance of the low-cost sensor was evaluated using various statistical indices
such as percentage error, coefficient of determination R2, and root mean square error
(RMSE). The distribution of errors was also analyzed. Preliminary analysis using the
Shapiro–Wilk test showed that the error distribution between sensor and manual readings
were nonuniform in most cases. Thus, the Gaussian kernel density function (KDF) was
used in generating the probability curve of error distribution. Gaussian KDF estimates
the probability density function of random variables in a nonparametric way. The mode
was used as a more appropriate representation of central tendency, which was estimated
by determining the maxima of the KDF curve. Other statistical parameters used were
the standard deviation (σ) in assessing the data dispersion and sensor precision, and the
arithmetic mean error (µ) in determining the measurement bias.

Additional analysis was also made in an attempt to estimate the optimum number of
low-cost sensors within the rice basin during the actual field test. The equation used was

N =

(
CV

ε

)2
(1)

where N is the optimum sensor density, CV is the coefficient of variation of sensor values,
and ε is the maximum allowable percentage of error. This simple optimization equation
is similarly used in optimizing the number of rain gauges in a catchment basin. The
estimation of field water level in a paddy field basin and precipitation in catchments were
taken in a similar context since both parameters are hydrologic in nature, have perimetrical
boundaries, and require at least a millimeter range of accuracy.

3. Results and Discussion

The following sections present the test results under different conditions in which the
sensors were subjected in laboratory, pseudo-field, and actual field. To enhance clarity, the
low-cost sensors were labeled with a number to identify the sensor unit being referred to in
the discussion.

3.1. Laboratory Test Condition

Results from the laboratory tests are presented in Figures 7 and 8. Sensor 1 exhibited
error of 3.28% and RMSE of 0.46 cm, while sensor 2 had error of 6.62% and RMSE of
0.42 cm. Correlation between manual measurements and sensor measurements proved to
be excellent for both sensors (R2 = 0.92 for Sensor 1 and R2 = 0.98 for Sensor 2). They also
displayed the same degree of dispersion (σ = 0.35 cm), signifying that both demonstrate
similar precision. However, the two sensors exhibited different tendencies when estimating
the water level. Sensor 1 mostly overestimated the actual values with mode Mo = −0.28 cm
and mean bias error µ = −0.29 cm, while Sensor 2 mostly underestimated the actual
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values with mode Mo = 0.29 cm and mean bias error µ = 0.24 cm. Even though the
statistical parameters of both sensors were nearly identical in magnitude, both of their
central tendencies were on the opposite side of the error distribution. A closer examination
of the observed and sensor depth values from both test runs (Figures 7 and 8) indicates
that Sensor 2 measured relatively shallow depths, between 3 cm up to 10 cm, compared to
Sensor 1 with water level ranges between 7 cm to 16 cm. It is important to note that the
HC-SR04 ultrasonic water level sensor used in fabricating the low-cost sensor measures
distances relative to where the sensor is located. Since the sensor is mounted at the top
of the container, the reference elevation is the top of the container itself. Shorter sensor
distance values mean deeper water levels in reference to the soil surface, while larger sensor
distance values imply the opposite.

Water 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

3. Results and Discussion 
The following sections present the test results under different conditions in which 

the sensors were subjected in laboratory, pseudo-field, and actual field. To enhance clari-
ty, the low-cost sensors were labeled with a number to identify the sensor unit being re-
ferred to in the discussion. 

