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Abstract: A fully penetrating cut-off wall is a vertical seepage barrier that fully penetrates an aquifer
and is embedded in an underlying aquitard to a certain depth. Groundwater seepage with this type of
wall occurs through three paths: leakage through the body of the wall in the aquifer, leakage through
the body of the wall embedded in the aquitard, and seepage under the wall. Seepage through the first
path can be simply treated as one-dimensional flow. However, due to the mutual influence of seepage
through the latter two paths, the seepage problem is complicated and still needs to be studied. An
analytical method is proposed to solve this problem in this study. Mathematic expressions for flow
rate and head value are obtained by superposition of drawdowns of two exact models, namely, the
model with only leakage through the wall body and the model with only seepage under the wall,
respectively. Exact solutions are quoted or derived for the exact models, but they involve Legendre’s
elliptic integrals of the first and third kinds. To facilitate an engineering application, approximate
models of the exact models are introduced and their solutions are applied to the analytical formulas.
The accuracy and applicability of the proposed method are verified compared with the numerical
method. The proposed method provides a simple but effective method for quickly estimating the
quantity of seepage in the aquitard (including leakage through the wall body and seepage under the
wall) when simultaneously considering the effects of wall permeability and thickness.

Keywords: analytical method; groundwater seepage; cut-off wall; leakage; superposition

1. Introduction

Cut-off walls change the seepage direction, extend the seepage path and then mitigate
groundwater seepage [1–3]. Therefore, cut-off walls are usually used to reduce seepage flow
under hydraulic structures (dams or dikes) [4–7] and inflow into an excavation pit [8–15].
As shown in Figure 1, a partially penetrating cut-off wall is adopted when the aquifer is of
a large thickness, whereas a fully penetrating cut-off wall is used when the thickness of the
aquifer is small.

Different types of cut-off walls are used in practice and include the following: sheet-
pile walls, deep-mixing piles, jet-grouting columns, secant piles, and diaphragm walls.
They are usually defined as barriers with very low permeability. However, the cut-off walls
have defects and cracks due to construction defects, and leakage through the body of wall
is prone to occur [1,16]. For instance, overlapping jet-grouting columns and secant piles
may display diameter variability and/or vertical deviation induced by soil heterogeneity
and uncertainty of mechanical drilling, which can ultimately cause apertures in the wall
body [17–21]. Other construction techniques, such as diaphragm walls, pile walls and sheet
piles, although made of reinforced concrete, may leak at the joints (interlocks) [1,5,7]. Some
concrete cut-off walls have construction defects due to improper construction methods
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or material selection, resulting in the effective hydraulic conductivity of the wall being
two to three orders of magnitude larger than the anticipated value [4,22]. The effective
hydraulic conductivity of a cut-off wall refers to quantity of leakage through a unit area of
the wall driven by a unit hydraulic gradient when considering the effects of wall materials,
wall defects and cracks. Defects and cracks in cut-off walls may significantly shorten the
seepage pathway, leading to an increase in flow rate. Therefore, a cut-off wall is always
permeable, and its effective hydraulic conductivity often appears to be much larger than
the anticipated value.

Figure 1. Seepage problems with two types of cut-off walls: (a) partially penetrating cut-off wall;
(b) fully penetrating cut-off wall; and (c) seepage model in the aquitard.

A partially penetrating cut-off wall does not fully penetrate the aquifer. Although the
wall is permeable, its permeability is generally much smaller than the aquifer permeability,
and thus the seepage mainly occurs under the wall (see Figure 1a). Many studies have
been conducted for this seepage analysis, such as fundamental analytical solutions for the
seepage beneath a dam with a partially penetrating cut-off wall [23–26] and analysis of
inflow into a deep foundation pit considering the effect of such type of wall [27].

A fully penetrating cut-off wall fully penetrates the aquifer and is embedded in
an underlying aquitard to a certain depth. In engineering practice, this type of wall is
commonly regarded as an impermeable barrier, and thus the wall is expected to fully
obstruct the seepage flow under hydraulic structures or provide closed compartments
for the excavation of foundation pits [8,28,29]. However, a fully penetrating cut-off wall
is always slightly permeable. Its permeability may be much smaller than the aquifer
permeability, but not necessarily compared to the underlying aquitard. When leakage
through the wall body occurs, the effective hydraulic conductivity of the wall may not
differ much from the hydraulic conductivity of the aquitard. In addition, significant flow
may also occur through the bedrock joints under the wall when the wall is embedded
in jointed rocks [4,5]. Thus, groundwater seepage with this type of wall occurs through
three paths: leakage through the wall body in the aquifer, leakage through the wall body
embedded in the aquitard, and seepage under the wall, as depicted in Figure 1b. Seepage
through the first path can be simply treated as one-dimensional flow [30,31]. However, due
to the mutual influence of seepage through the latter two paths, the seepage problem is
complicated and still needs to be studied.

