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Abstract: Uranium (U) and fluoride (F−) are the major global geogenic contaminants in aquifers
and pose serious health issues. Biochar, a potential adsorbent, has been widely applied to reme-
diate geogenic and anthropogenic contaminants. However, there is a lack of research progress
in understanding the role of different feedstock types, modifications, adsorption mechanisms on
physico-chemical properties of biochar, and factors affecting the adsorption of U and F− from aque-
ous solution. To fill this lacuna, the present review gives insight into the U and F− removal from
aqueous solution utilizing biochar from various feedstocks. Feedstock type, pyrolysis temperature,
modifications, solution pH, surface area, and surface-charge-influenced biochar adsorption capacities
have been discussed in detail. Major feedstock types that facilitated U and F− adsorption were crop
residues/agricultural waste, softwood, grasses, and animal manure. Low-to-medium pyrolyzing
temperature yielded better biochar properties for U and F− adsorption. Effective modification tech-
niques were mainly acidic and magnetic for U adsorption, while metal oxides, hydroxides, alkali,
and magnetic modification were favourable for F− adsorption. The major mechanisms of U adsorp-
tion were an electrostatic attraction and surface complexation, while for F− adsorption, the major
mechanisms were ion exchange and electrostatic attraction. Lastly, the limitations and challenges of
using biochar have also been discussed.

Keywords: biochar; uranium; fluoride; adsorption mechanism; feedstocks; aqueous solution; remediation

1. Introduction

Rapid industrialization, rising population, unplanned urbanization, and intense agri-
cultural activities have severely exploited water resources. As a result, the demand for
clean water has increased tremendously. According to the United Nations Children’s fund
(UNICEF) and World Health Organization (WHO) report, about 2.2 billion people globally
and up to 600 million people in underdeveloped nations still lack access to clean water [1].
Goal 6 of the United Nations (UN) Sustainable Development Goals (SDGs) seeks to ensure
access to water and sanitation for all, implying the need to improve water quality and
protect water-related ecosystems. This goal points to the need for synthesizing techno-
logical advances in water research to be economically viable for developing countries [2].
Groundwater serves as the primary supply of drinking water in the majority of the develop-
ing nations due to inadequate freshwater sources. However, groundwater contamination
has recently increased due to several contaminants (As, U, F−, Cd, Cr, Zn, NO3

−, PO4
3−,

etc.) via geogenic and endless anthropogenic activities [3,4]. Among them, U and F−

contamination is mainly caused by geogenic sources [5]. The intake of higher levels of U
and F− can cause serious health issues such as nephrotoxicity, dental and skeletal fluorosis,
bone cancer, and brain damage [6,7]; hence, it is essential to mitigate them. Elevated levels

Water 2022, 14, 4063. https://doi.org/10.3390/w14244063 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14244063
https://doi.org/10.3390/w14244063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-7264-5682
https://doi.org/10.3390/w14244063
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14244063?type=check_update&version=1


Water 2022, 14, 4063 2 of 34

of U in groundwater have been reported in many parts of the world, such as Finland,
Greece, Germany, Australia, Canada, and the U.S., and Southeast Asian countries such as
India, Pakistan, China, and Bangladesh [8]. The WHO guideline for U in drinking water
is 30 µg L−1 and by the Atomic Energy Regulatory Board (AERB) is 60 µg L−1. Drinking
water above these contamination limits can cause serious health issues. The health risk of U
in groundwater is more due to its chemical toxicity than the radiotoxicity. Chemical toxicity
causes damage to the kidney (nephrotoxicity), liver, reproductive system, and skeleton,
whereas radiotoxicity targets the lungs, bones, and brain [8–10]. Globally, many nations,
including India, China, Sri Lanka, Argentina, South Africa, UK, Pakistan, etc., have signif-
icant F− concentrations in their groundwater [11,12]. More than 200 million individuals
worldwide drink water with elevated F− levels [13]. The World Health Organization states
that 1.5 mg L−1 is the permissible limit for F− in drinking water. However, excessive F−

intake causes skeletal and dental fluorosis, bone cancer, and brain damage [7].
Numerous techniques have been developed to mitigate U and F−, namely membrane

filtration methods such as nanofiltration and reverse osmosis, ion exchange, lime softening,
coagulation by Fe/Al salts, and permeable reactive barriers using zerovalent iron. Ad-
sorbents such as iron oxide, titanium dioxide, precipitation and coagulation, electrolytic
defluoridation, adsorption, and electrodialysis have been utilized [14–20]. However, tech-
nologies have certain limitations, such as high installation and maintenance costs, pH
dependence, high energy consumption, membrane fouling, and scaling [14,21]. Hence,
these technologies are not cost-effective and cannot be applied in developing countries on a
large scale. Among these methods, adsorption is the most effective and promising method
for removing F−, U, and other heavy metals from contaminated water. For F− removal,
various adsorbents have been used, such as activated alumina [22], bone char [23], activated
carbon [24], metal oxides and hydroxides [25,26], zeolite [21], etc. Adsorbents, such as
hematite [27], zeolite [28], activated carbon [29], diatomite [30], etc., have been applied for
U removal. However, their expensive production cost makes them uneconomical. As a
result, there is a huge demand for sustainable and low-cost adsorbent development.

Biochar is a solid, stable, porous, and low-cost adsorbent which is a carbonaceous
material obtained from the thermal degradation of biomass, widely used for the reme-
diation of contaminants from polluted/contaminated soil and water ecosystems [31,32].
Biochar has attained significant recognition due to its economic, sustainable, reusable,
environmentally safe, and high adsorption efficiency. Evidence shows that biochar can
remove various contaminants, including U and F− [33–37]. For further enhancement in the
adsorption of U and F−, biochar has been modified with different techniques and materials,
such as MnFe2O4 [38], FeCl3 [39], HNO3 [33], Al(OH)3 [13], H3PO4 [35], LaCl3 [40], etc.
However, there is enough literature available on the review of contaminant removal from
aqueous solution using biochar, including organic and inorganic contaminants [41–51],
heavy metals [52–63], emerging contaminants [64–67], and chemical and microbial pollu-
tants [68]. However, there is no systematic review on the role of feedstocks on U and F−

removal by biochar from aqueous solution and its comparison with respect to different
raw/pristine and modified biochars. Therefore, to the best of our knowledge, this review
gives a systematic idea about the role of feedstock types on biochar properties, modification
techniques to enhance adsorption capacity, interactions with contaminants, and factors
affecting the adsorption efficiency of U and F− removal in aqueous solution.

The present review work aims to highlight (i) the application of biochars obtained
from different feedstocks for U and F− adsorption, (ii) the different production techniques
for synthesis of the biochar and modification methods for the enhancement of adsorption
efficiency of the biochar, (iii) the factors affecting the adsorption of U and F− such as pH,
biochar dosage, U and F− concentration, co-existing ions, and temperature, (iv) adsorption
mechanisms, (v) adsorption isotherms, kinetics, and thermodynamics, and (vi) challenges
and limitations for real U and F− groundwater treatment. Lastly, this paper concludes with
future studies and recommendations for in-depth research on removing U and F− using
low-cost biochars.
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2. Methodology

To address the objectives, extensive research was performed from scholarly databases
(Scopus, ScienceDirect, and Web of Science) on U and F− removal using biochar. The
following keywords and synonyms in different combinations: ‘biochar’, ‘sorption’, ‘water
treatment’, ‘uranium’, ‘fluoride removal’, ‘pollutant/contaminant removal’, ‘heavy metal
removal’, ‘aqueous solution’, ‘groundwater’, ‘adsorption’, ‘modification’, ‘mechanism’,
‘biomass adsorbent’, ‘crop residue’, ‘agricultural biomass’, ‘reusability’, and ‘regeneration’
were used for the literature search. More than 1100 studies were identified using these
keywords from three different databases. Duplicates were removed using Endnote, and
studies that reported metal removal other than the ones under investigation were not
considered for this review. More than 300 papers were retrieved after excluding duplicates
and studies that were irrelevant. Selected articles were further scrutinized based on the
abstract, and approximately 89 studies focusing on U and F− removal from aqueous
solution/wastewater/groundwater were included in this review. The papers on biochar
(studies of U and F− removal) covered the period from 2011 to 2022. Publications were
distributed in order, with 37 studies on F− removal and 52 on U removal. Prisma flowchart
was used for displaying data collection, exclusion and inclusion criteria (Figure 1).
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3. Results and Discussion
3.1. Role of Different Feedstock Types on Biochar Properties

Biochar has been obtained from pyrolyzing different feedstocks to remove U and F−,
due to their inherent and excellent physiochemical properties. Generally, woody biomass
and crop residues are comprised of cellulose, hemicellulose, and lignin. Feedstocks such
as crop residues (sugarcane bagasse, rice husk, wheat straw, rice straw, etc.), grasses, and
softwood (pine) are composed of a large proportion of cellulose and hemicellulose and
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degrade faster due to lower thermal resistance [69,70]. As a result, cellulose and hemicellu-
lose degrade at lower temperatures (200–400 ◦C), while lignin has a wide decomposition
range (200–900 ◦C) [57,69,71]. Hence, softwood and crop residues require low temperatures
for pyrolysis. Biochar yield is less in this case because biomass with high cellulose and
hemicellulose contain aliphatic carbon phases, which can easily break. Thus, they do not
make stable biochar and produce low biochar yield. These feedstocks produce high-oxygen-
containing functional groups such as carboxyl, carbonyl, and hydroxyl [69,70,72,73].

On the other hand, hardwoods (eucalyptus) are composed of a high fraction of lignin;
therefore, they require higher temperatures for degradation. These feedstocks make stable
biochar because they contain aromatic monomers and high carbon content making them
thermally stable and thus producing high biochar yield [69,70]. Some feedstocks which
are not plant-based/non-woody, such as animal manure and sludge, also degrade faster.
Thus, they require a low temperature range for biochar preparation [70,72,74]. Biochar
prepared at high temperatures is suitable for the sorption of organic contaminants, while
the sorption of inorganic contaminants requires low temperatures [45,70,75] As a result,
crop residues, grasses, and manure-based feedstocks are beneficial for U and F adsorption
as they have oxygen-based functional groups [74,76].

3.2. Applications of Biochar in U and F− Remediation

Biochar has gained much attention due to its widely available feedstock, making it a
low-cost adsorbent, and it possesses high surface area, porosity, and oxygen-rich functional
groups [77]. This section describes the application of biochar for removing U and F− from
the water and their efficiency.

U is a ubiquitous radioactive element, and its presence in water makes it unfit for
drinking and causes many toxic effects on kidneys, bones, and the liver [8–10]. Various
treatment technologies have been developed for U removal, such as reverse osmosis, ion
exchange, coagulation, and adsorption [78,79]. Of these, adsorption by biochar is the
most cost-effective method [72,80]. Several kinds of research have been performed on the
bioremediation of U-contaminated water through biochar, described in this section.

