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Abstract: This study investigates the potential of Sentinel-1 data in assisting flood modeling proce-
dures. Two different synthetic aperture radar (SAR) processing methodologies, one simplified based
on single-flood image thresholding and one automatic based on SAR statistical temporal analysis,
were exploited to delineate the flooding caused by a storm event that took place in Spercheios River,
Central Greece. The storm event was simulated by coupling a HEC-HMS hydrologic model and
an integrated 1D/2D HEC-RAS hydraulic model. Both SAR methodologies were compared to each
other and also used as a reference to test the sensitivity of the hydraulic model in the variation of
upstream discharge and roughness coefficient. Model sensitivity was investigated with respect to the
change in the derived inundation extent and three additional metrics: the Critical Success Index (CSI),
the Hit Rate (HR), and the False Alarm Ratio (FAR). The model response was found to be affected
in the following order: by the upstream inflow, and by the variation of the roughness coefficient
in the main channel and in the land use “cultivated crops”. The discrepancies observed between
model- and SAR-derived inundation products are associated with the uncertainty accompanying the
SAR processing and the utilized satellite data itself, the underlying topography, and the structural
uncertainty inherent in the modeling procedure. Regarding the SAR methodologies tested, the second
one (FLOMPY approach) proved to be more suitable, yielding a more coherent and realistic flooded
area. According to the applied metrics and considering as reference the FLOMPY result, model
performance ranged between 22–27.5% (CSI), 36.9–60.4% (HR), and 62.1–68.2% (FAR).

Keywords: flood mapping; synthetic aperture radar (SAR) imagery; 1D/2D hydraulic modeling;
hydrologic modeling; sensitivity analysis

1. Introduction

Floods are the most frequent and disastrous natural hazards worldwide, with severe
impacts on both the anthropogenic and the natural environment [1–7]. The foreseen
increases in their frequency and magnitude due to climate change and economic growth
are expected to put flood-prone areas at even higher risk [3,8,9]. In order to mitigate
the subsequent flood damages, monitoring and prediction of flood events are of vital
importance [10]. Flood forecasting systems commonly rely on hydrologic and/or hydraulic
models, whose response typically requires a prior calibration against in situ data, i.e.,
water levels and velocities. However, the sparse distribution of gauging stations in most
areas, along with their vulnerability to the extreme events, render in situ observations
particularly rare and thus inadequate to support calibration and validation processes all by
themselves [10,11].

To this end, exploiting Earth observation (EO) data to map the extent of flooded
areas may provide key information to decision-makers and flood disaster managers [12].
In particular, satellite-derived flood maps have the potential to provide a near real-time
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and synoptic view of the overall area affected by a given flood, which in turn allows
for timely disaster response, quantification of damages, and estimation of the respective
compensations needed to be assigned from the insurance companies [10,13,14]. At the
same time, flood forecasting can be significantly benefited by incorporating distributed
information in the form of an inundation map, instead of or in complement with in situ
data, as a reference to calibrate and validate flood simulation models [12,15].

The incorporation of remote sensing techniques in flood modeling has gained much
attention over the last two decades (e.g., [16–25]), revealing the substantial benefit arising
from the cooperation of the two scientific fields. Many studies have been carried out with
the purpose of delineating the extent of flooded areas, exploiting satellite images from
different kinds of sensors, or utilizing different processing techniques (e.g., [26–34]).

Detection and mapping of floods has been performed utilizing both optical and mi-
crowave space-borne sensors. The use of the former dataset presents advantages mostly
related to its straightforward interpretability and is thus preferred in case of clear weather
conditions. Nevertheless, in the case of cloud cover or heavy rain, optical sensors (visible,
infrared, thermal bands) cannot successfully detect flooding. On the other hand, microwave
sensors, and especially the synthetic aperture radar (SAR), are capable of extracting infor-
mation about flood extent under almost all weather conditions thanks to their inherent
ability to penetrate clouds, while they also provide their own source of illumination, thus
allowing operation during day and night. In addition to the abovementioned features,
radar sensors, under certain conditions, also permit flood detection beneath vegetation,
which is not feasible when optical sensors are used, rendering SAR particularly popular in
flood mapping applications [12,15,35–39].

The applicability of SAR sensors in flood mapping lies in their high sensitivity to
open water. Smooth water surfaces behave as specular reflectors, hence reflecting only a
very little part of the incident radar signal back to the sensor. This results in significantly
low backscatter values recorded in the radar system for the areas covered with water. On
the other hand, land areas, which are typically rougher, scatter the energy emitted by the
radar in many different directions, thus deriving much higher values of the backscatter
coefficient. The differentiation in terms of scattering mechanism between water and land
surfaces produces an image of high contrast between these two classes, i.e., flooded areas
(or permanent water bodies) are depicted in dark tones, whereas dry land (non-flooded
areas) is represented with brighter ones [33,35]. This principle has been encompassed
in various approaches, either manual or semi- and fully automatic, developed to detect
and delineate flooding in SAR images. Radiometric thresholding, either manual [40,41]
or automatic [39], is one of the most widely applied methodologies, mainly preferred
because of its high computational efficiency, which renders it ideal for fast mapping [42].
Other approaches found in the literature include visual interpretation, change detection
(CD) techniques based on intensity and/or coherence data, region growing algorithms
(RGA), segmentation techniques, such as active contour models, multi-temporal analysis,
or hybrid approaches, e.g., [33,43–48]. Moreover, several researchers have addressed
the issue of uncertainty arising from map delineation due to several sources, such as:
(a) partly submerged vegetation and water roughening due to wind, which may both lead
to misclassification of the respective areas as dry land; (b) particularly dry or smooth
terrain, which is likely to have similar backscatter signature with that of surface water;
(c) increased soil moisture, which may erroneously be attributed to double-bounce effect;
(d) random discrepancy in backscatter coefficient due to speckle, etc. In this direction,
methodologies based on fuzzy theory or Bayesian statistics have been also established,
which are capable of yielding flood maps incorporating classification results for different
degrees of uncertainty [49–53]. Some of the satellites carrying SAR sensors and having
been employed in flood delineation studies are the ERS-1/ERS-2, ENVISAT, Radarsat-1,
COSMO-SkyMed, and the TerraSAR-X [13,32,43–45,54].

In the last few years, Sentinel-1 (S1) mission has increased the potential for flood
monitoring from SAR sensors, through a constellation of two radar satellites, i.e., S1-A
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and S1-B, operating since 2014 and 2016, respectively. The S1 mission was developed by
the European Space Agency (ESA) as part of the EU Copernicus Program and is capable
of monitoring the entire Earth with a 6-day revisit time, thus enabling the access to a
long and continuous time-series of archived SAR scenes [8]. Both S1-A and S1-B satellites
carry a C-band SAR instrument and have as primary operational mode over land the
Interferometric Wide (IW) swath mode, providing acquisitions in dual polarization, that is,
vertical–vertical (VV) along with vertical–horizontal (VH) polarization (VV + VH). Sentinel-
1 products are freely available through the Copernicus Open Access Hub data portal of the
ESA. Some previous studies having exploited S1 SAR data to detect and map floods include
those of Psomiadis [55], Twele et al. [50], Bioresita et al. [12], Cian et al. [8], Li et al. [3],
Chini et al. [41], Udin et al. [56], Zotou et al. [10], Gebremichael et al. [57], and Karamvasis
and Karathanassi [58].