3.1. Laboratory Test Condition 
Results from the laboratory tests are presented in Figures 7 and 8. Sensor 1 exhibit-

ed error of 3.28% and RMSE of 0.46 cm, while sensor 2 had error of 6.62% and RMSE of 
0.42 cm. Correlation between manual measurements and sensor measurements proved 
to be excellent for both sensors (R2 = 0.92 for Sensor 1 and R2 = 0.98 for Sensor 2). They al-
so displayed the same degree of dispersion (σ = 0.35 cm), signifying that both demon-
strate similar precision. However, the two sensors exhibited different tendencies when 
estimating the water level. Sensor 1 mostly overestimated the actual values with mode 
Mo = −0.28 cm and mean bias error 𝜇𝜇 = −0.29 cm, while Sensor 2 mostly underestimated 
the actual values with mode Mo = 0.29 cm and mean bias error 𝜇𝜇 = 0.24 cm. Even though 
the statistical parameters of both sensors were nearly identical in magnitude, both of 
their central tendencies were on the opposite side of the error distribution. A closer ex-
amination of the observed and sensor depth values from both test runs (Figure 7 and 
Figure 8) indicates that Sensor 2 measured relatively shallow depths, between 3 cm up to 
10 cm, compared to Sensor 1 with water level ranges between 7 cm to 16 cm. It is im-
portant to note that the HC-SR04 ultrasonic water level sensor used in fabricating the 
low-cost sensor measures distances relative to where the sensor is located. Since the sen-
sor is mounted at the top of the container, the reference elevation is the top of the con-
tainer itself. Shorter sensor distance values mean deeper water levels in reference to the 
soil surface, while larger sensor distance values imply the opposite. 

 
Figure 7. Laboratory-based performance test of Sensor 1 showing (a) observed and sensor’s water 
level measurements through time, (b) comparison of observed and sensor values, and (c) error 
(observed − sensor) distribution with Gaussian KDF fit. 

Figure 7. Laboratory-based performance test of Sensor 1 showing (a) observed and sensor’s water
level measurements through time, (b) comparison of observed and sensor values, and (c) error
(observed-sensor) distribution with Gaussian KDF fit.

Water 2022, 14, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 8. Laboratory-based performance test of Sensor 2 showing (a) observed and sensor’s water 
level measurements through time, (b) comparison of observed and sensor values, and (c) error 
(observed − sensor) distribution with Gaussian KDF fit. 

To further investigate the relationship of the errors with respect to water level 
depths, a simple linear regression was made (Figure 9). The R2 = −0.45 suggests that 
there exists a negative relationship between sensor accuracy and water level depths, al-
beit being moderate. But this moderate correlation influenced sensor readings in the mil-
limeter range of accuracy. One investigator claimed these instabilities to be due to the 
lack of monotonicity, an occurrence of miscommunication between the components of 
the internal circuitry when reading peak signals [24]. Shorter ranges are more prone to 
these instabilities since the sensor processor tends to miss out faint peak signals from the 
comparator, resulting in longer duration before the echo pin signal goes low. This 
anomaly consequently results in longer travel time of sound, which further results to 
overestimation of measurements. However, the range of critical values was never estab-
lished in the investigation. Having sufficient time for the sound waves to travel between 
the sensor and the target surface is highly advised in minimizing the occurrence of this 
anomaly. In this study, most of the overestimates were observed in ranges above 9 cm, 
while underestimates mostly occurred in even shorter ranges (less than 9 cm). Neverthe-
less, the sensor performance still remains to be acceptable from the economic viewpoint. 
The performance values of the low-cost sensor are also comparable to the water level 
sensor developed by Xiao et al. [21] and IRRI and PhilRice [19], which they claimed to be 
also suitable in paddy field conditions. 

Figure 8. Laboratory-based performance test of Sensor 2 showing (a) observed and sensor’s water
level measurements through time, (b) comparison of observed and sensor values, and (c) error
(observed-sensor) distribution with Gaussian KDF fit.



Water 2022, 14, 4128 11 of 17

To further investigate the relationship of the errors with respect to water level depths,
a simple linear regression was made (Figure 9). The R2 = −0.45 suggests that there exists
a negative relationship between sensor accuracy and water level depths, albeit being
moderate. But this moderate correlation influenced sensor readings in the millimeter range
of accuracy. One investigator claimed these instabilities to be due to the lack of monotonicity,
an occurrence of miscommunication between the components of the internal circuitry when
reading peak signals [24]. Shorter ranges are more prone to these instabilities since the
sensor processor tends to miss out faint peak signals from the comparator, resulting in
longer duration before the echo pin signal goes low. This anomaly consequently results
in longer travel time of sound, which further results to overestimation of measurements.
However, the range of critical values was never established in the investigation. Having
sufficient time for the sound waves to travel between the sensor and the target surface is
highly advised in minimizing the occurrence of this anomaly. In this study, most of the
overestimates were observed in ranges above 9 cm, while underestimates mostly occurred
in even shorter ranges (less than 9 cm). Nevertheless, the sensor performance still remains
to be acceptable from the economic viewpoint. The performance values of the low-cost
sensor are also comparable to the water level sensor developed by Xiao et al. [21] and IRRI
and PhilRice [19], which they claimed to be also suitable in paddy field conditions.
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3.2. Pseudo-Field Test Condition