Feedstocks, modification methods, and optimum operating conditions such as pyroly-
sis temperature, residence time, pH, and biochar dosage were employed to remediate U and
F− through biochar (Figure 2). For instance, rice husk biochar was employed for U removal,
which showed a removal efficiency of 99.8% and adsorption capacity of 138.88 mg g−1

(Table 1) at pH 5.5 and temperature range of 303–353 K with a biochar dose of 0.38 g L−1 and
initial U concentration of 3 mg L−1 [81]. Jin et al. [82] examined wheat straw biochar which
exhibited a maximum sorption capacity of 355.6 mg g−1 at pH 4.5, temperature of 25 ◦C,
with initial concentration of 10 mg L−1. HNO3-modified rice straw biochar significantly
removed U with a sorption capacity of 242.65 mg g−1 (oxidized biochar) and 162.54 mg g−1

(raw biochar) at pH 5.5, a temperature of 25 ◦C, and dose of 0.01 g L−1. HNO3 oxidation
increased the surface area, porosity, and oxygen-containing functional groups [33]. Pine-
needles-based biochar successively removed U with a maximum adsorption capacity of
623.7 mg g−1 at pH 6, a temperature of 25 ◦C, and dosage of 5 g L−1 [37]. Dai et al. [34]
reported U removal from corn-cob-based biochar with a sorption capacity of 163.18 mg g−1

at pH 6, temperature of 25 ◦C, and biochar dose of 5 g L−1. Palm-based biochar was
investigated for U removal, which showed a removal efficiency of 99.2% and maximum
sorption potential of 488.7 mg g−1 at pH 3 and 25 ◦C [36]. Guo et al. [83] successfully
removed U using sponge gourd biochar with a sorption capacity of 239.21 mg g−1 at pH 5,
temperature of 30 ◦C, and initial concentration of U given 5 mg L−1. Similarly, Ioannou
et al. [84] prepared sponge gourd biochar which exhibited an excellent U sorption potential
of 904 mg g−1 at pH 3 and 23 ◦C. Lingamdinne et al. [85] employed magnetically modified
watermelon rind biochar which showed a U uptake of 323.56 mg g−1 for modified biochar
and 135.86 mg g−1 for pristine biochar at pH 4 and 20 ◦C. The high sorption capacity
was due to the magnetization of biochar by Fe oxide, resulting in increased surface area,
porosity, and sorption potential.
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Drinking F−-contaminated water can cause serious health issues such as skeletal
fluorosis, dental fluorosis, bone cancer, and brain damage [86–88]. Various research works
have been conducted on F− removal using biochar, such as Zhou et al. [89] who pre-
pared La/Fe/Al oxide-loaded rice straw biochar with a maximum F− sorption capacity of
10.85 mg g−1 for raw biochar while 111.11 mg g−1 for the modified one (Table 1), in the pH
range of 3 to 11 with an initial F− concentration of 6 mg L−1. Wheat-straw-derived biochar
impregnated with Al(OH)3 and La(OH)3 was used for F− removal from water. The pre-
pared biochar showed 98.69% removal with a maximum F− uptake of 51.28 mg g−1 at pH 7
and a temperature of 25 ◦C [90]. Nanoscale rice husk biochar was studied for defluoridation
with a removal efficiency of 90% and maximum F− adsorption capacity of 17.3 mg g−1

at pH 7 and a temperature of 30 ◦C [24]. Mohan et al. [91] utilized magnetic corn stover
biochar, which removed F− at pH 2, with a maximum sorption capacity of 4.11 mg g−1.
Tamarix hispida-based biochar showed 99.6% removal from synthetic water and 86.69% from
real wastewater. The biochar exhibited an adsorption potential of 164.23 mg g−1 at pH 6
and temperature of 25 ◦C [40]. Coconut-derived biochar was used for defluoridation with
a removal efficiency of 82.45% at pH 6.27 and a solution temperature of 30 ◦C [92]. Seed
shells of Camellia oleifera (tea oil plant) were utilized for biochar production to remove F−

from aqueous solution and exhibited an adsorption capacity of 11.04 mg g−1 at pH 6.8 [93].
Watermelon rind biochar easily removed F− at pH 1 with a maximum sorption capacity of
9.5 mg g−1 [94]. Wang et al. [95] prepared pomelo-peel-based biochar for defluoridation,
which showed 100% removal efficiency with a sorption potential of 18.52 mg g−1 at pH 6.5.
Okra stem biochar effectively removed F− with an adsorption capacity of 20 mg g−1 at
pH 2, a temperature of 35 ◦C, and with an initial concentration of 10 mg L−1 [96]. A biochar
composite of platanus acerifoli leaves and eggshell showed an excellent removal efficiency
of 98.53% with a maximum adsorption capacity of 308 mg g−1 at pH 5 and 25 ◦C [97].

Discussed above are some of the studies about the application of biochar in U and F−

remediation. It was observed that the adsorption capacity of biochar depends on various
parameters such as feedstock, modification, pH, dose, temperature, initial concentration
of U and F− in the solution, and functional groups. The effects of these parameters are
discussed in Sections 3.5 and 3.7. Table 1 summarizes the various research works carried
out on U and F− removal using biochar.

3.3. Synthesis of Biochar

The thermochemical conversion of biomass is the most common method for the pro-
duction of biochar [98]. It includes pyrolysis, gasification, torrefaction, and hydrothermal
carbonization [72]. For better biochar yield, parameters such as feedstock type, carboniza-
tion temperature, modification methods, heating rate, residence time, solution pH, adsorp-
tion temperature, adsorbent dosage, etc., must be optimum because of their significant
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impact on the physicochemical properties of the biochar [74,99,100]. Different categories
of feedstock have been utilized for the synthesis of biochar, such as crop residues (corn
stover, rice straw, rice husk, wheat straw, corn cob, etc.) [73,101,102], woody biomass (pine
needles, pine sawdust, bamboo, eucalyptus wood, palm tree fibres, etc.) [103–105], fruit
waste (watermelon rind and orange peel) [94,106], animal waste (pig manure, horse ma-
nure, and dairy manure) [107–109], sewage sludge [110], etc. For example, Jin et al. [82]
derived biochar from cow manure and wheat straw for U removal from water. It was
found that cow-manure-derived biochar exhibited higher removal efficiency than wheat
straw-derived biochar. Because of higher ash content, surface oxygen (which bonded with
U ions) and Ca2+ occurred on the surface, exchanged with positively charged U ions, and
provided new adsorption sites on the surface of cow-manure-derived biochar.

Furthermore, carbonization temperature is also an essential parameter for synthesis
as it affects the pore volume and surface area of the biochar. For instance, Hu et al. [111]
pyrolyzed bamboo sawdust at different temperatures (300, 450, and 600 ◦C). It was ob-
served that surface area and pore volume were positively correlated with the pyrolysis
temperature, i.e., the pore volume and surface area of the biochar were enhanced with in-
creasing pyrolysis temperature, resulting in higher U uptake. However, Alkurdi et al. [112]
pyrolyzed sheep bone to derive bone char for F− removal at different temperatures (500,
650, 800, and 900 ◦C). The surface area of bone char decreased from 120.031 m2 g−1 to
89.06 m2 g−1; as a result, the pore volume decreased from 0.283 m3 g−1 to 0.235 m3 g−1,
with increased pyrolyzing temperature from 500 ◦C to 900 ◦C due to pore shrinkage and
pore breakage at very high temperatures.

Modification is another critical parameter in the synthesis of biochar, which is per-
formed prior to or after the pyrolysis of raw biomass to improve the adsorption capacity, sur-
face morphology, and physiochemical properties of the biochar. For instance, Lingamdinne
et al. [85] magnetically modified watermelon rind biochar for U removal. They found
that magnetization improved the surface morphology from poorly structured to a porous
and ordered structure of the biochar and enhanced the surface area from 52.1 m2 g−1 to
86.35 m2 g−1. U uptake was enhanced from 135.86 mg g−1 to 323.56 mg g−1 after the
magnetization. Different biochar modification methods are further discussed in Section 3.5.
The various biochar production techniques are as follows:

3.3.1. Pyrolysis

The pyrolysis process commonly produces biochar, and this process involves the
thermal degradation of biomass into solid (biochar), liquid (bio-oil), and gas (syngas) in
oxygen-limited conditions at high temperatures ranging from 300 to 700 ◦C [113,114]. Py-
rolysis is further classified into slow and fast pyrolysis based on the pyrolysis temperature,
heating rate, and residence time. In slow pyrolysis, biochar is the primary product, while
the major products in fast pyrolysis are bio-oil and syngas. Compared to fast pyrolysis,
slow pyrolysis is better for biochar production because biochar yields decrease with an
increase in temperature and heating rate [114,115].

3.3.2. Gasification

Gasification is the thermal decomposition of solid carbonaceous material derived from
fossil fuels such as wood or coal into producer gas known as syngas at high temperature
(>700 ◦C) with gasifying agents such as steam, oxygen, air, etc., to partially oxidize the
feedstock [72,114,115]. During gasification, the major product is syngas, while biochar is
produced as a by-product with a lower yield [72].

3.3.3. Torrefaction

Torrefaction is a pretreatment process before pyrolysis to improve the properties of
the biomass. Torrefaction increases the hydrophobicity, further enhancing the biochar’s
storage stability, grindability, and carbon content. Reducing oxygen, water, or moisture
from biomass increases the biochar yield [116]. Torrefaction is known as mild pyrolysis,
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operating at low temperatures and heating rates. Biomass is pyrolyzed in the temperature
range of 200–300 ◦C, at a heating rate of <50 ◦C min−1, having a residence time of less than
30 min under anaerobic conditions and atmospheric pressure [116,117].

3.3.4. Hydrothermal Carbonization

Hydrothermal carbonization is used for making biochar from wet biomass. It helps
improve the properties of the biomass, such as hydrophobicity, grindability, increased
carbon content, and reduced oxygen content. It is specially employed for feedstock such as
sewage sludge, animal and human wastes, compost, municipal wastes, etc. As biomass
does not require drying before the treatment, it is better and more economical than pyrolysis
and gasification [113,114].

3.4. Characteristics of Biochar

Scanning electron microscopy–electronic dispersive X-ray (SEM-EDX) analyses the
biochar’s surface morphology and elemental mapping. For example, Ahmed et al. [38]
determined the surface morphology and elemental composition using SEM-EDS. They
concluded the fibrous–porous structure of the biochar and the presence of C, O, Fe, Mn,
and Na on the biochar surface, which confirmed the MnFe2O4 fabrication of the biochar.
The surface area of biochar is analysed using the Brunauer–Emmett–Teller method (BET).
For instance, Guilhen et al. [36] performed the BET method and found that the surface area
of biochar increased from 0.8320 to 643.12 m2 g−1 after CO2 activation, resulting in a high
adsorption capacity of the biochar, which confirmed that physical activation has potential
to enhance U uptake using biochar.

Fourier-transform infrared spectroscopy (FTIR) is used to observe the functional
groups on biochar surfaces. For example, several previous studies have utilized acid-
modified biochar and found that C–O, C=O, O–H, C–H, and –COOH were the main
functional groups present on the biochar surface [7,33,35,82,111,118–121]. Biochars treated
with a base showed C=O, N–H, C–H, C–O, O–H, and C–OH as the major functional
groups [90,122–124]. Magnetized biochars showed different functional groups such as
Fe–O, C=O, C–O, O-H, C=C, C–H, C–O–C, and Si–O–Si [39,85,91,125–127]. Ahmed et al. [38]
and Hu et al. [105] observed that a new peak was detected at 909 cm−1 and 916 cm−1,
which corresponded to the stretching vibration of [U=O=U]2+ and confirmed U adsorption
on the biochar surface. Similarly, Sadhu et al. [94] observed a new adsorption peak at
997 cm−1, which corresponded to C–F stretching and indicated F− adsorption.

X-ray photoelectron spectroscopy (XPS) examines the elemental composition and
chemical state of atoms in a produced material and provides information about the adsorp-
tion mechanism. For example, Ding et al. (2018) found that adsorbed U was a mixture of
87% U(IV) and 13% U(VI). X-ray diffraction (XRD) is used to analyse the crystallographic
structures of prepared biochar and the dominant minerals present on the biochar surface.
For instance, Wei et al. [128] performed XRD and found that the crystalline size of CeO2,
which was dispersed onto the biochar surface, was 17.07 nm. Similarly, Halder et al. [92]
observed several peaks which showed the presence of fluorinated compounds such as
K2MgF4 and KFeF3 and confirmed the F− sorption onto the biochar surface.