The present study aims at investigating the potential of S1 radar data in supporting
flood modeling application. In particular, two distinct flood mapping approaches have
been employed in this work: (a) a simplified one which involves thresholding of a single
flood image, after appropriate preprocessing and calculation of its statistics; and (b) an
automatic approach, in the form of a free and open-source python toolbox, named Flood
Mapping Python toolbox—FLOMPY [58]—based on SAR statistical temporal analysis.
Both flood mapping methodologies were applied on a flood event that took place in early
February 2015 in Spercheios River, Central Greece, in order to delineate inundation extent
at a specific time point, namely on 3 February 2015, at 04:31 a.m. UTC. The purpose of
incorporating the abovementioned techniques was twofold. On one hand, we anticipated
them to assist the hydrological–hydraulic modeling process in aspects such as guiding the
modeling procedure of a coupled 1D/2D hydrodynamic model, examining its sensitivity
in changing model parameters, e.g., roughness coefficient values and upstream inflow
boundary conditions, and evaluating its response with respect to inundation extent. On
the other hand, by using two different flood delineation approaches, we intended, apart
from making comparisons regarding the discrepancies between the derived results, to gain
insights on their relative suitability for supporting flood modeling applications. Given the
considerable increase in the volume of archived SAR data over the last years, exploiting
multitemporal information presents great potential for surmounting classification errors
that often arise when conventional thresholding approaches are used. In this context,
investigating the benefits derived from such a methodology (FLOMPY algorithm) compared
to a single image thresholding approach is of great importance. In addition, although
several studies implementing 1D or 2D hydraulic modeling can be found in the literature,
far fewer have investigated the capabilities of the integrated 1D/2D modeling approach.
Furthermore, contrary to the 1D and 2D approaches, the relative sensitivity of the combined
1D/2D models to different sources of uncertainty has not been thoroughly investigated.
Since a clear view on which modeling approach is more appropriate does not exist yet in the
literature, the predictive capability of the 1D/2D approach needs to be further examined.

2. Materials and Methods
2.1. Study Area

The study area, namely Spercheios River Basin (GR07), is located in Central Greece and
extends from 38◦44′ to 39◦05′ N, and from 21◦50′ to 22◦45′ E. Administratively, it belongs to
the Regional Unit of Fthiotida, whereas it is also one of the main river basins comprising the
Water District of East Sterea Ellada (GR17), covering a total area of 2318 km2.

Spercheios River springs mainly from Tymfristos Mountain situated in the western
part of the river basin and from Oity and Vardousia Mountains, which occupy the southern
and southwestern part of the basin. It flows in an eastern direction, crossing Spercheios
Valley and traversing a total distance of 82 km before discharging in Maliakos Gulf. The
river receives the flows from more than 20 major tributaries, with most of them joining
the main river at an almost perpendicular direction and forming a drainage network of
dendritic type [55]. The upstream part of the main course is characterized by mountainous
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topography with steep slopes, while, when moving downstream towards the river mouth,
the terrain gradually becomes flatter and the river presents intense meanders. The entire
basin has a mean and maximum altitude of 626 m and 2282 m, respectively. Agricultural
areas and natural vegetation along with bare land are the dominant land uses within the
examined area, occupying 32% and 66% of its total extent, respectively, whereas built-up
areas cover hardly 2% of it. The largest part of Spercheios river basin is covered with
impermeable formations (62.6%), whereas the rest of it is occupied by semipermeable,
alluvial, and karst formations at respective percentages of 0.2%, 20.5%, and 16.7%. The
mean annual precipitation in the area has been estimated at about 788 mm [59].

Figure 1 depicts the location and boundaries of the entire study area (Spercheios River
Basin) along with its main drainage network. The three individual watersheds, namely
the Upper Spercheios, Gorgopotamos, and Asopos watersheds, considered in the present
hydrological simulation, as well as the four precipitation gages exploited as boundary
conditions in the hydrological model, are also illustrated.

2.2. Methodology

The methodology applied comprises four individual parts: (a) SAR image processing
to extract an inundation map at a specific time point by employing both a simplified
approach based on thresholding technique and an automatic flood mapping methodology
(FLOMPY); (b) hydrologic modeling using HEC-HMS software in order to simulate the
hydrological processes within the examined watersheds and generate the flow hydrographs
at their respective outlets; (c) hydrodynamic modeling by means of a coupled 1D/2D HEC-
RAS model, exploiting as upstream conditions the HEC-HMS-generated outflows, with
the intention to derive the inundation extent at the same time with that of SAR image
acquisitions; (d) comparison of the model against the SAR-derived inundation outputs,
considering both remote sensing methodologies, with a view to investigate the 1D/2D
model response, test its sensitivity to selected model parameters and identify eventual
weaknesses of the applied SAR methodologies for use in flood modeling applications. The
implementation of each individual part of the applied methodology is described below in
detail. In addition, a flowchart describing the entire process is presented in Figure 2.

2.2.1. Inundation Boundary Extraction through SAR Image Processing

The satellite data exploited to map the inundation area of the examined event was
freely obtained through the Copernicus Open Access Hub of the European Space Agency [60].
All images utilized in both approaches were Level-1, Ground Range Detected (GRD), In-
terferometric Wide (IW) products of 10-m resolution. In the three following paragraphs,
the first approach is described, whereas in the last paragraph of this subsection a brief
description of the FLOMPY approach is provided.

For the first approach, a single Sentinel-1 image was acquired, depicting the area
during flood, namely on 3 February 2015, at 04:31 am. (UTC). A single image was exploited,
contrary to the common approach where two satellite scenes (one pre-flood and one post-
flood) are typically considered in order to distinguish between flooded area and permanent
water bodies.

The reason for this is that we meant to detect all pixels covered with water, including
also the main channel, and thus derive a water extent result more suitable for comparison
with the HEC-RAS output. The VV polarization was selected for the study needs, as it
exhibited a better separability between flooded area and dry land, according to visual
inspection. The satellite image processing was performed using SNAP software, which is
freely available via the ESA’s website. In the two following paragraphs, the preprocessing
and the thresholding workflows are described. The pre-processing steps implemented on
the flood image included: (a) applying precise orbit file so as to correct the orbit state vectors,
thus providing accurate information on satellite position and velocity; (b) subsetting the
initial image at a specific spatial extent to include only the affected area; (c) converting
image intensity values into the corresponding sigma nought values through radiometric
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correction (calibration); (d) applying Lee filter as a despeckling technique at a 3× 3 window
size; (e) converting the image from a linear to a logarithmic scale, called decibel (dB) scale,
to improve image visualization and interpretation; and (f) applying Range–Doppler terrain
correction in order to correct the image for inherent geometric distortions and project it
into a map system.
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to the four individual parts of the methodology, i.e., SAR image processing, hydrologic and hydraulic
simulation, and comparison–evaluation, respectively.

Following the implementation of the pre-processing workflow, a threshold technique
was applied on the flood image, so that flooded pixels could be distinguished from non-
flooded ones. To do so, we delineated training polygons over representative areas exhibiting
very low backscatter values (dark areas) incorporating both areas belonging to the main
river and to the flooded overbank areas. Afterwards, the statistics of the digitized regions
were calculated, and then, a threshold was determined based on the value corresponding
to the 95th percentile. Subsequently, all pixels having a backscatter value lower than the
defined threshold were classified as water, whereas those presenting higher sigma nought
values were categorized as dry land. The classification was performed using appropriate
expression within the band math tool of SNAP. The final output was exported in a GeoTIFF
format for further processing in ArcGIS software (ver. 10.2.2).

The second methodology (FLOMPY) exploited in this study consists of an automatic
approach, which is based on SAR statistical temporal analysis and has been validated
using Emergency Management Service (EMS) products [58]. Multitemporal analysis, in
general, allows for: (a) the identification of the backscatter temporal variability under
pre-flood conditions, thus leading to a more reliable detection of changes due to flood; and
(b) enhanced backscatter denoising by exploiting temporal information while maintaining
the spatial accuracy of SAR images. Therefore, a more accurate classification result can
be achieved without degrading spatial resolution. The inputs were the geographical
boundaries of the region of interest and the time of interest. FLOMPY exploits the multi-
temporal information of both polarizations (VV and VH) of Sentinel-1 products in order
to construct two datasets. The first dataset was related to the pre-flood state using recent
(3-month) “dry” (low precipitation) acquisitions. ERA-5 reanalysis model precipitation
data were downloaded and used to characterize “dry” acquisitions. The second dataset
was related to the flood state, i.e., it consisted of the same scene with that utilized in the
first approach (3 February 2015, at 04:31 am. UTC). A t-score map related to the changes
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due to floodwater was calculated from the two aforementioned datasets. A classification
pipeline based on spatially adaptive thresholding yielded the inundation output [58].