Results of the pseudo-field test runs are presented in Figures 10 and 11. The perfor-
mance of both Sensor 3 (5.48% Error and RMSE = 1.35 cm) and Sensor 4 (3.79% error and
RMSE = 0.79 cm) proved to be reasonably acceptable with respect to manual measure-
ments. Both sensors incurred a very high R2 above 0.97, suggesting an excellent correlation
between sensor and manual measurements. The modes of both sensors in the error distribu-
tion (−0.16 cm and −0.03 cm for Sensor 3 and Sensor 4 respectively) imply that the sensors
mostly estimate the water level at a high level of accuracy. Comparatively, the statistical per-
formance indicators for Sensor 4 were better than for Sensor 3. The RMSE of Sensor 4 may
be deemed acceptable from the practical standpoint. However, the performance of Sensor 3
greatly deviated from the initial sensor test under laboratory conditions (RMSE = 0.46 cm,
σ = 0.35 cm and RMSE = 1.35 cm). This may largely be due to a relatively greater number
of data points collected during low water levels, which comprised a fine portion of the
dataset used to compare with the sensor values. Figure 10 shows an apparent pattern of
consecutive underestimation of water level values at deeper levels, which is a complete
disagreement from the observations in laboratory tests. While the internal circuit anomaly
affects the sensor accuracy, the presence of successive underestimated values is indicative
of an involved systematic factor. Albeit having Mo =−0.16 cm, the series of underestimated
depths resulted in the dispersion of error on the positive side of the error distribution plot,



Water 2022, 14, 4128 12 of 17

consequently yielding a positive mean bias error of 0.41 cm. This occurrence may imply a
possible problem posed by sediment accumulation at the bottom of the pipe in the actual
field deployment, as had been observed during the implementation of the experiment in the
micropaddy. The sediments may not affect the ultrasonic sensor readings at higher water
levels [23], but the effect can manifest itself during low water level conditions. Unlike the
automated pipe with a sensor on top, the free exposure of the manually observed pipe to
the atmospheric conditions provide a faster rate of surface evaporation with direct sunlight
and free air circulation, thereby reducing the residence time of shallow waters suspended
with sediments at the bottom of the pipe. This occurrence was not highly emphasized
under the laboratory conditions, since both the manual and automated measurements were
observed on the same transparent container. The effect of sedimentation was only made
evident by separating the manually observed and sensor-equipped pipes.
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level measurements, (b) comparison of observed and sensor values, and (c) error (observed-sensor)
distribution with Gaussian KDF fit.
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Other than sedimentation, pipe settling was also observed during the test run of Sen-
sor 3. Depending on the degree of the soil cultivation done, the AWD pipe can also recede
in the soil subsurface concurrently with the soil settlement as caused by the subsequent
irrigation and drying cycles. The additional weight imposed by the sensor on top of the
pipe may have also influenced the pipe recession, resulting to sensor measurement offsets
from the manual observations.