3.5. Modification Methods

Modification is necessary to improve biochar properties such as surface area, pore
structure, and functional groups [129]. Modification has four types: physical modification,
chemical modification, magnetic modification, and impregnation or coating of the miner-
als [130]. Modification or activation can be conducted before or after pyrolysis. Figure 3
shows the different modification methods, including physical, chemical, and magnetic
modification and Table 1 summarizes the effect of different modification methods on the
properties of biochar for U and F− removal.
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3.5.1. Physical Modification

Physical modification involves the utilization of oxidizing agents such as CO2, air, steam,
and ozone at high temperatures above 700 ◦C. It is generally employed for increasing the
surface area and porosity of biochar [164]. For instance, Guilhen et al. [36] removed U from
aqueous solution using biochar modified with CO2 as an activation agent at the temperature
range of 700–1000 ◦C. The CO2 activation increased the aromaticity and porosity of the biochar
with the increase in surface area from 0.83 to 643 m2 g−1 and enhanced the removal efficiency
from 80.5% (primary biochar) to 99.2% (activated biochar). Activation made the adsorption
sites more heterogenous and as a result created more pores of biochar. Similarly, Halder
et al. [92] employed the steam activation of biochar at 900 ◦C for F− removal from aqueous
solution, resulting in enhanced porosity and a surface area of 1054 m2 g−1. Steam activation
of the biochar resulted in an increased removal efficiency of 82.45%. Steam activation created
more adsorption sites by releasing volatile compounds during the activation process.

3.5.2. Chemical Modification

Chemical modification is carried out via acids, oxidizing agents, and alkaline treat-
ment. Acid modification enhances the surface area, improves surface morphology, pore
structure, and enriches the biochar surface with oxygen-containing functional groups such
as carboxylic (COO−), hydroxyl (OH−), carbonyl (CO), etc., resulting in a negative surface
charge of the biochar and promoting enhanced adsorption of the cationic species [120,130].
For example, HNO3 modification induced negative charge on the biochar surface due to
oxygen-containing functional groups and enhanced the U removal through complexation
between positive U species and acidic functional groups. This modification provided high
surface area, porosity, and microporous and mesoporous structure, resulting in higher
stability and performance over pristine biochar (Table 1) [33,82,118–121]. Similarly, Guan
et al. [35] modified pine tree sawdust biochar with the phosphoric acid–microwave method
for F− removal. The fabricated biochar showed an increase in surface area from 7.7 to
389.95 m2 g−1, a decrease in pore diameter from 17 to 0.9 Å, and an enhanced adsorption
capacity of 0.885 mg g−1. The modification removed some impurities from the pores of
pristine biochar resulting in the availability of more active sites for F− adsorption. The acid
treatment protonated the surface functional groups such as hydroxyl and carboxyl, result-
ing in electrostatic attraction between F− and protonated functional groups. De et al. [7]
modified biochar with hydrochloric acid for F− removal. This modified biochar showed
increased active sites, a graphite-like carbon structure, and high carbon content resulting in
higher adsorption than the raw biochar with a removal efficiency of 98.5% and adsorption
potential of 1.11 mg g−1.
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Table 1. Effect of modification on the adsorption capacity of biochar for U and F− removal.

Feedstock Modification Target Contaminant Surface Area
(m2 g−1) Pore Structure Adsorption Capacity (mg g−1)/Removal Efficiency (%) References

Raw
Biochar

Modified
Biochar

Rice straw Hydroxyapatite–biochar nanocomposite U 157.96 Mesoporous 110.56 428.25 [131]
Rice straw HNO3 oxidation U - Mesoporous 162.54 242.65 [33]
Wheat straw HNO3 oxidation U 290.1 - 8.7 355.6 [82]
Rice husk Magnetization by Siderite U 109.65 Mesoporous - 52.63 [125]
Rice husk Silicon containing biochar-supported iron oxide nanoparticles U 62.88 - - 138.88 [81]
Rice husk Magnetic modification using Fe2+/Fe3+ plus SO4

2− solution U 109 - 64 118 [132]
Corn cob Thermal air treatment at 300 ◦C U - Mesoporous 68.82 163.18 [34]
Pine needles Magnetization of oxidised biochar (HNO3 treated) by FeCl3 U - - - 623.7 [37]
Pine sawdust MgO/biochar composite U 51.45 Mesoporous - 514.72 [133]
Macaúba palm CO2 activation U 643.12 Microporous - 488.7 [36]
Palm tree fibres HNO3 oxidation U - - - 112 [121]
Bamboo sawdust Phytic acid U 1298 - 16.2 229.2 [111]

Bamboo biomass Phosphate impregnation biochar cross-linked Mg–Al layered
double-hydroxide composite U 445.17 Microporous 15.869 274.15 [134]

Cactus fibre HNO3 oxidation U <5 Microporous - 214 [118]
Chinese banyan aerial root KMnO4 modification U 284 Mesoporous 19.08 27.29 [135]
Puncture vine Magnetization by FeCl3 U - Mesoporous - 17.24 [39]
Hydrophyte biomass Magnetization by FeCl2 U 92.43 - 52.36 54.35 [136]
Hydrophyte Phytic acid modification U 433 - - 128.5 [137]
Pig manure KMnO4 U - - 369.9 979.3 [107]
Pig manure H2O2 U - - 369.9 661.7 [107]
Pig manure NaOH U 227.9 Mesoporous 369.9 952.5 [138]
Pig manure HCl U 36.3 Mesoporous 369.9 53.3 [138]
Pig manure NaOH U 345.7 Microporous 45.8 221.4 [124]
Pig manure H2O2 U 189 Microporous 45.8 145.1 [124]
Horse manure Bismuth impregnation U - - 186 516.5 [108]
Horse manure MgCl2 modification U - - - 625.8 [139]
Cow manure HNO3 oxidation U 101.5 - 64 73.3 [82]
Carp fish scales KOH activation U 1074.73 Microporous 71.59 291.98 [122]
Sewage sludge Thermal air treatment U - Mesoporous 78.66 96.73 [34]
Sewage sludge Air roasting–oxidation U 623.09 Mesoporous 139.5 490.2 [140]
Winery waste (grape peels) Chemically modification by NaOH, Na2CO3 U - - - 255 [141]
Winery waste (grape peels) Thermal modification at 650 ◦C and oxidized with HNO3 U 165 - - 100 [141]
Malt spent rootlets HNO3 oxidation U 540 Mesoporous 547 500 [120]
Coffee espresso residue HNO3 oxidation U 700 Mesoporous 547 357 [120]
Olive kernels HNO3 oxidation U 510 Mesoporous 357 381 [120]
Fungi Sulfide nano zero valent iron U 102.7 _ - 427.9 [142]
Green algae Mn impregnation U 63.7 Mesoporous - 100.2 [143]
Cyanobacteria Magnetic modification using Fe3O4 U - - 58.05 52.06 [144]
Sponge gourd ZnO-modified biochar hydrogel U - - 239.21 [83]
Sponge gourd fibres MnO2 oxidation U <5 Microporous 95 904 [84]
Sponge gourd sponges HNO3 oxidation U - - - 92 [119]
Sponge gourd sponge Salophen modification U - - - 833 [145]
Sponge gourd residue Functionalization by hummer method U - - - 382 [146]
Watermelon rind Magnetization by co-precipitation U 86.35 - 135.86 323.56 [85]
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Table 1. Cont.

Feedstock Modification Target Contaminant Surface Area
(m2 g−1) Pore Structure Adsorption Capacity (mg g−1)/Removal Efficiency (%) References

Raw
Biochar

Modified
Biochar

Watermelon seeds MnFe2O4 modification U - Mesoporous 21.24 27.61 [38]
Longan shell (fruit) Nano zero valent iron U 1168.88 Mesoporous - 331.13 [77]
Orange peel MnO2 modification U 273.25 Mesoporous 165.4 246.3 [106]
Orange peel Hydrogel U - - - 263.2 [147]
Tea waste Iron manganese oxide U 12 - - 510.8 [148]
Rice straw La/Fe/Al oxides impregnation F− 95.36 Mesoporous 10.85 111.11 [89]
Wheat straw Impregnation of aluminium and lanthanum hydroxide F− - - - 51.28 [90]
Rice husk Chemical modification by iron F− 58.98 Mesoporous - 4.45 [149]
Rice husk Nano-scale size reduction F− - - - 17.3 [24]
Rice husk Magnetic biochar anchored with Al and Mg F− 114 Mesoporous - 21.59 [150]
Corn stover Magnetization by Fe3+/Fe2+ solution F− 3.61 Microporous 6.42 4.11 [91]
Chir pine Calcium pretreated F− - - - 16.72 [151]
Mongolian scotch pine tree
sawdust Phosphoric acid-microwave method F− 339 Microporous - 0.885 [35]

Douglas fir (pine) Magnetization by Fe2O3/Fe3O4 F− 494 Microporous - 9.04 [152]
Douglas fir (pine) Iron-titanium biochar composite F− 576 Microporous - 36 [153]
Reed biomass Ce-loaded biochar beads F− 236.84 Mesoporous - 34.86 [128]
Kashgar tamarisk Lanthanum chloride F− 164.52 Mesoporous - 164.23 [40]
Tea oil plant (seed shells) Impregnation of zirconium dioxide F− - - - 11.04 [93]

Sawdust Chemical modification via cross-linking and protonation of
the chitosan-sawdust biochar beads F− 57.97 Microporous - 4.413 [154]

Pongammia pinnata seed cake Engineered biochar by HCl solution F− 10.1 Microporous - 1.11 [7]

Coconut Steam activation F− 1054
Mixture of
micropores and
mesopores

- 82.45% [92]

Pomelo peel Impregnation of polypyrrole F− - - - 18.52 [95]
Peanut shell MgO F− 182.3 Mesoporous - 83.05 [155]
Spent mushroom compost Al(OH)3 coating F− 28.5 - - 36.5 [13]
Food waste AlCl3 impregnation F− 20.95 - - 123.4 [156]
Tea waste Chemical modification by H2SO4, NaNO3, KMnO4 F− 11.833 Macroporous - 52.5 [157]
Red algae seaweed Spent biochar F− 319.47 Microporous - 2.1 [158]
Dairy manure Calcium modification F− 2.6 - 0.11 0.42 [109]
Tea waste Magnetic modification F− 115.65 Mesoporous - 18.78 [159]
Peanut hull Nil F− 98.2 Mesoporous 3.665 - [160]
Pinecone AlCl3 F− - - - 14.07 [161]
Conocarpus erectus Nil F− 9.88 Microporous 205.7 - [162]
Yak dung FeCl2 F− - - - 3.928 [163]

U: Uranium; F−: Fluoride; -: data not available.
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Oxidizing agents such as manganese oxide (MnO2) [84,106], hydrogen peroxide
(H2O2) [107,124], and potassium permanganate (KMnO4) [107,135] were used to mod-
ify biochar for U removal, while metal oxides, such as iron oxide, aluminium oxide, and
lanthanum oxide [89], were used to modify the biochar surface for F− adsorption. These
oxidizing agents showed enhanced adsorption due to a rise in surface area, porosity, and
oxygenated functional groups on the biochar surface [165].

Alkaline treatment was given by metal hydroxides, such as KOH [122], NaOH [124,138],
La(OH)3 [90], and Al(OH)3 [13]. For example, Saikia et al. [123] reported that the re-
moval efficiency of F− by perennial-grass-based biochar activated by adding KOH pellets
was 24.8%. After activation, they observed a rise in surface area from 5.57 m2 g−1 to
1248.2 m2 g−1. Similarly, Chen et al. [13] observed an increased adsorption capacity of
36.5 mg g−1 and surface area from 3.6 to 28.5 m2 g−1, and Yan et al. [90] reported increased
F− removal efficiency from 77.97% to 98.69% resulting from biochar modification with
aluminium and lanthanum hydroxides. An increase in surface area was found because the
coating of Al(OH)3 on the biochar surface was amorphous (the presence of small particles).
Amorphous materials have more active sites for sorption [166].