2.2.2. Hydrologic Simulation in HEC-HMS Software

This stage of the methodology consists of simulating the hydrological processes taking
place within Spercheios river basin, in order to derive the flow hydrographs at the outlets
of the three watersheds of interest (Figure 1). The aforementioned watersheds included:
(a) the hydrological region draining the upper part of Spercheios River; (b) Gorgopotamos
watershed; and (c) Asopos watershed, covering surface areas of approximately 1064 km2,
49 km2, and 137 km2, respectively. The flow hydrograph generated at each of these outlets
was exploited as upper boundary condition to the respective branch of the main river
encompassed in the hydrodynamic simulation (Figure 1).

In performing the hydrological simulation, the well-known Hydrologic Modeling
System (HEC-HMS) software of the US Army Corps of Engineers Hydrologic Engineering
Center [61] was used. Moreover, a GIS companion product, called Geospatial Hydrologic
Modeling Extension (HEC-GeoHMS), was also employed to carry out the hydrologic
analysis and prepare the required inputs for HEC-HMS. The following methods were
selected in order to simulate the hydrologic procedures throughout the modeled area during
the examined precipitation event: (a) the SCS Curve Number (CN) method for estimating
the rainfall losses and the excess rainfall; (b) the SCS Unit Hydrograph for transforming
excess rainfall into surface runoff; and (c) the Muskingum method for performing the
hydrologic routing.

The utilized input data was precipitation time-series from four meteorological station
recordings within the study area or at a near distance from its boundary (see Figure 1 for
the exact locations), a Digital Elevation Model (DEM) of 25-m resolution acquired through
Copernicus Land Monitoring Service [62], a CORINE Land Cover map available through
the same source and, lastly, a hydrogeological map of the area obtained via the Federal
Institute for Geosciences and Natural Resources of Germany [63]. The simulation time
window was from the 23 January 2015 (starting date) to the 6 February 2015 (ending date),
whereas a 10-min time interval was selected for the computations.

To determine the CN value for each individual subbasin element within the modeled
area, the land use map along with the lithological map and a look-up table containing
information on the appropriate CN value (according to the literature) for each given
combination of land use and soil group (soil hydrological category A, B, C, or D) were
combined. Regarding Muskingum parameters, K was estimated separately for each reach
of the examined watershed through Equation (1), in accordance with the HEC-HMS User
Manual. Parameter x is a dimensionless weighting parameter used in Muskingum routing
method to represent flood wave attenuation, which ranges between 0 and 0.5. Practically, a
value equal to 0.5 indicates that inflow and outflow have the same influence on storage, and
subsequently, very low or no attenuation takes place, whereas a value equal to 0 indicates
maximum attenuation, which means that inflow has little or no effect on storage. According
to the literature, x ranges between 0.2 and 0.3 for the case of natural streams; therefore, an
initial value of 0.2 was selected to be representative for this study [64].

K =
L

(3600 V)
(1)

where K is the travel time through a given reach (h), L is the actual reach length (m), and V
is the wave celerity assumed to be equal to 1 m/s in this study.

Furthermore, the number of subreaches into which each individual reach element
should be subdivided was specified in accordance with Qaiser and Yuan [65] through
Equation (2):

N = int

[
2 L

60 V x
∆t

]
+ 1 (2)
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where N is the number of subreaches, x is the attenuation parameter of the Muskingum
method (dimensionless), L is the actual length of the reach (m), V (m/s) is the mean flow
velocity (assumed to be equal to 1 m/s), and ∆t (min) is the simulation time step (equal to
10 min in the present study).

The number of subreaches determined through the above equation was subsequently
checked to assure that the condition described in Equation (3) is satisfied [65]:

2Kx < ∆t < K (3)

where K (min) is the travel time through each given subreach, x is the attenuation parameter
of the Muskingum method (assumed to be equal to 0.2 in all reaches), and ∆t (min) is the
simulation time step (10 min).

In this study, apart from performing the simulation on the basis of user-specified
values for the parameters of the hydrological model, a probabilistic approach was also
encompassed by using the Monte Carlo method. Specifically, recognizing the total error in-
troduced in the simulated watershed response, as a result of the uncertainty accompanying
the determination of model parameter values, we decided to integrate an extended uncer-
tainty analysis, performed within HEC-HMS software. The purpose was to investigate how
a different estimation of model parameters affects the flow hydrographs generated at the
outlets of the examined watersheds and, consequently, how this uncertainty is transferred
to the results of the hydrodynamic simulation. In order for the uncertainty analysis to be
implemented, we created several alternative models of the examined watershed, each inte-
grating a different combination of values for the selected parameters. These combinations
are typically produced through an automatic sampling procedure accomplished for each
particular parameter according to a probability distribution specified by the user. In addi-
tion, an upper and lower value should also be determined separately for each parameter to
confine sampling procedure within user-specified boundaries. In this study, the parameters
considered in performing the Monte Carlo analysis were CN, K, and x for all subbasins
and reach elements throughout the examined area. All of them were assumed to follow a
uniform distribution and their value range for the sampling was set as ±20% of the initially
specified values. To decide upon the number of samples needed to be generated for each
parameter and, subsequently, upon the number of the required simulations to be performed
to adequately reflect the total range of uncertainty, a convergence analysis was undertaken,
considering as a statistical measure the standard deviation of the peak discharge, among all
the hydrographs computed at the outlet. To achieve a convergence in the selected statistical
measure, the latter should not change even when a greater number of samples is computed.
In the present work, we performed the Monte Carlo analysis several times, specifying each
time a different number of samples to be generated, i.e., 50, 100, 200, 500, 800, 1000, 2000,
3000, and 5000 and determining the standard deviation of the peak discharge. It should also
be clarified that in order to perform the Monte Carlo analysis, due to the increased compu-
tational time, the total area being examined, i.e., Spercheios river basin, was subdivided in
three separate models, encompassing only the three watersheds of interest and excluding
all hydrological regions found downstream of their respective outlets, so as to accelerate the
simulations. Figure 3 illustrates how both standard deviation and mean value of the peak
discharge of the generated hydrographs change with the number of simulations performed
for each of the three watersheds. Based on the above-described analysis, we decided to
select a number of 1000 samples for performing the Monte Carlo analysis, since at this
number the standard deviation of peak discharge begins to be stabilized and converges
towards a value for all three watersheds. Figure 4a–c depict the range of flow hydrographs
generated from the uncertainty analysis at the outlets of the examined watersheds.



Water 2022, 14, 4020 9 of 29Water 2022, 14, x FOR PEER REVIEW 10 of 31 
 

 

 
Figure 3. Standard deviation and mean value of the peak discharge of the hydrographs computed 
at the outlet of each of the three watersheds of interest for different numbers of samples: (a) Upper 
Spercheios watershed; (b) Asopos watershed, and (c) Gorgopotamos watershed. 

Figure 3. Standard deviation and mean value of the peak discharge of the hydrographs computed
at the outlet of each of the three watersheds of interest for different numbers of samples: (a) Upper
Spercheios watershed; (b) Asopos watershed, and (c) Gorgopotamos watershed.



Water 2022, 14, 4020 10 of 29Water 2022, 14, x FOR PEER REVIEW 11 of 31 
 

 

 
Figure 4. Flow hydrographs generated through the Monte Carlo analysis at the outlets of the three 
simulated watersheds and time of SAR image acquisition: (a) Upper Spercheios watershed; (b) Aso-
pos watershed; (c) Gorgopotamos watershed. 

2.2.3. Hydrodynamic Simulation in HEC-RAS Software 
Regarding the hydrodynamic simulation, a coupled 1D/2D model was built using the 

Hydrologic Engineering Center’s River Analysis System (HEC-RAS) software in order to 
propagate the runoff generated from the hydrologic simulation and reproduce the inun-
dation extent induced by the examined rainfall. HEC-RAS software has been developed 
by the US Army Corps of Engineers and is capable of performing one-dimensional (1D), 
two-dimensional (2D), or coupled (1D/2D) flow simulation considering steady or un-
steady flow conditions along both natural and constructed channels. Integrated 1D/2D 
models are most commonly implemented by assuming lateral structures, which couple 
the 1D cross-sections with the 2D domain. These connections may either be real structures, 
e.g., weirs, culverts, etc., or simply represent high ground separating flow in the main 
river from the floodplain. Flow overtopping the structure is computed through the weir 
equation or 2D flow equations [66]. In the present work, the 1D part of the model included 
the branches of the main channel whereas the 2D one was utilized to simulate the over-
bank flow in the floodplains. 