3.3. Actual Field Deployment

The results of the performance of the low-cost sensors installed under actual field
conditions are presented in Figure 12. Sensor measurements exhibited a good correlation
with manual measurements (R2 = 0.75) and showed an acceptable RMSE (0.90 cm). The
average error (5.22%) also did not differ largely from the determined percentage errors in
laboratory and pseudo-field conditions. The mode from the error distribution (Mo = 0.38)
signifies that the sensors finely underestimated the actual depth in most cases, but the
occasional overestimates were relatively large enough to draw the mean bias error (−0.27)
into the negative side of the error distribution. The error dispersion (σ = 1.15 cm), how-
ever, may be the combined effect of many elements, including the tendency of the sensor
itself to overestimate water levels at deeper depths, and the environmental factors in the
actual field conditions. It may also be the reflection of slight water level variation in the
field, considering the relative distances and placements of the sensors from one another.
Moreover, a relatively low CV of 4.46% suggests that the data variation is highly acceptable.
Using the same value of CV and assuming a 10% maximum allowable error, the optimum
number of sensors N for the plot size considered becomes 0.20, which if rounded up to
a practical value of N = 1 suggests that a single sensor is sufficient to monitor the field
water level in the 14 × 44 m2 plot to generate at least 90% accuracy. It should be noted,
however, that the optimum N may also vary with microtopographic variations and bund
integrity among other factors, along with the desired accuracy of measurement. Further
investigations are therefore recommended to establish the relationships between N and the
aforementioned factors.
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Aside from accurately representing the actual water level, the low-cost sensors were
also able to provide a more defined pattern of water level fluctuations due to higher
temporal resolution. This added information in between manual observation gaps can
greatly facilitate the analysis of water balance dynamics in rice fields on an hourly basis,
which is challenging to perform if the measurements are to be done manually. It can
properly reflect water level fluctuations due to rainfall or irrigation, and water surface-
subsurface recession due to water losses. Thus, the data generated by the low-cost sensor
developed in this study can be used in the analysis of water fluxes and water balance in
the field.

3.4. Performance Comparison between the Low-Cost Sensor and High-End Sensor

The performance comparison between the low-cost sensor developed in this study
and a selected commercially available high-end sensor was performed in the micropaddy
plot to facilitate measurements. Results are shown in Figure 13. Both sensors exhibited
excellent correlation with the observed values (R2 = 0.96 for high-end and R2 = 0.98 for
low-cost sensor) and relatively low RMSE (1.31 cm for high-end and 0.80 cm for low-cost
sensor). Results further revealed that both the low-cost sensor and the high-end sensor
mostly tend to reflect the actual water level, with Mo of 0.03 cm and 0.06 cm, respectively.
Based on the previous sensor tests done, these modes are exceptionally accurate. However,
the two sensors exhibited different error dispersion, with the high-end sensor (σ = 1.11 cm)
showing wider spread than the low-cost (σ = 0.65 cm). The error dispersion of the high-end
sensor resulted in less superior performance (%Error = 6.86; RMSE = 1.31 cm) than the
low-cost (%Error = 5.16; RMSE = 0.80 cm). The high-end sensor’s data dispersion may be
due to the extreme sensitivity of the sensor to pressure changes, particularly in higher water
levels. The water turbidity may also have a direct influence on this sensitivity, although
further investigations are necessary. On the other hand, there is still a tendency for the
low-cost sensor to underestimate water level on shallow depths, with a local maximum of
1.10 cm. Nevertheless, Mo = 0.06 cm remains more dominant, suggesting a higher tendency
for accurate readings. While further tests under actual field conditions may be necessary,
the results from this test under pseudo-field conditions further prove that the performance
of the low-cost wireless sensor developed in this study is practically at par with that of the
high-end sensor.
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3.5. Strengths and Limitations of the Developed Low-Cost Wireless Sensor

The use of noncontact-type sensors, such as the ultrasonic sensor of the low-cost, in
measuring field water depths has the advantage in the paddy field setting. In contrast to the
probe type sensors, the low-cost sensor is not prone to corrosion and hardware malfunction
due to sedimentation problems. This was further supported by Chiu and Reba [15] in their
findings. The low-cost sensor also makes use of less wires exposed outside of the sensor
case, thus it is less likely to be damaged by field pests such as rodents. The sensor is also
easy to use and maintain. The database system and alert messaging services can also be
accessed free for as long as the Wi-Fi connection is available. Affordability is also one of the
low-cost sensor’s most distinctive advantages over high-end sensors.