In general, the permeability of the aquifer is much higher than that of the underlying
aquitard. Thus, the head change within a small area near the cut-off wall in the aquifer
can be overlooked [32]. Then, seepage flow near the cut-off wall in the aquitard can be
modelled by the seepage model, as illustrated in Figure 1c.
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Internal permeable boundary conditions are formed along both sides of the cut-off
wall, due to the difference in the permeability between the wall and the aquitard. The
internal permeable boundary conditions make the seepage model in Figure 1c difficult to
solve exactly. In previous studies, the cut-off wall was simplified to an impermeable sheet
pile with no thickness [23,24], or the effect of the wall permeability or thickness on the
seepage was considered separately [26,32]. Based on the assumption that cut-off walls are
impermeable sheet piles with no thickness, Aravin and Numerov [23] listed fundamental
analytical solutions for the seepage through foundations beneath dams. When the wall
penetration depth in the aquitard is zero and the dam width is equal to the wall thickness,
the exact solution for the seepage under the wall can be obtained from this study. Wang [26]
derived an exact solution for the seepage through foundation beneath a dam with an
impermeable cut-off wall, and the effect of the wall thickness on the seepage was studied.
When the dam width is equal to the wall thickness, the seepage under the cut-off wall
can be solved exactly. Nevertheless, the leakage through the wall body cannot be counted.
Yakimov and Kacimov [32] assumed that the cut-off wall was infinitely thin and derived
exact solutions for the leakage through the wall body and seepage under the wall. The
effect of the wall permeability on the seepage was studied. Although the wall thickness is
small compared to the thickness of the foundation soil, it has a considerable effect on the
seepage under the wall and thus should be considered in the seepage analysis [26].

Few studies have considered the effects of the wall permeability and thickness on
seepage at the same time. For the seepage model in Figure 1c, if the cut-off wall fully
penetrates the aquitard, exact and approximate solutions for the leakage through the wall
body can be obtained from the study of Anderson [31]. However, for more-general cases
in which the cut-off wall is just embedded in the aquitard to a certain depth, the seepage
problem has not been studied.

Thus, an analytical method is proposed for the seepage in the aquitard (including
the leakage through the wall body and seepage under the wall) while simultaneously
considering the effects of the wall permeability and thickness. The proposed method is
based on the seepage model in Figure 1c. Analytical formulas for flow rate and head value
are obtained by superposition of drawdowns of two exact models, namely, the model with
only leakage through the wall body and that with only seepage under the wall, respectively.
Exact solutions are quoted or derived for the two exact models. To facilitate an engineering
application, approximate models of the exact models are introduced and their solutions are
applied to the analytical formulas. Meanwhile, the exact models are used as calibration
tools. Then, the accuracy and applicability of the proposed method are verified compared
with the numerical method. The proposed method can be degenerated into models that do
not need superposition of drawdowns for three special cases: the wall penetration depth in
the aquitard is zero, the cut-off wall fully penetrates the aquitard, and the wall permeability
is very small compared to the aquitard permeability. The degradation formulas are verified
by the analytical solutions in the studies of Aravin and Numerov [23], Anderson [31], and
Wang [26], respectively. Finally, the effects of the wall permeability and thickness on the
flow rate are discussed compared with the analytical solutions of Wang [26] and Yakimov
and Kacimov [32], respectively.

2. Analytical Method

The analytical model is shown in Figure 1c. The aquitard is of thickness T and
hydraulic conductivity k. The cut-off wall is of thickness w, effective hydraulic conductivity
k’, and penetration depth s. The thickness of the aquitard under the wall is d = T − s. The
segments AB and A’B’ are the pervious boundaries and the total head drop from AB to A’B’
is H. The segment ADD’A’ is the impervious boundary.

The analytical method is developed based on four assumptions:

1. Two-dimensional steady seepage flow is studied, and the analytical model is symmet-
rical taking the centerline of the cut-off wall as the axis of symmetry.

2. The aquitard extends horizontally infinitely on both sides of the cut-off wall.
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3. The permeability ratio k’/k ≤ 1 is discussed here.
4. The flow is approximated as one-dimensional and horizontal within the regions

BCC’B’ and CDD’C’. The flow in a vertical leaky wall can be assumed to be normal
to the wall, which is demonstrated by Strack et al. [33]. Here, BCC’B’ is a leaky
wall region with permeability of k’, and CDD’C’ can be taken as a wall region with
permeability of k.