For the 1D unsteady flow simulation, the continuity equation (conservation of mass) 
and the momentum equation (conservation of momentum) were used. HEC-RAS assumes 
a horizontal water surface at each cross section normal to the direction of flow, so that the 
exchange of momentum between the channel and the floodplain is negligible, and the 
discharge is distributed according to conveyance [67]. Given this assumption, the 1D 
equations of motion are the following Equations (4) and (5): 

Figure 4. Flow hydrographs generated through the Monte Carlo analysis at the outlets of the
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2.2.3. Hydrodynamic Simulation in HEC-RAS Software

Regarding the hydrodynamic simulation, a coupled 1D/2D model was built using the
Hydrologic Engineering Center’s River Analysis System (HEC-RAS) software in order to
propagate the runoff generated from the hydrologic simulation and reproduce the inun-
dation extent induced by the examined rainfall. HEC-RAS software has been developed
by the US Army Corps of Engineers and is capable of performing one-dimensional (1D),
two-dimensional (2D), or coupled (1D/2D) flow simulation considering steady or unsteady
flow conditions along both natural and constructed channels. Integrated 1D/2D models
are most commonly implemented by assuming lateral structures, which couple the 1D
cross-sections with the 2D domain. These connections may either be real structures, e.g.,
weirs, culverts, etc., or simply represent high ground separating flow in the main river from
the floodplain. Flow overtopping the structure is computed through the weir equation or
2D flow equations [66]. In the present work, the 1D part of the model included the branches
of the main channel whereas the 2D one was utilized to simulate the overbank flow in
the floodplains.

For the 1D unsteady flow simulation, the continuity equation (conservation of mass)
and the momentum equation (conservation of momentum) were used. HEC-RAS assumes
a horizontal water surface at each cross section normal to the direction of flow, so that
the exchange of momentum between the channel and the floodplain is negligible, and



Water 2022, 14, 4020 11 of 29

the discharge is distributed according to conveyance [67]. Given this assumption, the 1D
equations of motion are the following Equations (4) and (5):

∂A
∂t

+
∂(ΦQ)

∂xc
+

∂[(1−Φ)Q]

∂x f
= 0 (4)

∂Q
∂t

+
∂
(
Φ2Q2/Ac

)
∂xc

+
∂
[
(1−Φ)2Q2/A f

]
∂xt

+ gAc

[
∂Z
∂xc

+ S f c

]
+ gA f

[
∂z

∂x f
+ S f f

]
= 0 (5)

where t [T] is the time, Q [L3T-1] is the total flow, A [L2] is the flow area, Φ [dimension-
less] is the ratio of channel conveyance over the total conveyance, z [L] is the elevation of
water surface, Sf is the friction slope, and the subscripts c and f refer to the channel and
floodplain, respectively. HEC-RAS uses an implicit finite difference scheme to approxi-
mate these equations and solves them numerically using the Newton–Raphson iteration
methodology [67–69].

To perform the simulation in the 2D domain, HEC-RAS solves either the full Saint-
Venant equations (i.e., the Shallow Water Equations—SWE) or the Diffusion Wave Equation,
with the latter providing faster and more stable solutions [70].

The continuity (Equation (6)) and momentum (Equations (7) and (8)) equations com-
prising the full SWE in two dimensions are presented below [67]:

∂H
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

+ q = 0 (6)
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(7)
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+ u
∂v
∂x

+ v
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h
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∂x

(
vxxh
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∂x

)
+

1
h

∂

∂y

(
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∂v
∂y

)
− fcv + f u +

τs,y

ρh
(8)

where H is the water surface elevation [L], u and v are the velocities in the Cartesian
directions [LT−1], q is the source/sink flux term, g is the gravitational acceleration [LT−2],
vxx and vyy are the horizontal eddy viscosity coefficients in the x and y directions [L2T−1],
fc is the bottom friction coefficient [T−1], τs is the surface wind stress [ML−1T−2], h is
the water depth [L], ρ is the water density [M/L3], and f is the Coriolis parameter [T−1].
The left-hand side of Equations (7) and (8) contains the acceleration terms (unsteady and
advective accelerations) whereas their right-hand side represents the internal or external
forces acting on the fluid. An implicit finite volume algorithm is exploited for the solution
of the 2D unsteady flow equations, allowing for larger time intervals compared to the
explicit method.

The Diffusion Wave approximation of the SWE (DSW), which has been selected to be
applied in this study, constitutes a simplification of the momentum equation, where the
unsteady and advective acceleration, turbulence, and Coriolis effect terms are disregarded.
In order to use such an approximation, the flow should be principally driven by the
barotropic pressure gradient balanced by bottom friction [67]. The simplified version of
the momentum equation derived based on the aforementioned assumption is as follows
(Equation (9)):

n2

R4/3 |V|V = −∇H (9)

where V is the velocity vector [LT−1], R = R(H) is the hydraulic radius [L] as a function
of the water surface elevation, ∇H is the water surface elevation gradient [L] and n is the
Manning’s roughness coefficient [TL−1/3].

When the Diffusion Wave form of the momentum equation is used instead of the full
momentum equation, the corresponding system of equations can actually be unified into a
single equation model. This is achieved through direct substitution of the Diffusion Wave
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equation in the mass conservation equation, which yields the classical differential form
of the Diffusion Wave Approximation of the Shallow Water (DSW) equation presented
hereunder [67]:

∂H
∂t

+∇(β∇H) + q = 0 (10)

where β = − R2/3 h
n |∇H|1/2 .

The 1D elements of the model, which practically constitute the geometric represen-
tation of the main river, included the stream centerline for each of the totally seven river
branches encompassed, the corresponding bank lines, the flow path centerlines, and the
cross-sections along the examined river network. The above set of layers were digitized in
ArcGIS environment, using HEC-GeoRAS extension and exploiting as underlying terrain
a 5-m resolution DEM. The geometric data was then imported in HEC-RAS, along with
the utilized terrain, where the rest of model geometry was set up by gradually adding the
2D flow areas and the centerlines of the corresponding lateral connections to allow for the
coupling between the 1D channel and the 2D domain. The lateral structures were located
on both sides of the examined river branches, so as to cover their entire length. Due to
a restriction of HEC-RAS software, which imposes that each lateral connection does not
contain more than 500 station-elevation points, it was necessary to break the initial lateral
connection centerlines in several pieces so as to overcome this limitation. Subsequently,
thirty-three lateral connections were digitized in total following the high ground separating
the main channel from the overbank area and spanning a total distance of approximately
50 km. By means of the aforementioned connections, the 1D cross-sections were coupled
with the cells of the totally five 2D flow areas digitized. Regarding the 2D mesh, a base
cell size of 25 m × 25 m was selected for all 2D areas. Then, the computational mesh was
locally refined (12.5 m × 12.5 m cells) at representative locations where more detail was
needed, using break lines. This decision was made considering: (a) the resolution of the
available terrain data (5 m), which would not allow for a cell size smaller than the terrain
resolution; (b) the fact that the area being modeled is primarily characterized by mild
terrain without abrupt slopes and, therefore, flow processes can be satisfactorily captured
using the selected cell size; and (c) the fact that the selection of a finer resolution would
translate into a significant increase in computational burden. The role of break lines in 2D
modeling is practically to represent barriers to flow, or areas that affect flow direction, such
as high ground. The mesh is typically modified around these locations by reducing the cell
size and by aligning cell faces along them in order to accurately capture abrupt changes in
terrain. In the present study, the major road and rail networks, levees, part of the drainage
network as well as the boundary of four residential areas falling within the modeled area
were digitized and represented as break lines. The computational mesh generated based
on the above-described discretization covered a total area of approximately 91 km2 and
consisted of 157,000 cells. Figure 5 presents a synoptic view of the area modeled and its
main features.