While the low-cost wireless sensor exhibits several advantages in terms of performance
and costs, it still has a number of limitations. Firstly, the low-cost sensor does not have a
real-time clock due to limited I/O pins; hence, the data encoded in the text file have no
date and time stamps. However, manual data sorting can still be done by holding on to
the logic of hourly sensor reading and comparing the data log entries in the text file with
the online database entries. Secondly, the low-cost sensor is Wi-Fi-based, which makes the
sensor range limited. Its application in rice field areas situated in off-grid communities
would therefore pose a challenge. Obviously, the low-cost sensor, such as the high-end
sensors, can only be effective in agricultural areas with a power source and Wi-Fi or at
least signal extenders. Thirdly, the quality of Wi-Fi connection in the field may be affected
by the rice canopy if the low-cost sensor is not placed strategically in the field. Fourthly,
the low-cost sensor is not flood-proof, which makes it more viable to use during the dry
cropping season. These identified limitations could serve as a basis for further research
and development.

4. Conclusions

The low-cost wireless sensor developed and tested in this study can provide reliable
information of paddy field water level in real-time to facilitate the application of AWD in
rice production systems. Laboratory tests and analysis showed that the sensors developed
can generate accurate readings. The pseudo-field test additionally revealed the influence of
sedimentation and pipe settlement in sensor readings, causing measurement offsets from
manual observations. When applied under actual field conditions, the low-cost sensor
performed reasonably well from the practical standpoint, in spite of several environmental
factors affecting the sensor accuracy. The performance of the low-cost sensor also proved to
be comparable with that of the high-end sensor, exhibiting practically similar measurement
accuracy and higher precision. Considering the low-cost sensor’s tested performance and
economic edge, it can prove useful in the efficient irrigation water management in lowland
rice crop production systems in developing countries, particularly during the dry season
and under water-scarce conditions as a result of climate change and climate variability. Ulti-
mately, the low-cost sensor can serve as a tool for climate change adaptation and mitigation
strategies in lowland rice crop production systems through the AWD technology.
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Appendix A

Table A1. Sample dataset from the online database of the low-cost sensor during laboratory test conditions.

No. Date Time Water Depth (cm) Temperature (◦C) Humidity (%) Battey Voltage (Volts)