Meanwhile, the superposition principle is applied to obtain drawdown. Superposition
states that for a linear system, the effect of multiple stimuli on a system is the summation
of the effect of each stimulus on the system [34]. For the seepage problem in Figure 1c, the
drawdown S is caused by quantity of leakage through the wall body (flow rate q1) and
quantity of seepage under the wall (flow rate q2) simultaneously. Based on the superposition
principle, the drawdown S is the sum of one part caused by q1 (noted as S(q1)) and another
part caused by q2 (noted as S(q2)). The relationship can be obtained as S = S(q1) + S(q2). The
S(q2) and S(q1) can be obtained by two simpler models in Figures 2a and 2b, respectively,
which are called the model with only seepage under the wall and the one with only leakage
through the wall body. The quantity of seepage under the wall in Figure 2a is identical to
q2, and the quantity of leakage through the wall body in Figure 2b is identical to q1.

Figure 2. Two exact models: (a) model with only seepage under the wall; (b) model with only leakage
through the wall body; and (c) equivalent model of (b).

The drawdown S(x, y) of each point in the region ABCDA is the difference between
the upstream head hAB and the head value h(x, y): S(x, y) = hAB − h(x, y). The drawdown
S(x, y) of each point in the region A’B’C’D’A’ is the difference between the downstream
head hA’B’ and the head value h(x, y): S(x, y) = hA’B’ − h(x, y).

The permeability and thickness of the cut-off wall are simultaneously considered in
the analytical method. The permeability ratio can reach k’/k >1 sometimes (e.g., in the
case that deep mixing piles are embedded in clay of weak permeability), but k’/k ≤ 1 is
discussed in this study.

The purpose of the analytical method is to estimate the flow rates q1, q2, and the total
flow rate q (= q1 + q2) in Figure 1c.

2.1. Mathematic Expression for Flow Rates

Assuming that the flow is one-dimensional and horizontal within the regions BCC’B’
and CDD’C’, the relationship between the flow rates and the average heads (h) on the
segments along both sides of the cut-off wall (BC, CD, B’C’, and C’D’) can be obtained
based on Darcy’s law, as shown in Equation (1). Then, the seepage problem in Figure 1c is
transformed into the problem of determining the average heads on these segments.

hBC − hB′C′ =
wk
sk′ ·

q1
k

hCD − hC′D′ =
w
d ·

q2
k

}
(1)

The subscripts BC, CD, B’C’, and C’D’ denote the segments BC, CD, B’C’, and C’D’,
respectively.

Based on the geometric symmetry, the relationships among the average drawdowns
(S) on the segments BC, CD, B’C’, and C’D’ are as follows: SBC = −SB’C’ and SCD = −SC’D’.
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According to the definition of drawdown, SBC = hAB − hBC, SCD = hAB − hCD, SB’C’ = hA’B’
− hB’C’, and SC’D’ = hA’B’ − hC’D’ are obtained. Considering H = hAB − hA’B’, then

hBC − hB′C′ = H − 2SBC
hCD − hC′D′ = H − 2SCD

}
(2)

Based on the superposition principle, SBC and SCD can be obtained by the superposi-
tion of average drawdowns on the segments BC and CD in Figures 2a and 2b, respectively.
They are expressed as Equation (3). For the convenience of subsequent discussion, the
average drawdowns in Figure 2a,b are normalized by q2/k and q1/k, respectively.

SBC = SBC(q1)
+ SBC(q2)

= RBC(q1)
· q1/k + RBC(q2)

· q2/k
SCD = SCD(q1)

+ SCD(q2)
= RCD(q1)

· q1/k + RCD(q2)
· q2/k

}
(3)

The subscripts (q1) and (q2) denote the models in Figures 2a and 2b, respectively. R
denotes the normalized average drawdown.

Substituting Equation (3) into Equations (2) and (1) gives

H =
(

2 RBC(q1)
+ wk

sk′

)
· q1

k + 2RBC(q2)
· q2

k

H = 2 RCD(q1)
· q1

k +
(

2RCD(q2)
+ w

d

)
· q2

k

 (4)

Solving Equation (4) with q1 and q2 as variables, one can obtain the following:

q1
kH =

(
2RCD(q2)

+ w
d

)
−2RBC(q2)(

2 RBC(q1)
+ wk

sk′
)(

2RCD(q2)
+ w

d

)
−4RBC(q2)

RCD(q1)

q2
kH =

(
2 RBC(q1)

+ wk
sk′
)
−2 RCD(q1)(

2 RBC(q1)
+ wk

sk′
)(

2RCD(q2)
+ w

d

)
−4RBC(q2)

RCD(q1)

 (5)

kH
q

=
kH

q1 + q2
=

(
wk
sk′ + 2RBC(q1)

)(
w
d + 2RCD(q2)

)
− 4RBC(q2)

RCD(q1)(
w
d + 2RCD(q2)

)
− 2RBC(q2)

+
(

wk
sk′ + 2RBC(q1)

)
− 2RCD(q1)

(6)

Based on Equations (5) and (6), the normalized average drawdowns (RBC(q2), RCD(q2),
RBC(q1), and RCD(q1)) in Figure 2a,b should be determined prior to the flow rates.