As upstream boundary conditions, we applied the flow hydrographs derived from
the hydrologic simulation at the outlets of the three examined watersheds, which coincide
with the three upper boundaries of the 1D part of the model (most upstream cross-sections
of the respective rivers). A baseflow approximately equal to 10% of the peak discharge of
each inflow hydrograph was added to each of them to achieve stability in the simulations.

As downstream boundary condition, in all cases (both 1D river and 2D areas) the normal
depth was selected, which was computed based on friction slope (assumed to be equal to
bed slope) and was set equal to 0.001 for all simulations. The computation interval for the
simulation was set at 3 s, leading to a total duration of approximately 4.75 h for the entire time
window (from 28 January 2015, 00:00 am to 6 February 2016, 00:00 am) simulated.
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Regarding Manning roughness coefficients in the 2D domain, a CORINE Land Cover
map was exploited to detect the land uses falling into the model area. The sixteen different
land uses identified were reclassified in nine broader land use categories presenting similar
roughness characteristics, according to the land use categorization indicated in HEC-RAS
2D User’s Manual [67]. Then, an extended literature review was implemented in an attempt
to determine wide ranges of the roughness coefficient value for each reclassified land use
category, so as to encompass even relatively great values of the coefficient, which may be
the case in 2D shallow flow conditions [67,71–75]. From the published coefficient value
ranges, we considered, for each land use, the lowest and the highest coefficient value
identified, in order to establish the value ranges exploited in this study. Table 1 presents
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the initial land use codes and the respective descriptions (according to CORINE), the
percentage of the total area being covered by each specific use within the modeled area,
the respective area per land use that was detected as flooded through the SAR image, the
land use categorization (description and respective code) after the reclassification, and the
respective roughness coefficient ranges considered.

Table 1. Initial and reclassified Land Use (LU) categories and selected roughness coefficient ranges
according to the literature.

Corine LU
Code

Corine LU Description % of Total Model
Area

% of Total
Inundated

Area

LU Reclassification According to
2D Modeling User’s Manual

Manning
Roughness
Coefficient

Ranges (s/m1/3)

HEC-RAS LU
Categorization

Reclassified
LU Code

112 Discontinuous urban fabric 2.3 0.0 Developed,
Medium Intensity 1 0.06–0.20

122 Road and rail networks and
associated land 1.3 0.2 Paved roads/car

park/driveways 2 0.03–0.05

133 Construction sites 2.2 1.3 Construction sites 3 0.10–0.14

211 Non-irrigated arable land 1.8 4.7

Cultivated Crops 4 0.03–0.30
212 Permanently irrigated land 48.7 76.3
223 Olive groves 5.6 0.0

242 Complex cultivation
patterns 6.6 0.0

213 Rice fields 28.4 16.4 Emergent
Herbaceous

Wetlands
5 0.03–0.30411 Inland marshes 0.1 0.0

421 Salt marshes 0.3 0.5

243 Land principally occupied
by agriculture 0.6 0.6 Pasture/grasslands 6 0.03–0.40

311 Broad-leaved forest 0.3 0.0 Mixed forests
(either deciduous

or evergreen)
7 0.07–0.40313 Mixed forest 0.0 0.0

323 Sclerophyllous vegetation 0.2 0.0

324 Transitional
woodland-shrub 1.2 0.0 Shrub/scrub 8 0.05–0.40

331 Beaches, dunes, sands 0.6 0.1 Barren Land
(Rock/Sand/Clay) 9 0.03–0.10

To establish the roughness coefficient ranges for the main channel (1D part), a seg-
mentation of its total length was performed, assuming that in the upper reaches higher
resistance to flow is typically observed compared to the lower ones, which translates into
higher roughness coefficient values. The seven river segments into which the main channel
was subdivided coincide with the existing river reaches and are illustrated in Figure 5. Each
of these river segments was classified in one of the three reach categories considered in this
study, i.e., “upper”, “middle”, and “lower” reach category, as described in Table 2.

Given the increased computational time, and in order to maintain the simulations to a
reasonable number, the sensitivity analysis was performed by testing five representative
values of the roughness coefficient, i.e., the minimum, mean, maximum, and the values
corresponding to the 25% and 75% of each established value range. The 2D flow areas
and the main channel were examined separately, as follows. For the 2D area, each time
a specific land use was tested, all other coefficient values (both for the rest of the land
uses and the 1D river reaches) remained stable, being assigned the mean value of their
respective value range. Similarly, to examine the influence of the main channel, the five
representative coefficient values (min, max, mean, 25%, and 75%), as established per reach
class and indicated in Table 2, were tested. During this procedure, all roughness coefficients
in the 2D domain remained stable and were assigned the mean value of their respective
established value range.
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Table 2. Representative roughness coefficient values per land use (for the 2D flow areas) and river
segment (for the 1D river) applied during the sensitivity analysis.

LU Code

Established
Roughness
Coefficient

Range

Mean
Roughness

Coefficient Value

Max Roughness
Coefficient Value

Min Roughness
Coefficient Value

25% of Total
Range

75% of Total
Range

2D Flow Areas

1 0.06–0.20 0.13 0.20 0.06 0.10 0.17
2 0.03–0.05 0.04 0.05 0.03 0.035 0.045
3 0.10–0.14 0.12 0.14 0.10 0.11 0.13
4 0.03–0.30 0.17 0.30 0.03 0.10 0.23
5 0.03–0.30 0.17 0.30 0.03 0.10 0.23
6 0.03–0.40 0.22 0.40 0.03 0.12 0.31
7 0.07–0.40 0.24 0.40 0.07 0.15 0.32
8 0.05–0.40 0.23 0.40 0.05 0.14 0.31
9 0.03–0.10 0.07 0.10 0.03 0.05 0.08

River segment 1D river

Lower river
reaches (4, 5, 7) 0.03–0.05 0.04 0.05 0.03 0.035 0.045

Middle river
reaches (2, 6) 0.04–0.06 0.05 0.06 0.04 0.045 0.055

Upper river
reaches (1, 3) 0.05–0.07 0.06 0.07 0.05 0.055 0.065

Table 2 presents the representative roughness coefficient values tested for the land
uses (2D flow areas) and the three different reach classes (1D river). It should be mentioned
that among the existing land uses, we decided to perform the sensitivity analysis only
for land uses 2, 3, 4, 5, and 6, taking into account mainly the total area the latter cover
within the modeled area along with their proximity to the main channel, which would
eventually affect the transfer of flow from the 1D river to the 2D domain and, consequently,
the simulation results.

Additionally, the prior knowledge regarding the land use areas which were actually
subjected to flood (Table 1), as provided by the satellite image, was also considered, result-
ing in the exclusion of land uses 1, 7, 8, and 9 from the analysis. These land uses simply
maintained a stable Manning coefficient value (equal to the mean value of their established
range) during the sensitivity analysis.

During the roughness coefficient sensitivity analysis, all other modeling parameters
remained the same. As upstream boundary condition, the initial flow hydrographs, i.e.,
those derived when the hydrologic simulation of the upstream watersheds was performed
considering user-specified values for the model parameters, were applied in all above-
described scenarios.

Apart from the effect of the 2D domain and the 1D channel roughness coefficients, the
influence of the upstream boundary conditions in the simulation results was also tested.
For this purpose, the five indicative flow hydrographs (Figure 4), as derived from the
Monte Carlo uncertainty analysis for each of the three upper boundaries of the model, were
applied as upstream inflow condition to the respective reaches. For all upstream inflow
hydrograph scenarios tested, the roughness coefficient in the 1D river and in all land uses
of the 2D areas was set equal to the mean value of each established range.

The results generated from all above-described scenarios were compared against the
inundation extent, as extracted from both SAR processing approaches. The ultimate aim
was to use the SAR processing result as a reference to detect changes in model response
resulting from different uncertainty sources. On a secondary level, we also intended
to evaluate the two different SAR processing techniques in terms of their suitability in
supporting flood modeling applications.

The results derived from HEC-RAS simulation consisted of the inundation boundary
for each examined scenario at exactly the same time with the flood-image acquisition, i.e.,
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04:30 am UTC. The HEC-RAS-derived inundation boundaries were all exported from HEC-
RAS software to ArcGIS for post-processing and comparison with the SAR-derived results.