3.5.3. Magnetic Modification

The magnetization of biochar increases the adsorption capacity by enhancing the
surface area, pore volume, surface morphology, functional groups, and stability of the
biochar. In addition, magnetic biochar can be reused multiple times through the separa-
tion of contaminants from biochar using an external magnetic field [61,85]. For instance,
Ahmed et al. [39] produced biochar from Tribulus terrestris (puncture vine) and magnetized
it using FeCl3 to remove U(VI) from wastewater. The magnetic biochar exhibited a lay-
ered porous structure, which provided increased surface area and enhanced adsorption
capacity. After the modification, there was an increase in oxygen content resulting in
oxygen-containing functional groups. FTIR analysis revealed the presence of Fe–O, C=O,
C–O, and –OH functional groups after the magnetization of biochar. Another study was
carried out by Philippou et al. [37] for removing U from aqueous solution through magnetic
modification using Fe3O4-loaded pine needles biochar, which enhanced the adsorption
capacity to 623.7 mg g−1. Ahmed et al. [38] synthesized biochar from Citrullus lanatus
L. (watermelon) seeds and used MnFe2O4 to magnetically modify biochar through the
co-precipitation method for U(VI) removal from wastewater. It was observed that magnetic
biochar exhibited a mesoporous structure, higher stability, enhanced adsorption capacity
of 27.61 mg g−1 from 21.24 mg g−1 (pristine biochar), oxygenated functional groups, and
increased availability of active sites on the biochar.

The impregnation of mineral salt solution increases the oxygen functional groups
on the biochar surface, increasing the sorption capacity of the adsorbent. For instance,
Zhou et al. [89] derived biochar from rice straw impregnated with La/Fe/Al oxides through
co-precipitation for F− removal from drinking water. Impregnation increased the produc-
tion of hydroxyl groups on the biochar surface. Impregnated biochar enhanced the surface
area from 2.59 m2 g−1 to 95.36 m2 g−1 and the adsorption capacity from 10.85 mg g−1 to
111.11 mg g−1 in a wide pH range of 3–11.

3.5.4. Thermal Air Treatment (TAT)

Dai et al. [34] applied the TAT method to modify the biochar to remove U(VI) from the
aqueous solution. In this method, the biochar surface was engineered by heating biochar at
300 ◦C for 30 min to enhance the adsorption performance of the biochar. The adsorption
capacity of the biochar increased from 68.82 mg g−1 to 163.18 mg g−1. The resultant biochar
exhibited a high O/C ratio resulting in oxygen-containing functional groups, a reduction
in the average pore diameter (11.53 nm to 3.62 nm), and increased surface area (360.35 to
362.26 m2 g−1), resulting in the development of a mesoporous structure, which facilitated
U(VI) removal from the water. Compared to physical and chemical modification, thermal air
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treatment (TAT) exhibited a lower carbonization temperature and shorter processing time
resulting in elevated product yield and lower production cost and energy consumption.

3.6. Raw vs. Modified Biochar

Biochar (raw as well as modified) has been widely utilized for U and F− removal
from aqueous solution at several operating parameters such as pH, dose, temperature,
initial concentration, etc. The following section discusses the comparative analysis of
adsorption capacities with respect to raw and modified biochar at different experimental
conditions. For example, Hu et al. [111] employed phytic-acid-modified bamboo sawdust
biochar pyrolyzed at 450 ◦C to remediate U(VI) from synthetic water. The modified biochar
showed a higher sorption capacity (229.2 mg g−1) than raw biochar (16.2 mg g−1) (Table 1)
at pH 4 and 25 ◦C. Fabrication enhanced the surface area of the biochar from 8.47 m2 g−1

to 157.96 m2 g−1, nearly nineteen times higher than the pristine biochar. Modification
enlarged the pores due to the release of volatile matter during pyrolysis, resulting in en-
hanced pore volume from 0.015 cm g−1 (raw biochar) to 0.919 cm g−1 (modified biochar).
Phytic acid fabrication introduced phosphate-functionalized groups on the biochar sur-
face and improved the pore structure, which enhanced the U(VI) uptake compared with
raw biochar. Similarly, Ahmed et al. [33] used HNO3-modified rice straw biochar to re-
move U(VI) from aqueous solution. Oxidized biochar exhibited an adsorption capacity of
242.65 mg g−1, while raw biochar showed a maximum sorption capacity of 162.54 mg g−1

at pH 5.5 and a temperature of 25 ◦C. Nitric acid enriched the carbonized surface with
acidic functional groups such as carboxyl and carbonyl, thereby enhancing the adsorption
ability of the biochar. Similar findings were reported by [82,118–121]. A novel adsorbent,
hydroxyapatite biochar nanocomposite made from rice straw, was developed by Ahmed
et al. [131] to remove U(VI) from laboratory water. The fabricated biochar exhibited an
adsorption potential of 428.25 mg g−1, while raw biochar showed an adsorption capacity
of 110.56 mg g−1. Essentially, hydroxyapatite is a calcium phosphate material which has a
high tendency to remediate environmental contaminants [167]. Hence, introducing this
biomaterial on the biochar surface enhanced its adsorption potential compared to raw
biochar. The highest U(VI) uptake was observed at pH 5.5, a temperature of 25 ◦C, and
initial concentration of 50 mg L−1 in both the adsorbents. Modified biochar showed excel-
lent removal efficiency >90% even after five sorption–desorption cycles. Han et al. [124]
examined NaOH-modified pig manure biochar for U immobilization and observed that
modified biochar exhibited more significant sorption potential (221.4 mg g−1) than the
pristine one (45.8 mg g−1). The greater U uptake was due to the enhanced surface area
(from 135.7 m2 g−1 to 345.7 m2 g−1), pore volume (0.032 cm3 g−1 to 0.119 cm3 g−1), and
carboxyl and hydroxyl functional group complexation with U. A similar study was per-
formed using alkali (NaOH)-modified pig manure biochar for U removal which supported
these results [107].

Zhou et al. [89] employed tri-metallic (La/Fe/Al oxides)-modified biochar derived
from rice straw for the defluoridation of aqueous solution. The modified biochar exhib-
ited a maximum adsorption potential of 111.11 mg g−1, while pristine biochar showed
10.85 mg g−1 F− uptake. The impregnation of metal oxides on the biochar surface en-
hanced the surface area (2.59 to 95.36 m2 g−1), pore volume (0.012 to 0.611 cm3 g−1),
and pore diameter (12.01 to 12.49 nm). As La/Fe/Al oxides have a positive charge and
fluoride has negative, the fabricated biochar showed a higher capacity for F− removal
through ion exchange and electrostatic interactions. Generally, biochars are negatively
charged [168]; hence, the raw biochar exhibited less F− uptake than the modified biochar.
Maximum removal was observed at pH 3, with a biochar dosage of 1 g L−1, with an initial
concentration of 6 mg L−1 in both sorbents. Limited studies have compared raw and
modified biochar in the case of F−. They have determined the adsorption capacities of only
modified/coated/fabricated biochars.

Based on the available literature, it was observed that less acidic or near-neutral
pH (discussed in Section 3.7.1), low-to-medium (200–550 ◦C) pyrolyzing temperature, a
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solution temperature of 25 ◦C, and chemical (acidic) and magnetic modification of the
biochar yielded better results for U adsorption. In the case of F−, alkali pH (see Section 3.7.1),
a medium pyrolyzing temperature (450–700 ◦C), and a solution temperature of 30 ◦C, metal
oxides and hydroxides, magnetization, and chemical (weak acids and alkali) modification
might be more favourable for F− removal.

3.7. Factors Affecting the Adsorption of U and F− in Aqueous Solution
3.7.1. Influence of pH

Among various factors, the pH of the solution is one of the crucial factors which affects
the adsorption of contaminants by governing their speciation and surface charge of biochar
in varying-pH solution [84,107]. Speciation of U was influenced at varying pH; at pH values
less than 6, U (VI) occurred in the form of uranyl species (UO2

2+) and positively charged
hydroxy complexes, such as (UO2)3(OH)4

2+, (UO2)2(OH)2
2+, (UO2)3(OH)5

+, UO2(OH)+,
(UO2)4(OH)7

+, (UO2)3(OH)5
2+, and (UO2)2OH3+, and negatively charged species of U,

i.e., (UO2)2CO3 (OH)3
− occurred at pH > 6 (Table 2) [169,170]. It was found that at lower

pH values (3–6) (less acidic or near neutral), the biochar surface was negatively charged
due to the presence of negatively charged functional groups (COO−, OH−) [171] and
positively charged U species were present at these pH values [169]. In addition, when the
solution pH > pHZPC, the surface charge on the biochar became negative, which attracted
the positive U species through electrostatic attraction and complexation, resulting in a high
adsorption capacity [133] (Table 2). Figure 4 summarizes how major parameters affect U
and F− adsorption.
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For example, Ahmed et al. [39] have found that the adsorption of U (VI) increases
with a rise in pH up to pH 6 and decreases at pH > 6 using magnetic-modified biochar.
This occurred due to repulsion between negatively charged U species and the negatively



Water 2022, 14, 4063 14 of 34

charged biochar surface at pH > 6. Hu et al. [105] examined the impact of pH on the
adsorption capacity of U (VI) using bamboo shoot shell biochar at a pH ranging from 1 to
7 and found the maximum adsorption at pH 4 which decreased further with the increase
in pH. This is because at pH < 4, electrostatic repulsion occurred between the positively
charged biochar surface (due to protonation of functional groups—carboxyl and hydroxyl
groups) and positively charged U species; hence, adsorption is less. Biochar was positively
charged when the pH was highly acidic (1–2) due to the protonation of functional groups
leading to repulsion between positive U species and the positive biochar surface. It was
observed that slightly acidic or near-neutral pH favoured high adsorption capacities for U
because of the presence of negatively charged functional groups due to the deprotonation
of functional groups and smaller pHZPC values, which led to attraction between positive
U species and the negative biochar surface, whereas at basic pH values, the biochar was
negatively charged due to the deprotonation of functional groups resulting in repulsion
between negative species of U and the negative biochar surface.

The interaction between biochar and F− is affected by the point of zero charge (PZC).
As the solution pH is less than pHPZC, it favours the adsorption of F− electrostatically [89].
Table 3 shows the influence of the solution pH on the biochar adsorption capacity for F−

removal. For instance, Habibi et al. [40] synthesized lanthanum-chloride-activated biochar,
which had a pHPZC of 6.6, and reported that F− removal increased at pH < 6.6 and gradually
decreased at pH > 6.6. At varying pH, the protonation or deprotonation of functional groups
on the biochar surface occurs. At low pH, the removal of anionic F− species is favoured,
as the functional groups present on the surface of the biochar are protonated [7]. At high
pH, the removal of cationic species is favoured due to the deprotonation of functional
groups present on the biochar surface. Sadhu et al. [94] observed a significant impact on the
adsorption of F− using watermelon rind biochar, which showed a maximum adsorption of
F− at pH 1, which was found to be 9.5 mg g−1. Furthermore, a sharp decline in adsorption
efficiency was observed above pH 2. Another reason for the high adsorption capacity was
the electrostatic attraction between the positively charged biochar and F− ions (Table 3).
However, there are studies where F− adsorption has occurred at higher pH values (pH > 4).
This is due to ion exchange between F− ions and the negatively charged or less positively
charged biochar surface [90].