1 10-May-2020 10:26:31 AM 5.53 36.81 49 3.76
2 10-May-2020 11:27:02 AM 5.14 41.19 51 3.87
3 10-May-2020 12:27:13 PM 5.42 40.75 69 3.92
4 10-May-2020 1:27:25 PM 5.09 40.94 70 3.94
5 10-May-2020 2:27:24 PM 5.32 43.00 64 3.92
6 10-May-2020 3:27:48 PM 5.95 41.81 63 3.95
7 10-May-2020 4:27:35 PM 6.16 40.38 60 3.96
8 10-May-2020 5:26:46 PM 5.53 35.00 62 3.94
9 10-May-2020 6:25:32 PM 6.23 32.88 67 3.93
10 10-May-2020 7:25:01 PM 6.85 32.00 74 3.93
11 10-May-2020 8:24:43 PM 6.58 31.06 72 3.93
12 10-May-2020 9:24:30 PM 6.76 30.19 71 3.93
13 10-May-2020 10:24:26 PM 6.87 29.94 70 3.93
14 10-May-2020 11:24:11 PM 7.91 29.25 69 3.93
15 11-May-2020 1:23:27 AM 8.14 28.62 69 3.93
16 11-May-2020 2:23:12 AM 8.26 28.19 69 3.93
17 11-May-2020 3:23:06 AM 7.93 27.94 69 3.92
18 11-May-2020 4:23:00 AM 7.98 27.75 69 3.92
19 11-May-2020 5:23:01 AM 8.54 27.50 69 3.92
20 11-May-2020 6:23:05 AM 8.16 28.44 69 3.92
21 11-May-2020 7:23:38 AM 8.66 30.31 69 3.92
22 11-May-2020 8:24:28 AM 8.18 34.88 68 3.94
22 11-May-2020 8:24:28 AM 8.18 34.88 68 3.94
23 11-May-2020 9:25:46 AM 8.21 39.25 73 4.01
24 11-May-2020 10:26:27 AM 8.27 41.06 78 4.05
25 11-May-2020 11:26:36 AM 8.87 39.00 78 4.09
26 11-May-2020 12:26:41 PM 8.47 39.38 75 4.11
27 11-May-2020 1:27:02 PM 8.89 38.44 75 4.1
28 11-May-2020 2:27:20 PM 8.46 40.19 73 4.13
29 11-May-2020 3:27:53 PM 8.53 40.81 65 4.14
30 11-May-2020 4:27:38 PM 8.2 38.44 62 4.14
31 11-May-2020 5:27:05 PM 8.8 33.13 60 4.13
32 11-May-2020 6:26:00 PM 8.87 31.37 68 4.13
33 11-May-2020 7:25:24 PM 8.44 30.50 71 4.13
34 11-May-2020 8:25:19 PM 8.95 29.94 70 4.13
35 11-May-2020 9:25:01 PM 8.97 29.81 70 4.13
36 11-May-2020 10:24:57 PM 9.50 29.19 69 4.12
37 11-May-2020 11:24:55 PM 9.11 28.94 69 4.13
38 12-May-2020 12:24:44 AM 9.6 28.56 69 4.12
39 12-May-2020 1:24:40 AM 9.24 28.31 69 4.12
40 12-May-2020 2:24:35 AM 8.79 28.25 69 4.12
41 12-May-2020 3:24:36 AM 9.31 28.25 69 4.11
42 12-May-2020 4:24:31 AM 9.36 28.00 69 4.11
43 12-May-2020 5:24:25 AM 9.41 27.44 69 4.11
44 12-May-2020 6:24:29 AM 9.40 28.19 70 4.11
45 12-May-2020 7:24:54 AM 9.40 30.06 69 4.11
46 12-May-2020 8:26:07 AM 9.36 33.50 69 4.15
47 12-May-2020 9:27:39 AM 9.28 39.50 73 4.18
48 12-May-2020 10:28:13 AM 9.36 38.94 81 4.19
49 12-May-2020 11:28:07 AM 8.93 39.75 81 4.22
50 12-May-2020 12:28:00 PM 9.43 40.19 79 4.24
51 12-May-2020 1:28:17 PM 9.41 38.13 76 4.24
52 12-May-2020 2:28:28 PM 9.34 41.13 73 4.24
53 12-May-2020 3:28:53 PM 9.43 42.00 65 4.23
54 12-May-2020 4:28:48 PM 9.55 36.25 60 4.22
55 12-May-2020 5:27:05 PM 10.20 33.50 60 4.22
56 12-May-2020 6:26:20 PM 9.72 31.75 72 4.21
57 12-May-2020 7:26:08 PM 10.23 31.44 70 4.21
58 12-May-2020 8:25:48 PM 10.27 29.94 70 4.20
59 12-May-2020 9:25:42 PM 9.81 29.63 69 4.20
60 12-May-2020 10:25:48 PM 10.28 29.37 69 4.20
. . . . . . . . . . . . . . . . . . . . .

References
1. Kumar, A.; Katagami, M. Developing and Disseminating Water-Saving Technologies in Asia; Asian Development Bank: Manila,

Philippines, 2016; Policy Brief 60. Available online: https://www.adb.org/sites/default/files/publication/185485/water-saving-
rice-tech.pdf (accessed on 1 April 2022).

2. FAO. Emissions due to agriculture. In Global, Regional and Country Trends 2000–2018; FAOSTAT Analytical Briefs 18; Food and
Agriculture Organization: Rome, Italy, 2020.

https://www.adb.org/sites/default/files/publication/185485/water-saving-rice-tech.pdf
https://www.adb.org/sites/default/files/publication/185485/water-saving-rice-tech.pdf


Water 2022, 14, 4128 17 of 17

3. GRiSP (Global Rice Partnership). Rice Almanac, 4th ed.; International Rice Research Institute: Los Baños, Philippines, 2013.
4. Bouman, B.A.M.; Lampayan, R.M.; Tuong, T.P. Water Management in Irrigated Rice: Coping with Water Scarcity; International Rice