2.2.4. Comparison–Evaluation

The last stage of the process was implemented in ArcGIS environment and consisted
of the post-processing of the inundation results, as obtained from the hydraulic simulations
and both SAR processing approaches. All inundation boundaries were converted from
raster to polygon features, and their surface area was calculated. Then, the surface areas of
intersection and union between each HEC-RAS-derived result and the inundation result
derived from each of the two SAR methodologies were computed. The level of coincidence
between each simulated scenario and SAR-derived inundation boundary was quantified
by using the Critical Success Index (CSI) presented in Equation (11) [10,36,76]:

CSI =
(Smod ∩ Sobs)

(Smod ∪ Sobs)
× 100 (11)

where Smod is the surface area predicted as flooded by the model, and Sobs is that observed
as flooded through the SAR image processing.

The CSI-index ranges between 0 and 100%, with 100 denoting a perfect match between
model-predicted and SAR-derived inundated areas.

Moreover, two additional metrics were also incorporated in the analysis, in order to
examine the tendency of the model towards either under- or over-prediction. These were the
Hit Rate (HR) and the False Alarm (FAR) indices, which are given by Equations (12) and (13),
respectively [76]:

HR =
(Smod ∩ Sobs)

(Sobs)
× 100 (12)

FAR =
Smod − (Smod ∩ Sobs)

Smod
× 100 (13)

Both indices range from 0 to 100%. The Hit Rate expresses the proportion of the
SAR-observed inundated area that was also predicted as such by the model, with a value
equal to 100 signifying that all of the SAR-derived area was predicted as flooded by the
model. On the other hand, the False Alarm index gives an idea of whether the model
over-predicts the flood extent, with values of 0 and 100% revealing no false alarms and all
false alarms, respectively.

3. Results and Discussion

Figure 6 illustrates the flooded areas for the examined event as extracted from each of
the two SAR processing approaches. The spatial extent of both inundation results has been
clipped based on the boundary of the HEC-RAS model area to enable comparisons both
between each other as well as with the output of the hydraulic simulation. It is observed
that the two results reveal significant similarities in terms of the areas being classified as
flooded. In most cases, areas detected as flooded by the first approach have been detected
as such by the FLOMPY approach as well. However, in the second case, the area that
emerged as inundated is almost consistently greater. This has been probably resulted from:
(a) the higher sensitivity of the FLOMPY algorithm in relation to the first approach; and
(b) the multi-temporal approach integrated in the FLOMPY algorithm, which allows for
effective removal of speckle noise without degrading image spatial resolution. This, in
turn, leads to a more coherent and spatially continuous flooded area compared to the first
approach, which makes use of a traditional despeckling technique. The main discrepancy
that occurred between the two results concerns the detection of water along the main
channel. In this respect, the first (simplified) approach resulted in partially detecting water
within the boundaries of the main channel but only in a very limited part of the total length
of the river. Although the methodology has been developed with the aim to also encompass
permanent flow in classification, this had not been possible due to the particularly narrow
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width of the examined river main channel (approximately 10 m in many areas), the further
deterioration of spatial resolution that resulted from the filtering process, as well as the
dense vegetation covering a great part of the total river length. On the other hand, the
FLOMPY approach has not included flow in the main channel at all, due to the nature of the
algorithm itself, as it emphasizes detecting changes in backscatter between pre-flood and
flood states, and thus, areas which remain the same (permanent flow) in both situations are
not included.
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Given that the area along the main channel was not successfully detected, the two
flood extents were finally compared to each other considering only the areas within the
2D domain of HEC-RAS model. This decision was also dictated by the fact that the detec-
tion of the permanent flow in this specific case proved to be impossible for C-band and
10 m-resolution satellite data, independently of the utilized flood delineation approach.
Therefore, including this area in the comparison would not provide any meaningful con-
clusion about the relative performance of the two approaches. On this basis, and making
use of Equation (11), the percentage of coincidence between the inundation results derived
from the two SAR processing methodologies was calculated equal to 51.92%.

Regarding comparisons between HEC-RAS and SAR-derived inundation extents,
it should be clarified that flow along the main channel was excluded from HEC-RAS-
generated flood maps as well, and the derived results were compared considering only the
2D domain.

Figure 7 presents the results of the sensitivity analysis with respect to variation in
roughness coefficient value. The graphs illustrate the changes in the total inundated area
(predicted by the model) and the CSI-index of coincidence (Equation (11)) between HEC-
RAS result and each of the two SAR processing methodologies, as a function of roughness
coefficient in the 2D flow areas (LU 2, 3, 4, 5, and 6) and main channel.
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for each SAR methodology applied (secondary vertical axis) as a function of variation in roughness
coefficient value in: (a) land use 2; (b) land use 3; (c) land use 4; (d) land use 5; (e) land use 6; and
(f) main channel.

It can be easily observed that the roughness coefficient variation in land uses 2, 3, and
6 exerts, as expected, a negligible impact on both the total inundated area and the CSI-index
value, mainly due to the small surface area they cover.

On the other hand, it is clear that the model predictive accuracy (CSI-index value) and
total area of inundation, as far as the 2D area is concerned, are almost entirely dependent on
land use 4 (Figure 7c) and secondarily on land use 5 (Figure 7d), which is mainly explained
by the fact that they together occupy nearly 92% of the total area being modeled. As far
as the influence of the 2D domain is concerned, land use 4 causes the greatest variation in
model response, with the total area predicted as inundated ranging from approximately
11.4 km2 up to 17 km2, and the respective percentage of coincidence (CSI-index) with the
SAR results ranging from 17.7–19.6% and 24.5–27% for each SAR methodology, depending
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on the selected coefficient value. Surprisingly, an even greater influence concerning CSI-
index value is observed when the roughness coefficient within the main channel is varied
(Figure 7f). Specifically, even though a more restricted value range than that applied for
land use 4 was assumed, variation of roughness coefficient in the main channel between
its minimum and maximum values leads to an alteration of index value from 23.4% to
27.5% for the FLOMPY approach (or from 17.3 to 19.4% for the simplified approach). Other
recent studies that have exploited the CSI-index to compare HEC-RAS simulation results
against satellite imagery-derived flood maps produced index scores of 64% and 66% (after
calibration and validation, respectively) [77], between 74.2% and 76.6%, depending on the
selected polarization (VV or VA) of the SAR products [78], and between 65% and 95% [79].
Moreover, Nguyen et al. [80], who assimilated SAR-derived flood maps to improve sim-
ulation results of a TELEMAC-2D model, reported CSI values ranging between 22% and
63.97% depending on the simulated scenario. Comparatively low index values were finally
estimated by Ekeu-wei et al. [81], who calibrated a 2D Caesar-Lisflood hydrodynamic
model by exploiting: (a) optical (MODIS) data alone and (b) in combination with SAR
data in a vegetation-dominant region. The results demonstrated a low performance of the
examined model, which attained a 23.5% and 27.3% CSI score for the optimum roughness
coefficient, when the optical and the combined data were considered as reference, respec-
tively. More importantly, Figure 7f reveals that the model predictive performance increases
for greater values of the main channel roughness coefficient, contrary to the rest of the cases,
i.e., land uses 4 and 5, for which better percentages of coincidence with SAR results occur
for roughness coefficient values in the lower or middle areas of the selected value ranges.
The greater effect of the main channel compared to the floodplain roughness coefficient was
also verified by Lamichhane and Sharma [82], who found that the variation of roughness
in the first case led to an 8.97% change in the extent of flooded area against a percentage of
hardly 1.49% produced by the variation of roughness coefficient in the floodplains. Afzal
et al. [77] also reported that a small increase in manning’s value in the main channel of a
2D HEC-RAS model caused a higher increase in the simulated inundated area, compared
to a similar increase in the floodplains’ n values.

Furthermore, Liu et al. [83], who investigated the performance of different hydraulic
models with respect to their sensitivity to roughness characterization and model structure,
found that LISFLOOD-FP diffusive model and HEC-RAS 2D model showed a greater
sensitivity to the channel roughness coefficient as well, while model performance was
improved for higher values of the coefficient.