3.7.2. Effect of Biochar Dose on U and F− Adsorption

For the optimum remediation of U and F−, it is required to optimize the biochar dose
by keeping the pH and the initial concentration of U and F− constant. With increased
biochar dosage, the adsorption capacity and removal percentage of U and F− rose to the
optimum level as the high dosage of the biochar provided many effective active sites on
the biochar surface [107]. Table 4 shows the influence of biochar dosage on the adsorption
capacity. For example, Yan et al. [90] observed that the F− removal rate increased from
77.97% to 98.69% as the biochar dosage rose from 0.25 to 1 g L−1. Xu et al. [176] identified
that the U (VI) removal rate increased from 31.38 to 96.03% with the rise in iochar dose
from 0.03 to 0.3 g L−1. At the same time, a further increase in adsorbent doses decreased
the adsorption capacity.

3.7.3. Influence of Initial Concentration

The initial concentration of U and F− in aqueous solution influences the adsorption
capacity of biochar. The impact of initial F− and U concentration on biochar adsorption
capacity is shown in Table 5. With low initial concentrations of U, F−, and fixed biochar
dose, the adsorption of U and F− ions increased due to the availability of active surface sites.
Furthermore, as the initial concentration of U and F− increased, the adsorption decreased
because fewer surface active sites were available, and there was more competition between
the ions [13,105,118]. For instance, Goswami and Kumar [24] analysed that the removal
rate of F− declined from 90% to 68.3% with an initial F− concentration increment from 3 to
10 mg L−1, utilizing nanoscale rice husk biochar.
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Table 2. Influence of solution pH on the adsorption of U.

Feedstock Solution pH pHPZC Target Pollutant Speciation Adsorbed Biochar Surface Charge Adsorption Capacity
(mg g−1) References

Rice straw 5.5 2.5 U UO2
2+, (UO2)3(OH)5

+
, (UO2)3(OH)4

2+, (UO2)2(OH)2
2+ negative 428.25 [131]

Rice straw 5.5 2.5 U negative 242.65 [33]
Wheat straw 6 3 U UO2

2+, (UO2)3(OH)5
+, (UO2)2(OH)2

2+, UO2OH+, (UO2)4(OH)7
+ negative 355.6 [82]

Rice husk 4 3.51 U UO2
2+, UO2OH+, (UO2)3(OH)5

+ negative 52.63 [125]
Rice husk 5.5 4.17 U UO2

2+, (UO2)3(OH)5
+, (UO2)2(OH)2

2+ negative 138.88 [81]
Rice husk 7 3.71 U UO2(OH)+, (UO2)2(OH)2, (UO2)3(OH)5

2+ negative 118 [132]
Corn cob 6 _ U (UO2)3(OH)5

+, (UO2)2(OH)2
2+, UO2OH+ negative 163.18 [34]

Pine needles 6 3.8 U _ _ 623.7 [37]
Pine needles 6 _ U _ _ 62.7 [172]
Pine sawdust 4 2.98 U UO2

2+, (UO2)3(OH)5
+, (UO2)2(OH)2

2+, (UO2)4(OH)7
+ negative 514.72 [133]

Macaúba palm 3 U 488.7 [36]
Palm tree fibres 6 _ U _ _ 112 [121]
Bamboo sawdust 4 2.73 U UO2

2+, (UO2)3(OH)5
+, (UO2)2(OH)2

2+, UO2OH+ negative 229.2 [111]
Bamboo biomass 4 4.28 U UO2

2+, (UO2)3(OH)5
+, (UO2)2(OH)2

2+, UO2OH+ 274.15 [134]
Bamboo 6 _ U _ _ _ [34]
Bamboo shoot shell 4 _ U UO2

2+, (UO2)2(OH)2
2+, UO2OH+, (UO2)4(OH)7

+ negative 32.3 [105]
Cactus fibre 3 _ U _ _ 214 [118]
Camphor tree leaves 6.5 5.76 U UO2

2+, (UO2)2(OH)2
2+, UO2OH+ negative 98.29 [173]

Miswak branches 4 2.79 U UO2
2+, (UO2)2(OH)2

2+, UO2OH+ negative 85.71 [174]
Chinese banyan aerial root 4 _ U _ _ 27.29 [135]
Eucalyptus wood 5.5 _ U (UO2)2OH3+, (UO2)3(OH)5

+, (UO2)2(OH)2
2+, UO2OH+, (UO2)4(OH)7

+ negative 27.2 [175]
Puncture vine 6 4 U UO2

2+, (UO2)3(OH)5
+

, (UO2)3(OH)4
2+, (UO2)2(OH)2

2+ negative 17.24 [39]
Water hyacinth 6 _ U UO2

2+, (UO2)2(OH)2
2+, UO2OH+, (UO2)4(OH)7+ negative 138.57 [176]

Hydrophyte biomass 3 4.2 U UO2
2+ 54.35 [136]

Hydrophyte 4 2.46 U UO2
2+, (UO2)3(OH)4

2+, (UO2)2(OH)2
2+, UO2OH+ negative 128.5 [137]

Switchgrass 5.9 _ U UO2
2+, (UO2)3(OH)5

+, (UO2)2(OH)2
2+, UO2OH+ negative 4 [177]

Pig manure 4 U 979.3 [107]
Pig manure 4 U 661.7 [107]
Pig manure 4 U 952.5 [138]
Pig manure 4.5 _ U UO2

2+,(UO2)2(OH)2
2+, UO2OH+ 221.4 [124]

Horse manure 4 9.05 U UO2
2+ 516.5 [108]

Horse manure 4 U UO2
2+ negative 625.8 [139]

Cow manure 4.5 3 U UO2
2+, (UO2)3(OH)5

+, (UO2)2(OH)2
2+, UO2OH+, (UO2)4(OH)7

+ negative 73.3 [82]
Carp fish scales 5 2.87 U UO2

2+, (UO2)3(OH)5
+, (UO2)2(OH)2

2+, UO2OH+ negative 291.98 [122]
Sewage sludge 6 _ U (UO2)3(OH)5

+, (UO2)2(OH)2
2+, UO2OH+ negative 96.73 [34]

Sewage sludge 6 3 U UO2
2+, (UO2)3(OH)5

+, (UO2)2(OH)2
2+, UO2OH+ negative 490.2 [140]

Winery waste
(grape peels) 4 _ U UO2

2+ negative 255 [141]

Winery waste
(grape peels) 4 _ U UO2

2+ negative 100 [141]

Malt spent rootlets (MSR) 3 _ U _ _ 547 [120]
Coffee espresso residue 3 _ U _ _ 547 [120]
Olive kernels 3 _ U _ _ 357 [120]
Fungi 5 6.41 U positive 427.9 [142]
Green algae 6 2.62 U (UO2)3(OH)5

+, (UO2)2(OH)2
2+, (UO2)4(OH)7

+ negative 100.2 [143]
Cyanobacteria 6 3.5 U (UO2)3(OH)5

+, (UO2)2(OH)2
2+, UO2OH+ negative 58.05 [144]

Sponge gourd 5 _ U (UO2)3(OH)5
+, (UO2)2(OH)2

2+, UO2OH+ negative 239.21 [83]
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Table 2. Cont.

Feedstock Solution pH pHPZC Target Pollutant Speciation Adsorbed Biochar Surface Charge Adsorption Capacity
(mg g−1) References

Sponge gourd fibres 3 U 904 [84]
Sponge gourd sponges 3 _ U _ _ 92 [119]
Sponge gourd sponge 5.5 _ U _ _ 833 [145]
Sponge gourd residue 6 1.8 U UO2

2+, (UO2)3(OH)5
+, (UO2)2(OH)2

2+, UO2OH+ negative 382 [146]
Watermelon rind 4 5.4 U _ _ 323.56 [85]
Watermelon seeds 4 2.5 U _ _ 27.61 [38]
Longan shell (fruit) 6 6.25 U 331.13 [77]
Orange peel 5.5 2.6 U UO2

2+
, (UO2)3(OH)4

2+, (UO2)2(OH)2
2+, UO2OH+, (UO2)2OH3+, UO2(OH)2 negative 246.3 [106]

U: Uranium; _: data not available; pHZPC = zero-point charge (pH value at which there is no charge).
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Table 3. Effect of solution pH on biochar adsorption capacity for F− removal.

Feedstock Solution pH pHPZC Target Pollutant Biochar Surface Charge Adsorption
Capacity (mg g−1) References

Rice straw 8 11 F− positive 111.11 [89]
Wheat straw 7 4.8 F− negative 51.28 [90]
Rice husk 4 6 F− positive 4.45 [178]
Rice husk 7 _ F− _ 17.3 [24]
Rice husk 5.3 F− 21.59 [150]
Rice husk 6 _ F− _ 1.856 [149]
Black gram straw 2 _ F− _ 16 [96]
Corn stover 2 1.96 F− 4.11 [91]
Chir pine 4.5 _ F− _ 16.72 [151]
Mongolian scotch pine tree sawdust 7 _ F− _ 0.885 [35]
Pine bark 2 9 F− positive 9.77 [179]
Pine wood 2 9 F− positive 7.66 [179]
Douglas fir 7 11 F− positive 9.04 [152]
Douglas fir 6 6.4 F− positive 36 [153]
Reed biomass 5.5 8.26 F− positive 34.86 [128]
Kashgar tamarisk 6 6.6 F− positive 164.23 [40]
Tea oil plant (seed shells) 6.8 4.45 F− negative 11.04 [93]
Sawdust 7 2.2 F− negative 4.413 [154]
Pongammia pinnata seed cake 7 _ F− _ 1.11 [7]
Coconut 6.5 _ F− _ _ [92]
Cattail _ _ F− _ 1.28 [180]
Pomelo peel 6.5 8.6 F− positive 18.52 [95]
Watermelon rind 1 2.1 F− positive 9.5 [94]
Okra (lady finger) stem 2 _ F− _ 20 [96]
spent Mushroom compost 10 _ F− _ 4.7 [13]
Food waste 7.1 _ F− _ 123.4 [158]
Tea waste 2 _ F− _ 52.5 [109]
Red algae seaweed 5 6.9 F− positive 2.1 [169]
Dairy manure 5 8.8 F− positive 0.42 [109]
Sheep bone _ _ F− _ 2.33 [112]
Bone residues (chicken, cattle, and mixed
bones) _ _ F− _ 4.29 [181]

Eggshell and platanus acerifoli leaves
(5:1) 5 _ F− _ 308 [97]

F−: Fluoride; _: data not available, pHZPC: zero-point charge (pH value at which there is no charge).

Table 4. Effect of biochar dosage on U and F− adsorption.

Feedstock Biochar Dose (g L−1) Target Pollutant Adsorption Capacity (mg g−1) References

Rice straw 5 mg/50 mL U 428.25 [131]
Rice straw 0.01g U 242.65 [33]
Wheat straw _ U 355.6 [82]
Rice husk 1 U 52.63 [125]
Rice husk 0.38 U 138.88 [81]
Rice husk 0.4 U 118 [132]
Corn cob 0.25 U 163.18 [34]
Pine needles 5 U 623.7 [37]
Pine needles 0.01 g/50 mL U 62.7 [172]
Pine sawdust 0.2 U 514.72 [133]
Macaúba palm 10 U 488.7 [36]
Palm tree fibres 0.1 g U 112 [121]
Bamboo sawdust 0.4 U 229.2 [111]
Bamboo biomass _ U 274.15 [134]
Bamboo shoot shell 2 U 32.3 [105]
Cactus fibre 0.01 U 214 [118]
Camphor tree leaves 0.25 U 98.29 [173]
Miswak branches 1 U 85.71 [174]
Chinese banyan aerial root 1 U 27.29 [135]
Eucalyptus the Wood 5 U 27.2 [175]
Puncture vine 0.5g U 17.24 [39]
Water hyacinth 0.2 U 138.57 [176]
Hydrophyte biomass 1 U 54.35 [136]
Hydrophyte 0.4 U 128.5 [137]
Switchgrass 0.1 U 4 [177]
Pig manure 0.3 U 979.3 [107]
Pig manure 0.3 U 661.7 [107]
Pig manure 0.1 U 952.5 [138]
Pig manure _ U 221.4 [124]
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Table 4. Cont.