Research Institute: Los Baños, Philippines, 2007.
5. Lampayan, R.M.; Samoy-Pascual, K.C.; Sibayan, E.B.; Ella, V.B.; Jayag, O.P.; Cabangon, R.J.; Bouman, B.A.M. Effects of alternate

wetting and drying (AWD) threshold level and plant seedling age on crop performance, water input, and water productivity of
transplanted rice in Central Luzon, Philippines. Paddy Water Environ. 2014, 13, 215–227. [CrossRef]

6. Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis.
Field Crop. Res. 2017, 203, 173–180. [CrossRef]

7. Howell, K.R.; Shrestha, P.; Dodd, I.C. Alternate wetting and drying irrigation maintained rice yields despite half the irrigation
volume, but is currently unlikely to be adopted by smallholder lowland rice farmers in Nepal. Food Energy Secur. 2015, 4, 144–157.
[CrossRef] [PubMed]

8. Linquist, B.A.; Anders, M.M.; Adviento-Borbe, M.A.A.; Chaney, R.L.; Nalley, L.L.; da Rosa, E.F.F.; Van Kessel, C. Reducing
greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Chang. Biol. 2015, 21, 407–417. [CrossRef]
[PubMed]

9. Lagomarsino, A.; Agnelli, A.E.; Linquist, B.; Adviento-Borbe, M.A.; Agnelli, A.; Gavina, G.; Ravaglia, S.; Ferrara, R.M. Alternate
Wetting and Drying of Rice Reduced CH4 Emissions but Triggered N2O Peaks in a Clayey Soil of Central Italy. Pedosphere 2016,
26, 533–548. [CrossRef]

10. Chidthaisong, A.; Cha-Un, N.; Rossopa, B.; Buddaboon, C.; Kunuthai, C.; Sriphirom, P.; Towprayoon, S.; Tokida, T.; Padre, A.T.;
Minamikawa, K. Evaluating the effects of alternate wetting and drying (AWD) on methane and nitrous oxide emissions from a
paddy field in Thailand. Soil Sci. Plant Nutr. 2017, 64, 31–38. [CrossRef]

11. Setyanto, P.; Pramono, A.; Adriany, T.A.; Susilawati, H.L.; Tokida, T.; Agnes, T.; Padre, A.T.; Minamikawa, K. Alternate wetting
and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Sci. Plant Nutr. 2017,
64, 23–30. [CrossRef]

12. Balaine, N.; Carrijo, D.R.; Adviento-Borbe, M.A.; Linquist, B. Greenhouse Gases from Irrigated Rice Systems under Varying
Severity of Alternate-Wetting and Drying Irrigation. Soil Sci. Soc. Am. J. 2019, 83, 1533–1541. [CrossRef]

13. Sander, B.; Schneider, P.; Romasanta, R.; Samoy-Pascual, K.; Sibayan, E.; Asis, C.; Wassmann, R. Potential of Alternate Wetting
and Drying Irrigation Practices for the Mitigation of GHG Emissions from Rice Fields: Two Cases in Central Luzon (Philippines).
Agriculture 2020, 10, 350. [CrossRef]

14. Hossain, M.M.; Islam, M.R. Farmers’ Participatory Alternate Wetting and Drying Irrigation Method Reduces Greenhouse Gas
Emission and Improves Water Productivity and Paddy Yield in Bangladesh. Water 2022, 14, 1056. [CrossRef]

15. Rejesus, R.M.; Palis, F.G.; Rodriguez, D.G.P.; Lampayan, R.M.; Bouman, B.A. Impact of the alternate wetting and drying (AWD)
water-saving irrigation technique: Evidence from rice producers in the Philippines. Food Policy 2011, 36, 280–288. [CrossRef]

16. Chiu, Y.-L.J.; Reba, M.L. Development of a Wireless Sensor Network for Tracking Flood Irrigation Management in Production-
Sized Rice Fields in the Mid-South. Appl. Eng. Agric. 2020, 36, 703–715. [CrossRef]

17. Pfitscher, L.L.; Bernardon, D.P.; Ferreira, A.A.B.; Heckler, M.V.T.; Thome, B.A.; Montani, P.D.B.; Fagundes, D.R. An automated
irrigation system for rice cropping with remote supervision. In Proceedings of the 2011 International Conference on Power
Engineering, Energy and Electrical Drives, Spain, Malaga, 11–13 May 2011.