Regarding the different SAR methodologies tested, the results prove that the second
approach (FLOMPY algorithm) presents consistently higher percentages of coincidence
with model results for all simulated scenarios. This probably indicates its greater suitability
for evaluating model response due to the more continuous, and thus, realistic flooded area
it yields.

In an effort to further examine the tendency of the model towards either over-prediction
or under-prediction of the flooded area, two additional measures of fit, namely the Hit Rate
(HR) and the False Alarm ratio (FAR) were estimated and are illustrated in Figure 8a–f.

The inundated area derived from each of the two SAR processing methodologies was
assumed to be the “ground truth”, and the aforementioned indices were computed for
each simulated scenario. The HR and FAR indices are significantly affected only by the
variation of roughness coefficient in the main channel (Figure 8f) and in the land use 4
(Figure 8c), whereas the rest of the land uses practically exert no impact on the degree of
over or under-prediction of the model.

What can be seen from the graphs is that, in all cases, when the FLOMPY result is
considered as reference, lower values of both the False Alarm (lower over-prediction of
the hydraulic model) and the Hit Rate index emerge compared with when the simplified
approach is being considered. This is reasonable since for the simplified SAR processing
approach, a smaller inundated area is derived. Hence, when the model is being compared
against this area, it looks like it more extensively over-predicts flood.
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Figure 8. Inundation area predicted by the model (primary vertical axis) and Hit Rate and False
Alarm index values (%) for each SAR methodology applied (secondary vertical axis) as a function of
variation in roughness coefficient value in: (a) land use 2; (b) land use 3; (c) land use 4; (d) land use 5;
(e) land use 6; and (f) main channel.

Likewise, given the smaller inundation extent derived from the first approach, it is
easier for the model to reproduce a greater proportion of the SAR-derived flood, and thus,
attain higher scores with respect to the Hit rate index.

Depending on the simulated scenario (selected roughness coefficient value), the Hit
Rate index ranges from 47.4% to 64% and from 41% to 55.8%, when the first and the
FLOMPY approaches are considered as reference, respectively. Correspondingly, the False
Alarm ratio varies between 75.6% and 79.8% and between 62.1% and 66.1% for the first
and the FLOMPY approaches, respectively. Regarding the main channel (Figure 8f), it is
observed that the Hit Rate index increases for higher values of the roughness coefficient, i.e.,
a greater proportion of the SAR-derived flood is also being captured by the model, without
this leading to a simultaneous increase in over-prediction (False Alarm index). This is in
agreement with our previously mentioned inference that higher predictive performance
(CSI-index) of the model emerges for higher roughness coefficient values in the main
channel and thus demonstrates that the optimum coefficient values fall within the upper
region (or even further upwards) of the established value range. With regard to the 2D flow
area, and specifically the land use 4, as can be seen from the Figure 8c, a rise in roughness
coefficient corresponds to simultaneous increase in both HR and FAR indices. However,
the Hit Rate index presents a steeper rise compared to the False Alarm index for the first
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half of the value range, which can be interpreted as a rather positive than negative effect on
the overall performance.

Table 3 presents the percentage of coincidence (CSI-index) between SAR-derived
results and those extracted from the hydraulic simulation along with the respective Hit Rate
(HR) and False Alarm (FAR) indices for each of the five representative inflow hydrograph
scenarios simulated. The respective total inundated area is also provided.

Table 3. Total area of inundation derived from HEC-RAS simulation and percentage of coincidence
between SAR-observed and model-predicted inundation results for each SAR processing approach
and each input hydrograph utilized.

Inflow Hydrograph
Derived from MCA

Analysis

Model-Predicted
Inundation Area

(km2)

Index (%)

1st Approach (Simplified) 2nd Approach (FLOMPY)

CSI HR FAR CSI HR FAR

Minimum 11.13 16.74 41.9 78.2 21.95 36.9 64.9
Mean minus standard

deviation 13.27 17.80 49.8 78.3 24.36 44.1 64.8

Mean 15.06 18.95 57.4 77.9 26.88 51.3 63.9
Mean plus standard

deviation 16.71 18.89 61.8 78.6 27.21 55.1 65.0

Maximum 20.15 17.60 67.1 80.7 26.31 60.4 68.2

The simulated inflow hydrograph scenarios reflect the entire range of uncertainty
introduced by the hydrologic simulation of the upstream watersheds and consist of the:
(a) minimum; (b) mean minus standard deviation; (c) mean; (d) mean plus standard
deviation; and the (e) maximum inflow hydrographs. As a general observation, it is
shown that the upstream boundary conditions exert a greater influence in the formulation
of the final results compared to the variation of roughness coefficient in both the 2D
domain and the main channel, causing a percent change in the total flooded area of
approximately 81% (i.e., from 11.13 km2 to 20.15 km2). These results are in agreement with
our previous study [10] where the response of a simpler 1D hydraulic model as a function
of different sources of uncertainty had been investigated. Another study that also confirms
the dominant role of input hydrology compared to other components of uncertainty is that
of Annis et al. [84], who obtained a 50–220% change in the derived inundation extent by
varying input discharge against a 6–9% change by perturbing the roughness coefficient.
Other studies that reported similar finding are those of Vojtek et al. [85] and Mosquera-
Machado and Ahmad [86]. Specifically, considering the coincidence with FLOMPY results,
inflow hydrograph variation produces a range of approximately 5.5% in HEC-RAS model
performance, with better percentages emerging for upstream conditions close to the middle–
upper inflow scenarios, thus demonstrating a slight underestimation of the initial inflow
hydrographs as derived from the hydrologic simulation. In terms of the CSI-index value,
it is apparent that the FLOMPY approach shows again a closer similarity with HEC-RAS-
derived results, compared to the simplified approach, for all simulated scenarios. H and F
indices have a response roughly analogous to the CSI-index, in that they both increase for
greater upstream inflow conditions, with the exception that these continue rising even for
inflows beyond the “mean plus standard deviation” scenario, where the highest CSI score
was identified.

Figure 9a–e presents a qualitative comparison between the SAR-derived (FLOMPY
approach) flood extent (depicted in purple) and that derived from the hydraulic simulation
(in yellow) for each inflow hydrograph scenario simulated. The common area between the
two extents is also illustrated in red.
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With regards to the predictive accuracy of the hydraulic model itself, for the examined
event, better results seem to emerge for higher upstream inflow conditions as well as for
higher roughness coefficient values in the main channel. Values around the lower–middle
areas of roughness coefficient-established ranges for land uses 4 and 5 also contribute to
the improvement of the overall model performance.

However, significant uncertainty still remains, which seems not to be related to the
upstream conditions and roughness coefficient value. The remaining uncertainty in the
simulation results could be associated to some extent with the inaccuracies in terrain repre-
sentation. Although the effect of terrain spatial resolution and accuracy on the inundation
output is not thoroughly examined in this work, this assumption is consistent with the
results presented by Lamichhane and Sharma [82], who reported a 35.37% decrease in the
total predicted inundated area when precise LIDAR data combined with survey data were
exploited, compared to the case when a 30-m DEM was applied. In addition, we estimate
that in the present study, model structure also exhibits a great impact on the final results.
Although structural uncertainty is often neglected and seems to be a rather unexplored
field compared to input data and parametric uncertainties, the former seems to play a
dominant role in model results as model complexity increases. As we move from a 1D
model to a 1D/2D or 2D representation, input data and parametric uncertainties begin to
affect the simulation less, whereas model structure influence increases. This assumption
is in agreement with Ghimire et al. [87] and Dimitriadis et al. [88], who found that 1D
models tend to be more sensitive to parametric uncertainty compared to a 2D flood model.
This is also partially justified by our previous results [10], which showed a much greater
response of a quite simpler 1D model to parameter variation (roughness coefficient and
input discharge), achieving higher performance scores (up to 65%), although a certain
degree of structural uncertainty also existed there. Moreover, the subjective view of the
modeler forms an integral part of the structural uncertainty, which is estimated to signifi-
cantly affect the simulation outputs, especially in complex 1D/2D or 2D hydraulic models,
where several modeling decisions should be made (e.g., model area boundary, mesh spatial
resolution, representation of structures, etc.).