Feedstock Biochar Dose (g L−1) Target Pollutant Adsorption Capacity (mg g−1) References

Horse manure 0.1 U 516.5 [108]
Horse manure 0.1 U 625.8 [139]
Cow manure _ U 73.3 [82]
Carp fish scales 0.1 U 291.98 [122]
Sewage sludge 0.25 U 96.73 [34]
Sewage sludge 0.13 U 490.2 [140]
Winery waste (grape peels) 1 U 255 [141]
Winery waste (grape peels) 1 U 100 [141]
Malt spent rootlets 0.01 U 547 [120]
Coffee espresso residue 0.01 U 547 [120]
Olive kernels 0.01 U 357 [120]
Fungi 0.05 U 427.9 [142]
Green algae 0.5 U 100.2 [143]
Cyanobacteria 0.5 U 58.05 [144]
Sponge gourd 5 mg/50 mL U 239.21 [83]
Sponge gourd fibres _ U 904 [84]
Sponge gourd sponges 0.01 g U 92 [119]
Sponge gourd sponge _ U 833 [145]
Sponge gourd residue 0.4 U 382 [146]
Watermelon rind 1 U 323.56 [85]
Watermelon seeds 1 U 27.61 [38]
Longan shell (fruit) 0.1 U 331.13 [77]
Orange peel 10 mg/50 mL U 246.3 [106]
Rice straw 1 F− 111.11 [89]
Wheat straw 1 F− 51.28 [90]
Rice husk 4 F− 4.45 [178]
Rice husk 1 F− 17.3 [24]
Rice husk 0.1 F− 21.59 [150]
Rice husk 10 F− 1.856 [149]
Black gram straw 2.5 F− 16 [96]
Corn stover 5 F− 4.11 [91]
Chir pine 2 F− 16.72 [151]
Mongolian scotch pine tree sawdust 3.6 g/100 mL F− 0.885 [35]
Pine bark 10 F− 9.77 [179]
Pine wood 10 F− 7.66 [179]
Douglas fir (pine) 0.05 g/25 mL F− 9.04 [152]
Douglas fir (pine) 25 mg F− 36 [153]
Reed biomass 1 F− 34.86 [128]
Kashgar tamarisk 5 F− 164.23 [40]
Tea oil plant (seed shells) 1.6 F− 11.04 [93]
Sawdust 5 F− 4.413 [154]
Coconut 7 F− _ [92]
Cattail _ F− 1.28 [180]
Pongammia pinnata seed cake 10 F− 1.11 [7]
Pomelo peel 2.5 F− 18.52 [95]
Watermelon rind 0.2 g F− 9.5 [94]
Okra (lady finger) stem 2.5 F− 20 [96]
Spent mushroom compost 2 F− 4.7 [13]
Food waste 0.1 g/30 mL F− 123.4 [156]
Tea waste 10 F− 52.5 [157]
Red algae seaweed 0.6 g/100 mL F− 2.1 [158]
Dairy manure 0.33 F− 0.51 [109]
Sheep bone 1 F− 2.33 [112]
Bone residues (chicken, cattle, and mixed
bones) 1 F− 4.29 [181]

Eggshell and platanus acerifoli leaves (5:1) 1.6 F− 308 [97]

U: Uranium; F−: Fluoride; _: data not available.

De et al. [7] observed F− concentrations of 5–20 mg L−1 with a fixed biochar dose
to examine the impact of initial concentration. The highest removal percentage of 98.5%
was obtained at 10 mg L−1 F− concentration. However, with a further rise in the initial
concentration, the adsorption decreased drastically because of the saturation of active
surface sites. Mahmoud et al. [182] determined the influence of the initial concentration of
uranyl ions in the range of 30–150 mg L−1 at a constant pH, contact time, and dosage and
found that the removal percentage increased from 81.3% to 89.5% for 30–80 mg L−1 uranyl
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ion concentration. However, increased uranyl ion concentration from 80 to 150 mg L−1

decreased the removal efficiency due to more ions in the solution than the biochar surface
active sites.

Table 5. Influence of initial concentration on adsorption of F− and U.

Feedstock Initial Conc. (mg L−1) Target Pollutant Adsorption Capacity (mg g−1) References

Rice straw 6 F− 111.11 [89]
Wheat straw 6 F− 51.28 [90]
Rice husk 5 F− 4.45 [178]
Rice husk 5 F− 17.3 [24]
Rice husk 2 F− 21.59 [150]
Rice husk 4 F− 1.856 [149]
Black gram straw 10 F− 16 [96]
Corn stover 100 F− 4.11 [91]
Chir pine 50 F− 16.72 [151]
Mongolian scotch pine tree sawdust 20 F− 0.885 [35]
Pine bark 100 F− 9.77 [179]
Pine wood 100 F− 7.66 [179]
Douglas fir (pine) 10 F− 9.04 [152]
Douglas fir (pine) 50 F− 36 [153]
Reed biomass 10 F− 34.86 [128]
Kashgar tamarisk 40 F− 164.23 [40]
Tea oil plant (seed shells) 70 F− 11.04 [93]
Sawdust 10 F− 4.413 [154]
Coconut 10 F− _ [92]
Cattail 20 F− 1.28 [180]
Pongammia pinnata seed cake 10 F− 1.11 [7]
Pomelo peel 10 F− 18.52 [132]
Watermelon rind 50 F− 9.5 [94]
Okra (lady finger) stem 10 F− 20 [96]
Spent mushroom compost 10 F− 4.7 [13]
Food waste 300 F− 123.4 [156]
Tea waste 50 F− 52.5 [157]
Red algae seaweed 15 F− 2.1 [158]
Dairy manure 5 F− 0.42 [109]
Sheep bone 10 F− 2.33 [112]
Bone residues (chicken, cattle and mixed
bones) 10 F− 4.29 [181]

Eggshell and platanus acerifoli leaves
(5:1) 500 F− 308 [97]

Rice straw 50 U 428.25 [131]
Rice straw 50 U 242.65 [33]
Wheat straw 10 U 355.6 [82]
Rice husk 10 U 52.63 [125]
Rice husk 3 U 138.88 [81]
Rice husk 80 U 118 [132]
Corn cob 25 U 163.18 [34]
Pine needles 11.9 U 623.7 [37]
Pine needles 50 U 62.7 [172]
Pine sawdust 10 U 514.72 [133]
Macaúba palm 5 U 488.7 [36]
Palm tree fibres 11.9 U 112 [121]
Bamboo sawdust 47.6 U 229.2 [111]
Bamboo biomass _ U 274.15 [134]
Bamboo shoot shell 50 U 32.3 [105]
Cactus fibre 119 U 214 [118]
Camphor tree leaves 50 U 98.29 [173]
Miswak branches 60 U 85.71 [174]
Chinese banyan aerial root 30 U 27.29 [135]
Eucalyptus the Wood 300 U 27.2 [175]
Puncture vine 50 U 17.24 [39]
Water hyacinth 30 U 138.57 [176]
Hydrophyte biomass _ U 54.35 [136]
Hydrophyte 47.6 U 128.5 [137]
Switchgrass 10 U 4 [177]
Pig manure 10 U 979.3 [107]
Pig manure 10 U 661.7 [107]
Pig manure 10 U 952.5 [138]
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Table 5. Cont.

Feedstock Initial Conc. (mg L−1) Target Pollutant Adsorption Capacity (mg g−1) References

Pig manure 10 U 221.4 [124]
Horse manure 10 U 516.5 [108]
Horse manure 10 U 625.8 [139]
Cow manure 10 U 73.3 [82]
Carp fish scales 40 U 291.98 [122]
Sewage sludge 25 U 96.73 [34]
Sewage sludge 50 U 490.2 [140]
Winery waste (grape peels) 100 U 255 [141]
Winery waste (grape peels) 100 U 100 [141]
Malt spent rootlets _ U 547 [120]
Coffee espresso residue _ U 547 [120]
Olive kernels _ U 357 [120]
Fungi 10 U 427.9 [142]
Green algae 50 U 100.2 [143]
Cyanobacteria 50 U 58.05 [144]
Sponge gourd 5 U 239.21 [83]
Sponge gourd fibres U 904 [84]
Sponge gourd sponges 119 U 92 [119]
Sponge gourd sponge _ U 833 [145]
Sponge gourd residue 225 U 382 [146]
Watermelon rind 20 U 323.56 [85]
Watermelon seeds 30 U 27.61 [38]
Longan shell (fruit) 23.6 U 331.13 [77]
Orange peel 50 U 246.3 [106]

U = Uranium, F− = Fluoride, _ data not available.

3.7.4. Influence of Co-Existing Ions

Various ions from different sources, including sulphate, chloride, nitrate, carbonate,
bicarbonate, phosphate, etc., are generally present in groundwater [13]. These ions were
found to regulate the adsorption process by competing with U and F− ions for interaction
with the active surface sites of biochar. The presence of these anions decreased the adsorp-
tion efficiency. Liao et al. [107] reported a significant reduction in U adsorption due to the
interference of Ca2+, Al3+, SO4

2−, CO3
2−, and PO4

3− ions. Due to the large radius and high
valency of Ca2+ and Al3+, U ions were easily captured by the biochar and occupied the
active surface sites, leading to decreased U adsorption efficiency. SO4

2−, CO3
2−, and PO4

3−

formed stable complexes with U resulting in the reduction in adsorption efficiency of U.
Mei et al. [93] observed the effect of SO4

2–, NO3
–, Cl–, and HCO3

– on the F− adsorption,
where NO3

–, Cl–, and SO4
2– had little impact on the F− adsorption while HCO3

– reduced
the F− adsorption due to the ion competition.

However, some studies have shown that the co-existing ions (Cl−, NO3
−, PO4

3−, and
SO4

2−) had little or no significant impact on the adsorption efficiency of U and F− due
to their selectivity of biochar-based materials and their modification methods [13,85]. It
was observed that the major co-existing ions interfering with the adsorption of U and
F− were phosphate, sulphate, carbonate, and bicarbonate. In addition, it depends on the
properties of the feedstock chosen for the biochar and the materials and methods used for
its modification which highly affect the adsorption efficiency of the biochar. Hence, it is
crucial to know the co-existing ions in natural groundwater to improve the selectivity of
adsorbent for the U and F− removal experiments.

3.7.5. Influence of Pyrolysis Temperature on U and F− Adsorption

Pyrolysis temperature is an essential factor influencing the quality and yield of biochar.
The pyrolysis temperature mainly affects the structure and properties of the biochar. Table 6
shows the effect of pyrolysis temperature on U and F− adsorption. Higher temperature
increases the pH, surface area, and ash content of the biochar but reduces the yield of
the biochar [69,70,74,100]. Furthermore, with the rise in temperature, the porosity of
the biochar increases due to the removal of volatile matter, and porosity enhances the
adsorptive capacity of biochar [69,74]. Biochar produced at higher temperatures possesses
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a higher stable fraction than those prepared at lower temperatures [69]. Oxygen-containing
functional groups, for example, carboxyl, hydroxyl, carbonyl, ether, and lactone, on the
biochar decreases with an increase in temperature [69,183].

Table 6. Effect of carbonization temperature on U and F− adsorption.