18. Jacob, P.; Simon, S. Development and deployment of wireless sensor network in paddy fields of Kuttanad. Int. J. Eng. Innov.
Technol. 2012, 2, 84–88.

19. IRRI; PhilRice. AutoMonPH—An IoT Based Irrigation Advisory Service. In A Comprehensive Solution for Landscape-Scale Sustainable
Water Management in Rice; Synthesis Report 1.0; International Rice Research Institute (IRRI): LosBaños, Philippine; Philippine Rice
Research Institute (PhilRice): Ligao, Philippine, 2020.

20. Chiaradia, E.A.; Facchi, A.; Masseroni, D.; Ferrari, D.; Bischetti, G.B.; Gharsallah, O.; De Maria, S.C.; Rienzner, M.; Naldi, E.;
Romani, M.; et al. An integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under
different irrigation regimes. Environ. Monit. Assess. 2015, 187, 586. [CrossRef] [PubMed]

21. Xiao, D.; Feng, J.; Wang, N.; Luo, X.; Hu, Y. Integrated soil moisture and water depth sensor for paddy fields. Comput. Electron.
Agric. 2013, 98, 214–221. [CrossRef]

22. Ramirez, R.C.; Agulto, E.S.; Glaser, S.D.; Zhang, Z.; Hermocilla, J.C.; Ella, V.B. DEvelopment of real-time wireless sensor network—based
water information system for efficient irrigation of upland and lowland crop production systems. In Proceedings of the IOP
Conference Series: Earth and Environmental Science, Online, 25–26 February 2022. [CrossRef]

23. Kawakami, Y.; Furuta, T.; Nakagawa, H.; Kitamura, T.; Kurosawa, K.; Kogami, K.; Tajino, N.; Tanaka, M. Rice cultivation support
system equipped with water-level sensor system. In Proceedings of the 5th IFAC Conference on Sensing, Control and Automation
Technologies for Agriculture AGRICONTROL 2016, Seattle, WA, USA, 14–17 August 2016; Volume 49, pp. 143–148.

24. Pilling, D. HCSR04. 2015. Available online: https://www.davidpilling.com/wiki/index.php/HomePage (accessed on 22 January 2022).

http://doi.org/10.1007/s10333-014-0423-5
http://doi.org/10.1016/j.fcr.2016.12.002
http://doi.org/10.1002/fes3.58
http://www.ncbi.nlm.nih.gov/pubmed/27610231
http://doi.org/10.1111/gcb.12701
http://www.ncbi.nlm.nih.gov/pubmed/25099317
http://doi.org/10.1016/S1002-0160(15)60063-7
http://doi.org/10.1080/00380768.2017.1399044
http://doi.org/10.1080/00380768.2017.1409600
http://doi.org/10.2136/sssaj2019.04.0113
http://doi.org/10.3390/agriculture10080350
http://doi.org/10.3390/w14071056
http://doi.org/10.1016/j.foodpol.2010.11.026
http://doi.org/10.13031/aea.13962
http://doi.org/10.1007/s10661-015-4796-8
http://www.ncbi.nlm.nih.gov/pubmed/26307688
http://doi.org/10.1016/j.compag.2013.08.017
http://doi.org/10.1088/1775-1315/1038/1/012028
https://www.davidpilling.com/wiki/index.php/HomePage

	Introduction 
	Materials and Methods 
	Sensor Development 
	Hardware 
	Sensor Programming 
	Online Database and Alert Messaging Systems 

	Sensor Testing 
	Laboratory Test 
	Pseudo-Field Test 

	Actual Field Deployment 
	Performance Comparison between the Low-Cost Sensor and the High-End Sensor 
	Statistical Analysis 

	Results and Discussion 
	Laboratory Test Condition 
	Pseudo-Field Test Condition 
	Actual Field Deployment 
	Performance Comparison between the Low-Cost Sensor and High-End Sensor 
	Strengths and Limitations of the Developed Low-Cost Wireless Sensor 

	Conclusions 
	Appendix A
	References