In particular, and as far as the modeling procedure of the present study is concerned,
it was observed that the placement of the 1D/2D connections constitutes a time-consuming
procedure where much attention and in some cases a trial-and-error approach are required
in order to avoid poorly locating the respective centerlines. Specifically, it is crucial that
the lateral structure be placed exactly at the high ground (highest elevation) separating
the main channel from the 2D area. When this is not the case, the model may compute
a greater amount of flow overtopping the structure and passing to the 2D domain, thus
introducing a considerable degree of uncertainty in the results. In fact, the selection of
the modeling approach itself, namely between a 1D, 2D, or a coupled 1D/2D model may
significantly affect the final output as well. Although the studies focusing on the comparison
between 2D and coupled 1D/2D hydraulic models are limited, a recent one undertaken by
Ghimire et al. [87] reported that 2D models exhibit better performance compared to 1D/2D
ones, while the latter do not actually show any considerable superiority against a 1D model.
Moreover, in another study examining the comparative predictive performance of a coupled
1D/2D and a fully 2D model, although the results showed a relatively greater performance
of the coupled model for the examined case study, the former was also found to predict
approximately 40–50% more flooded area compared to the fully 2D model, which indicates
that considerable discrepancies may occur depending on the selected approach [89].

Nevertheless, in the current study, the selection of the 1D/2D approach undoubtedly
presented some advantages as well. In particular, it was considered to be more appropriate,
compared to a 1D model, for reproducing flow conditions in a complex and highly braided
system, as is the one investigated in the current study. Furthermore, in case of using a 1D
approach, we could not have dealt with the water overtopping the levees, since in this case
water flows in many directions and not in the longitudinal one. On the other hand, the
selected approach provided a more efficient alternative in terms of computational burden,
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compared to a fully 2D model, where the entire domain would need to be modeled through
a 2D mesh, thus leading to higher computational times.

A certain amount of uncertainty is inevitably introduced by the SAR satellite data and
the processing techniques utilized as well. This is mostly related to the fact that none of the
tested methodologies dealt with the case of flooded vegetation, namely high vegetation
(e.g., trees) that is not fully submerged by the water, and therefore, the “double bounce”
effect causes an increase instead of a decrease in backscatter in these areas. Given the fact
that the model area is characterized by high vegetation in the overbank areas next to the
main channel at a significant part of its total length, this limitation may have led to an
exclusion of these areas from the SAR-derived total inundation extent and, consequently, to
a greater discrepancy from the result derived from the simulation. An additional limitation
concerns the Sentinel-1 data itself, since C-band does not allow for signal penetration below
thick vegetation but only up to the top layers of the canopy, thus hampering water detection
in case of densely vegetated areas. Figure 10a-b shows two indicative sub-regions of the
study area where SAR processing approaches did not manage to capture flood in areas
covered with high dense vegetation (trees) (Figure 10a) and high sparse vegetation (trees
and crops) (Figure 10b) next to the main channel.
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Figure 10. Vegetated areas next to the main channel where SAR processing techniques did not detect
flood: (a) area covered with high dense vegetation (trees); and (b) area covered with high sparse
vegetation (trees and crops).

It should be noted that in the present study, although the two SAR-based flood
products were exploited as reference to compute the utilized metrics, the focus is rather on
investigating model sensitivity, as well as on comparing the derived results and interpreting
the resulting discrepancies. We did not intend to calibrate or even evaluate model response
since this would mean to neglect the significant uncertainty related to the SAR data and
processing techniques.

Finally, a critical issue that should be emphasized is that the present study makes only
use of 2D assessment metrics to assess the sensibility and performance of the hydraulic
model, since the only available information that could be exploited as reference was the
SAR-derived inundation maps. This could be considered as a limitation, since in case in
situ observations were available, the comparison of the simulation results against measured
water depths through 1D metrics (e.g., RMSE, Maximum Absolute Error, NSE) would
enable the examination of model response in a greater detail. It is also worth noting that
recent research concentrates on the extraction of remotely-sensed water depth maps by
combining SAR-derived inundation extents and high-resolution Digital Elevation Models
(e.g., [21,90–92]). This is an extremely promising approach that may allow for the calibration
and evaluation of flood inundation models also in terms of water depth, even in absence of
in situ measurements.
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4. Conclusions

The present study attempted to investigate the potential of Sentinel-1 radar data
in supporting flood modeling applications. In particular, two different SAR processing
approaches were used to extract a flood map, i.e.,: (a) a manual one, where a single-flood
image preprocessing is applied, and then a threshold is determined following delineation
of training polygons and calculation of their statistics; and (b) an automatic one (FLOMPY
algorithm) based on SAR statistical temporal analysis. The utilized approaches were both
compared with each other with respect to the resulting inundation boundaries, but they
were also exploited as reference for investigating the sensitivity of an integrated 1D/2D
hydraulic model with respect to different sources of uncertainty, i.e., variation in the
upstream inflow and in the roughness coefficient of the 1D channel and 2D domain. For
this purpose, three different metrics, namely the Critical Success Index (CSI), and the Hit
Rate (HR) and False Alarm (FAR) indices, along with the change in the total inundated
area, were evaluated.

Regarding the effectiveness of the different SAR methodologies in extracting the
flood extent for the examined area and flood event, the first approach, acknowledging
its simplicity, was considered as adequate to capture the main features of the flooded
area and give a quick and rough estimation of its total extent. Its main limitation was the
inevitable lack of resolution that resulted from the application of the utilized despeckling
technique, which led in some cases to unrealistic discontinuities in the extracted inundation.
On the other hand, the second approach proved to be more suitable, mainly due to the
multi-temporal analysis incorporated, yielding a more coherent flooded area, closer to that
extracted through HEC-RAS. The two results coincided by approximately 52%, with the
second one providing a consistently greater flood extent in most areas.

As for the sensitivity analysis undertaken, among the variables tested, it was found that
the model response is principally affected by the inflow discharge, and secondarily, by the
variation of roughness coefficient in the main channel and the land cover uses 4 (cultivated
crops) and 5 (emergent herbaceous wetlands). Higher coincidence (CSI-index) of the
hydraulic model with the SAR-derived result emerged: (a) for inflow discharges between
the middle–upper area of the uncertainty bounds; (b) for higher roughness coefficient in the
main channel; and (c) for coefficient values around the lower–upper areas of the assumed
value ranges for land uses 4 and 5.

Additional sources of uncertainty that are believed to affect model predictive perfor-
mance in comparison with SAR images seem to be associated with inaccuracy in terrain
representation as well as with the structural uncertainty inherent in complex hydraulic
models. Subjectivity introduced by the user in the different stages of modeling proce-
dure seems to influence more radically model results as the level of complexity increases.
Especially for integrated 1D/2D hydraulic models, it was observed that an eventually
inaccurate placement of the centerline of the 1D/2D connections by the user may lead
to highly ambiguous simulation results. It should be clarified though that the present
study does not provide a comprehensive assessment of the comparative advantages or
deficiencies of the utilized approach with respect to other models. Within this context and
in order to gain a better insight regarding its predictive capability, further investigation of
the impact of different modeling approaches (1D or fully 2D) in the same area, as well as in
other areas, is required.

Overall, the use of Sentinel-1 products, with respect to the extraction of flood maps,
was found to be a valuable tool for supporting flood modeling, as it: (a) provides the
modeler with a “rough” prior knowledge of the inundation area rendering the possibility
to appropriately adapt modeling decisions and detect unreliable results; (b) serves as a
reference base allowing for the detection of changes in model response driven by the varia-
tion in selected uncertain parameters; and (c) under certain circumstances, it allows for the
evaluation of model performance, acknowledging, however, the uncertainty emerging from
the satellite data and the flood mapping technique itself. The derived results would seem
to suggest that a flood mapping technique appropriately adapted to the needs of flood
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modeling applications should be oriented towards statistical multi-temporal approaches to
detect changes in backscatter resulting exclusively from flood and at the same time effec-
tively remove the speckle effect. Particular caution should also be given to the limitations
the C-band Sentinel-1 data present in areas covered with dense vegetation.
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