Feedstock Carbonization Temp. (◦C) Surface Area (m2 g−1) Target Pollutant Adsorption Capacity
(mg g−1) References

Rice straw 500 157.96 U 428.25 [131]
Rice straw 500 _ U 242.65 [33]
Wheat straw 450 290.1 U 355.6 [82]
Rice husk 500 109.65 U 52.63 [125]
Rice husk 300 62.88 U 138.88 [81]
Rice husk 500 109 U 118 [132]
Corn cob 800 _ U 163.18 [34]
Pine needles 600 _ U 623.7 [37]
Pine needles 180 _ U 62.7 [172]
Pine sawdust 500 51.45 U 514.72 [133]
Macaúba palm 350 643.12 U 488.7 [36]
palm tree fibres 650 _ U 112 [121]
Bamboo sawdust 450 1298 U 229.2 [111]
Bamboo biomass 700 445.17 U 274.15 [134]
Bamboo shoot shell 500 10.93 U 32.3 [105]
Cactus fibre 600 <5 U 214 [118]
Camphor tree leaves 350 65.91 U 98.29 [173]
Miswak branches 400 9.05 U 85.71 [174]
Chinese banyan aerial root 600 284 U 27.29 [135]
Eucalyptus wood 400 20 U 27.2 [175]
Puncture vine 500 _ U 17.24 [39]
Water hyacinth 400 50.545 U 138.57 [176]
Hydrophyte biomass 700 92.43 U 54.35 [136]
Hydrophyte 500 433 U 128.5 [137]
Switchgrass 300 2.9 U 4 [177]
Pig manure 500 _ U 979.3 [107]
Pig manure 500 _ U 661.7 [107]
Pig manure 500 227.9 U 952.5 [138]
Pig manure 250 _ U 221.4 [124]
Horse manure 500 _ U 516.5 [108]
Horse manure 500 _ U 625.8 [139]
Cow manure 450 101.5 U 73.3 [82]
Carp fish scales 330 1074.73 U 291.98 [122]
Sewage sludge 500 _ U 96.73 [34]
Sewage sludge 600 623.09 U 490.2 [140]
Winery waste (grape peels) 650 _ U 255 [141]
Winery waste (grape peels) 650 165 U 100 [141]
Malt spent rootlets (MSR) 850 540 U 547 [120]
Coffee espresso residue 850 700 U 547 [120]
Olive kernels 850 510 U 357 [120]
Fungi 160 102.7 U 427.9 [142]
Green algae 180 63.7 U 100.2 [143]
Cyanobacteria 200 _ U 58.05 [144]
Sponge gourd 400 _ U 239.21 [83]
Sponge gourd fibres 650 <5 U 904 [84]
Sponge gourd sponges 650 _ U 92 [119]
Sponge gourd sponge 650 _ U 833 [145]
Sponge gourd residue 200 _ U 382 [146]
Watermelon rind 500 86.35 U 323.56 [85]
Watermelon seeds 350 _ U 27.61 [38]
Longan shell (fruit) 800 1168.88 U 331.13 [77]
Orange peel 650 273.25 U 246.3 [106]
rice straw 500 95.36 F− 111.11 [89]
Wheat straw _ _ F− 51.28 [90]
Rice husk 700 58.98 F− 4.45 [178]
Rice husk 600 _ F− 17.3 [24]
Rice husk 600 114 F− 21.59 [150]
Rice husk 500 2.45 F− 1.856 [149]
Black gram straw 500 9.27 F− 16 [96]
Corn stover 500 3.61 F− 4.11 [91]
Chir pine 400 _ F− 16.72 [151]
Mongolian scotch pine tree sawdust 550 339 F− 0.885 [35]
Pine bark 450 1.88 F− 9.77 [179]
Pine wood 450 2.73 F− 7.66 [179]
Douglas fir (pine) 1000 494 F− 9.04 [152]
Douglas fir (pine) 1000 576 F− 36 [153]
Reed biomass 600 236.84 F− 34.86 [128]
Kashgar tamarisk 350 164.52 F− 164.23 [40]
Tea oil plant (seed shells) 400 _ F− 11.04 [93]
Sawdust 660 57.97 F− 4.413 [154]
Pongammia pinnata seed cake 550 10.1 F− 1.11 [7]
Coconut 700 1054 F− _ [92]
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Table 6. Cont.

Feedstock Carbonization Temp. (◦C) Surface Area (m2 g−1) Target Pollutant Adsorption Capacity
(mg g−1) References

Cattail 800 733.62 F− 1.28 [180]
Pomelo peel 600 _ F− 18.52 [132]
Watermelon rind 400 0.5365 F− 9.5 [94]
Okra (lady finger) stem 600 23.52 F− 20 [96]
Spent mushroom compost 500 28.5 F− 4.7 [13]
Food waste 600 20.95 F− 123.4 [156]
Tea waste 400 11.833 F− 52.5 [157]
Red algae seaweed 450 319.47 F− 2.1 [158]
Dairy manure 500 2.6 F− 0.42 [109]
Sheep bone 650 113.874 F− 2.33 [112]
Bone residues (chicken, cattle, and
mixed bones) 350 _ F− 4.29 [181]

Bone residues (chicken, cattle, and
mixed bones) 700 _ F− 2.91 [181]

Eggshell and platanus acerifoli leaves
(5:1) 800 44.7 F− 308 [97]

U = Uranium, F− = Fluoride, _ not available.

3.7.6. Influence of Different Feedstocks on U and F− Adsorption

Several feedstocks have been utilized to prepare biochar to remove U and F− from
aqueous solution. For example, magnetically modified rice husk biochar was prepared
by Wang et al. [132] to remove U. Magnetization enhanced the biochar surface area from
52.1 m2 g−1 to 109 m2 g−1 and pore volume from 0.02 cm3 g−1 to 0.05 cm3 g−1, thereby
increasing U adsorption capacity from 64 mg g−1 (raw biochar) to 118 mg g−1 (modi-
fied biochar) (Table 1) at pH 7 and temperature of 55 ◦C. Similar findings were reported
by [37,39,85,125,136]. Similarly, phosphate-impregnated biochar from bamboo biomass was
examined for U removal. Biochar fabrication increased the surface area from 10.31 m2 g−1

to 445.17 m2 g−1 and pore volume from 0.031 m3 g−1 to 0.236 m3 g−1, which resulted
in enhanced U adsorption potential from 15.869 mg g−1 to 274.15 mg g−1 at pH 4 and a
temperature of 25 ◦C [134]. Ying et al. [106] applied orange-peel-derived biochar modified
with MnO2 for U extraction. MnO2 modification increased the surface area of the biochar
from 165.01 m2 g−1 to 273.25 m2 g−1 and improved the U sorption ability of biochar from
165.4 mg g−1 to 246.3 mg g−1. Similar results were observed by [84]. Dairy-manure-based
biochar was used for the defluoridation of water. The prepared biochar was modified
with calcium, and modified biochar showed 75% removal efficiency with a F− uptake
of 0.11 mg g−1 for pristine biochar and 0.42 mg g−1 for modified biochar at pH 8 and a
temperature of 25 ◦C [109].

3.8. Adsorption Mechanism of U and F−

The physical and chemical reactions between adsorbate (U, F−) and adsorbent (biochar)
regulate U and F− removal from an aqueous solution. Adsorption mechanisms differ ac-
cording to the type of biomass or feedstock, the presence of functional groups on biochar
surface, the physicochemical properties of biochar such as the pH of the medium, and
the type of target contaminants [47,57]. Figure 5 summarizes the major adsorption mecha-
nisms of U and F− on biochar. The possible adsorption mechanisms for U and F− are ion
exchange, surface complexation, electrostatic attraction, and precipitation.

The most probable adsorption mechanisms of F− and U are ion exchange, electro-
static interactions, and surface complexation. Ion exchange is the interaction between the
oxygen-based functional groups on the biochar surface and the target contaminant, which
involves exchanging the same type of ions (cation–cation or anion–anion). In the case of F−

adsorption, ion exchange is associated with ion replacement in which F− ions replace an
ion (hydroxyl, carboxylic, and sulphate) from biochar surface [35,82,83,90,127,128,131,132].
For instance, Mei et al. [93] removed the F− from water using zirconium dioxide biochar
through ion exchange between OH− and F− on the zirconia particles. Wang et al. [95] used
polypyrrole-modified biochar synthesized from pomelo peel to remove F− and concluded
that ion exchange (anion exchange between F− and Cl−) was the main adsorption mechanism.
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Electrostatic interaction occurs between the oppositely charged surface of biochar
and contaminants. Electrostatic interaction is related to the solution pH and the pHZPC of
the biochar. When the solution pH < pHPZC, the surface charge of the biochar becomes
positive and binds the anionic contaminants. When the pH > pHPZC, the biochar surface
is negatively charged and binds the cationic contaminants [51,56]. For instance, Sadhu
et al. [94] found that maximum adsorption of F− was at pH 1 because the pHPZC of biochar
was at pH 2.1. Electrostatic interactions also occurred between the negative- and positive-
charged biochar and U, F− as a result of ionization of the functional groups, such as
–COOH2

+, –ROH2
+, or –COO− [56,94,107]. Surface complexation (inner sphere and outer

sphere) involves the adsorption of U and F− through the formation of complexes with
oxygen functional groups, such as carboxyl, hydroxyl, and carbonyl [31]. Many studies
revealed that the dominant mechanism for U adsorption was surface complexation between
U(VI) ions and the surface functional groups –COOH, –OH, –CO [33,34,37–39,85,119,132].
Metal F− precipitation is another mechanism suggested for F− adsorption, which involves
the presence of metals, such as Ca, Mg, Si, K, Al, Mn, Ba, Fe, and Ti in biochar, and F− ions
react with these metals to form insoluble fluorides on biochar [94,97,179].

4. Adsorption Isotherms, Kinetics, and Thermodynamics
4.1. Adsorption Isotherms

The Langmuir and Freundlich isotherm models are generally used to evaluate the equi-
librium adsorption capacity of U and F−. The Langmuir isotherm shows the homogeneous
adsorption process and monolayer adsorption, while the Freundlich model shows hetero-
geneity and multilayer adsorption. For example, Chen et al. [133] assessed the interaction
between initial U concentration and equilibrium adsorption capacity. They reported that
the Langmuir adsorption isotherm was more favourable for describing the U adsorption
than other models and confirmed that the adsorption process is single-layer adsorption.
Similarly, Meilani et al. [156] performed an isotherm study to detect the F− adsorption and
adsorption capacity of aluminium-modified food waste biochar. It was found that sorption
occurred by the Langmuir adsorption isotherm, which suggested that adsorption was
monolayer, homogeneous, occurred only on localized sites, and there were no interactions
between the adsorbed ions. In another study, Dai et al. [34] applied the Langmuir and
Freundlich isotherm models to assess the U adsorption capacity of corn cob biochar (CCB)
and sewage sludge biochar (SSB). They found that the Langmuir isotherm model better
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fitted U adsorption by CCB while the Freundlich isotherm model better fitted U adsorption
by SSB. Since the CCB was ash-poor biochar, the surface structure was homogeneous, while
SSB was ash-rich biochar; thus, the surface structure was heterogeneous.

However, in some cases, the Tempkin and Halsey adsorption isotherm model is also
used. For instance, Sadhu et al. [94] applied four adsorption isotherm models (including
Langmuir, Freundlich, Tempkin, and Halsey) to depict the F− adsorption and found that
experimental data were better fitted by the Freundlich model than the other three models.
Halsey isotherm is appropriate for multilayer adsorption, and Tempkin isotherm is suitable
for the uniform distribution of binding energies.

4.2. Adsorption Kinetics

Adsorption kinetics is used to analyse the adsorption behaviour between biochar
and contaminants (U and F−) with reference to contact time. Pseudo-first-order and
pseudo-second-order kinetic models were used to investigate U and F− adsorption on the
biochar. For instance, Chen et al. [133] reported that the adsorption behaviour between U
and MgO/biochar was chemisorption because the correlation coefficient (R2) of pseudo-
second-order kinetics was greater than the first-order kinetics. Similarly, Meilani et al. [156]
employed pseudo-first-order and pseudo-second-order models to examine the adsorption
mechanism of F− on the surface of aluminium-modified food waste biochar. They found
that the adsorption process was chemical adsorption, as pseudo-second-order kinetics fitted
better with the experimental data due to the higher regression coefficient (R2) than the
pseudo-first-order model. In another study, Dai et al. [34] performed adsorption kinetics
and concluded that the U adsorption process was both physical and chemical adsorption.
It was found that the U adsorption process involved two steps: first, the initial phase,
which contained rapid adsorption, and second, it involved a slower adsorption process.
In the initial rapid phase, a higher amount of U adsorbed onto the CCB (ash-poor), and a
lower amount of U adsorbed on the SSB (ash-rich) in the later slower phase. It was found
that pseudo-first-order and pseudo-second-order models both fitted well for U adsorption
process.

4.3. Adsorption Thermodynamics

Adsorption thermodynamics is used to analyse the adsorption process with respect
to temperature. The thermodynamic factors, including enthalpy, Gibbs free energy, and
entropy, provide information about the adsorption process. Negative Gibbs free energy
represents that the adsorption process increases with respect to temperature and is sponta-
neous. Negative enthalpy indicates that adsorption capacity decreases with an increase
in temperature, and the process of adsorption is heat-releasing. The positive enthalpy
value shows that the adsorption potential increases with the rise in temperature, and the
process is heat-absorbing. The positive entropy value represents the rise in randomness
at the liquid–solid mass transfer interface. For example, Chen et al. [133] reported that
the U adsorption process by MgO/biochar was spontaneous and exothermic because the
adsorption capability declined with the rising temperature, which confirmed that the sorp-
tion process was exothermic and negative Gibbs free energy described the spontaneity of
the process. In another study, Guan et al. [35] reported that F− adsorption on modified
Mongolian scotch pine tree sawdust biochar increased with respect to temperature (T = 308,
318, and 328 K), which indicated that the adsorption process was endothermic. Similarly,
Ahmed et al. [39] examined the influence of temperature on the sorption process of U on
the magnetized biochar derived from Tribulus terrestris plant. They found that the sorption
process was spontaneous and heat-absorbing because U adsorption increased with rising
temperature from 298 to 318 K with negative Gibbs free energy and positive enthalpy and
entropy.
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5. Regeneration of Biochar

Regeneration of biochar is the reverse of the adsorption process achieved by desorbing
the contaminant from the biochar. It improves the reusability and stability of the biochar
by performing sorption/desorption cycles. Desorption experiments were performed using
desorbing agents, mainly acids and alkaline solutions. For instance, Mishra et al. [175]
studied the desorption of the U from loaded biochar using nitric acid. They reported
that acids are better eluting agents because they provide H+ ions which tend to protonate
the surface of biochar, resulting in the elution of positively charged U ions. In another
investigation, Liao et al. [138] examined the reusability of pig-manure-derived biochar
using ethanol, HCl, KOH, and deionized water as desorbing agents. Among them, HCl
showed the effective desorption of U because, at low pH, hydronium ions have more
affinity for active sites than the U(VI) species. The removal efficiency was found to be 85%
after five cycles. Pang et al. [142] tested the stability and reusability of nano-zerovalent
iron-based biochar. They performed five regeneration cycles using sodium bicarbonate as
a desorbing agent to desorb U. They reported that the removal efficiency of biochar was
80.6% in the first cycle, which declined to 52% after five cycles.

Various U(VI) sorption–desorption cycles were performed by Philippou et al. [37],
who found that the adsorption capability of the biochar for U decreased after each cycle due
to the loss of biochar material. Adsorption % declined from 99.5 to 87.2%, and desorption%
reduced from 99.6 to 62.6% after four cycles. Sadhu et al. [94] performed three cycles of
sorption–desorption to analyse the desorption of F− from watermelon rind biochar and
concluded that the adsorption capacity of biochar was 79.54% after the first cycle, 71.99%
after the second cycle, and 60.17% after the third cycle. Hence, the prepared biochar was
stable and could be reused. Similarly, De et al. [7] examined the reusability of biochar using
H2SO4 desorbing agent to desorb F−. They performed five cycles of sorption–desorption
and reported an adsorption percentage of 98.5% after the first cycle and 68% after five
cycles. Ahmed et al. [39] assessed the reusability of biochar by performing five cycles of
repeated adsorption of U on magnetic biochar obtained from a Tribulus terrestris plant.
It was found that the adsorption potential of biochar slightly declined after five cycles
suggesting that the biochar has the potential to extract U from water and can be reused.

6. Challenges and Limitations for Real U and F− Groundwater Treatment

The application of biochar for treating real U and F−-contaminated groundwater
is crucial for understanding the practical applicability and limitations of low-cost novel
adsorbents. Lingamdinne et al. [85] have tested real groundwater spiked with 10 mg L−1

of U from Republic of Korea for U treatment using magnetic watermelon rind biochar. In
semi-column experiments, more than 90% of U was removed with magnetic biochar in up to
three cycles at pH 4. In addition, Sen et al. [81] collected groundwater from West Bengal and
Jharkhand, with U concentrations in the range of 38–85 µg L−1. Therefore, iron-modified
biochar showed a maximum removal efficiency of 97–99.77% for U at pH 5.5–8.0 at < 1 g
of biochar dose. Interestingly, in the USA, Kumar et al. [177] collected groundwater with
pH 3.9 and U concentrations of 3.0 mg L−1, which reported an adsorption capacity of
0.52 mg g−1 using switchgrass biochar in column experiments. Through batch sorption
experiments, the adsorption capacity for U was observed at 2.12 mg g−1 at pH 3.9, whereas
it increased to about 4 mg g−1 with increasing pH up to 5.9 [177]. From the above analysis,
it has been clear that U removal from real groundwater is pH-dependent, and the effect
of biochar dose, initial U concentration, and other dependent parameters is yet to be
investigated.

Recently, Kumar et al. [184] have summarized practical applications and limitations in
treating F−-contaminated water through raw/modified biochar. It has been investigated
that most of the research has been performed at low pH to treat real or spiked ground-
water using biochars. For example, Mohan et al. [91] have reported that low adsorption
capacity, 4.38 and 5.37 mg L−1, was observed at pH 2 using corn stover pristine biochar
and magnetic biochar, respectively, for 10 mg L−1 fluorides-spiked groundwater collected
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from Ghaziabad, India. In the context of industrial effluents, Sadhu et al. [94] have treated
industrial wastewater with F− concentrations of 5570 mg L−1 in multiple batch runs with
increasing biochar dosage at pH 1 using watermelon rind biochar. In contrast, few studies
have also treated F−-contaminated groundwater close to neutral pH (5–8) with a removal
efficiency of 81–100% [92,185,186]. For example, Zhou et al. [186] observed that 100% F−

removal efficiency was removed from groundwater having 5 mg L−1 F− concentrations
using magnetic biochar at pH 8. Similarly, a removal efficiency of 81% was observed for
F−-contaminated groundwater with 7 mg L−1 using shell-derived activated biochar at
pH 6.5 [92]. In addition, in China, 97% of F−-contaminated groundwater (9.8 mg L−1) was
treated with lanthanum-modified biochar at pH 5.2 [185]. Besides adsorption, the gravity
filtration method showed a removal efficiency of 92.5–94.7% for F− ions from drinking
water using iron-modified biochar [187]. Apart from this, groundwater contains various
cations/anions that can significantly influence F− removal during the treatment of real
groundwater using biochar, which is yet to be investigated. Batch sorption experiments
were extensively performed using raw/modified biochar at the laboratory scale; however,
very few studies have reported the implication of biochars in column experiments to treat
F−-contaminated water. The transport and deposition of F− were analysed with respect to
adsorbent dosage, F− concentrations, and flow velocity, as these parameters can impact
F− adsorption. For example, the retention and transport mechanism for F− in column
experiments, using various biochars derived, such as pulse straw biochar [96], modified
biochar (MgO-biochar) [155], and dairy manure-derived biochar [109].

Till now, biochar research has mostly been carried out at a small scale/laboratory
scale. So, to upscale biochar for the treatment of natural groundwater/wastewater/surface
water, the major limitations include controlled experimental designs in the laboratory,
which is the main limiting factor while implementing biochar at a large scale. Most of the
experiments are batch experiments, with limited column studies. The cost of production
is one of the major factors limiting biochar application on a large scale. There are limited
studies on removing U and F− from real aquifers/surface water. There are operational
challenges while designing a water treatment plant to remove U and F− using biochar.
Natural groundwater/surface waters contain co-existing ions with respect to U and F−,
which interferes with the adsorption. A risk assessment of biochar application needs to be
investigated to remove U and F− from drinking water. The toxicological impacts of biochar
need to be investigated. Biochar recycling and management of the waste biochar need to
be taken into consideration. There are studies related to the regeneration and reusability
of biochar, but the efficiency of the biochar decreases after a few cycles. Hence, the safe
disposal and alternate use of waste biochar are the concern.

7. Conclusions, Research Gaps, and Future Perspectives

The present review has summarized the recent studies for removing U and F− from
aqueous solution using raw and modified biochar prepared from different feedstocks. Dif-
ferent feedstocks, production techniques, modification methods, adsorption mechanisms,
factors influencing the U and F− adsorption, and experimental conditions for the optimum
removal of U and F− were reviewed in this paper. It was found that pyrolysis was the
dominant biochar production technique. Low-to-medium pyrolysis temperature, cellulose,
and hemicellulose-rich feedstocks such as crop residues, grasses, softwood, and manure-
based biochars were effective for U and F− removal. Acidic and magnetic modification
favoured U adsorption, while metal oxides, hydroxides, and alkali modification aided
F− adsorption. The dominated adsorption mechanisms for U adsorption were surface
complexation (inner-sphere complexation) and electrostatic attraction, whereas ion ex-
change, electrostatic attraction, and precipitation were adsorptive mechanisms for F− ions.
Different parameters affected the adsorption process, including pH, biochar dosage, initial
concentration, co-existing ions, and pyrolysis temperature. It was found that alkaline pH
facilitated F− adsorption while slightly acidic and near-neutral pH favoured U adsorp-
tion. High pyrolysis temperature raised the pH of biochar and reduced the biochar yield.
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Consequently, adsorption capacity decreased due to pore shrinking or pore breakage and
loss of acidic functional groups. It is crucial to have knowledge about the co-existing ions
in natural groundwater to improve the selectivity of adsorbent for the U and F− removal
experiments. Although several investigations have been carried out to remove U and F−

with biochar, some research gaps in the literature need to be addressed.

1. Most of the investigations have been carried out at lab scale through batch studies
using synthetic water or simulated water, and limited studies have been performed
using natural water. In order to scale up, column studies should be conducted for field
applications, and future research should be focused on the treatment of natural water.

2. Most studies have focused on the selective removal/extraction of either U or F− using
biochar. However, actual waters contain multiple contaminants, so future research
should focus on using biochar to remove multiple contaminants from water.

3. There is a lack of studies for the treatment of drinking-water sources such as natural
waters and groundwater using biochar. Most of the studies have focused on the
remediation of wastewater.

4. Most of the modifications are chemical modifications, and there is a need for environ-
mentally friendly green methods/materials for modification.

5. The effect of co-existing ions has not been studied in detail. There is no detailed study
on the impact of multiple components in the solution that interferes with the U and
F− adsorption.

6. Most studies have considered U as a cation (UO2
2+), but in alkaline solutions, U exists

as (UO2)2CO3 (OH)3− (anion). So, there is no study for treating anionic U using
biochar from aqueous solution.
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