2.2. Determination of Normalized Average Drawdowns

For the model in Figure 2b, internal permeable boundary conditions are formed on
the segments BC and B’C’, due to the difference in the permeability between the wall and
the aquitard. To facilitate the solution, the region BCC’B’ can be replaced by an additional
part that is of the same permeability as the aquitard and a thickness of w’ = kw/k’. The
energy dissipation (or head loss) within this additional part is equal to that within the
region BCC’B’. Then, the entire seepage domain in Figure 2b is transformed into a single
and homogeneous domain, as shown in Figure 2c. The drawdown in Figure 2b can be
further determined by the equivalent model in Figure 2c.

The models in Figure 2a,c have exact solutions. The former can be derived from the
analytical solution of Wang [26], and the latter can be derived by performing the Schwarz–
Christoffel transformation (SCT) [32]. The normalized average drawdowns can be obtained
from these two analytical solutions. However, these two analytical solutions involve
Legendre’s elliptic integrals of the first and third kinds, which means the normalized
average drawdowns cannot be expressed explicitly but must be solved numerically. To
facilitate the engineering application, the models in Figure 2a,c are further simplified to
two approximate models, as described in Figures 3a and 3b, respectively, assuming that the
ratios w/d and w’/s are sufficiently large. The two approximate models are used to derive
the approximate solutions of the normalized average drawdowns. The exact solutions are
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used to check and correct the approximate solutions, thereby obtaining the approximate
expressions of the normalized average drawdowns.

Figure 3. (a,b) are the approximate models of the exact models in Figures 2a and 2c, respectively,
when w/d and w’/s are sufficiently large.

2.2.1. Analytical Solutions for the Approximate Models

The analytical solution for the model in Figure 3a can be obtained from the study of
Aravin and Numerov [23]. As described in Figure 3a, the origin is at the point C, and the
head value along the pervious boundary AB is assumed to be zero. From the study of
Aravin and Numerov [23], the relationship between the complex physical plane (z = x + iy)
and the complex potential plane (ω = ϕ + iψ) is as follows:

z = −i
2
π

T cos−1
[

tan h
(

πω

2q2

)
/tan h

(
−πkh0

2q2

)]
+ i

2
π

d cos−1
[

sin h
(

πω

2q2

)
/sin h

(
−πkh0

2q2

)]
(7)

where h0 is the head value at point C, which is expressed as

kh0/q2 = −2/π · cosh−1(T/d) (8)

The analytical solution for the model in Figure 3b can be derived by performing the
Schwarz–Christoffel transformation [34]; the mapping is described in Figure 4. The t-plane
is used as an auxiliary plane, and the z-plane and ω-plane are mapped to the lower part of
the t-plane.

Figure 4. SCT mapping from the z-plane and ω-plane to the t-plane for the model in Figure 3b.

As described in Figure 3b, the origin is at point B, and the head value along the
pervious boundary AB is assumed to be zero. Finally, the relationship between the complex
physical plane (z = x + iy) and the complex potential plane (ω = ϕ + iψ) is given as follows:

z =
1
π

(
s · ln t′ + 1

t′ − 1
− T · ln T/s + t′

T/s− t′

)
(9)

t′ =
√[

t + (T/s)2
]
/(t + 1) (10)
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t = ξ0 · cosh2[πω/(2q1)] (11)

where t is an auxiliary variable; ξ0 is determined by

ξ0 =
(T/s)2 − t0

2

t02 − 1
(12)

ln
t0 + 1
t0 − 1

=
T
s

ln
T/s + t0

T/s− t0
, 1 < t0 < T/s (13)

From the above two analytical solutions, the head value and stream function at each
point can be obtained for the models in Figure 3a,b, and hence calculated flow nets are
drawn in Figures 5a and 5b, respectively. When the ratios w/d and w’/s are sufficiently
large, using the analytical solutions for the exact models in Figure 2a,c, calculated flow nets
are drawn in Figures 5c and 5d, respectively. For the calculated examples in Figure 5a,c,
the head value along the segment AB is identical, and the flow rate q2 is also identical.
In Figure 5b,d, the head value along the segment AB is identical, and the flow rate q1 is
also identical.

Figure 5. Consistency in the flow nets between the approximate and exact models when the ratios
w/d and w’/s are sufficiently large: (a,b) show the calculated flow nets for the approximate models,
respectively; (c,d) show the calculated flow nets for the exact models, respectively.

As shown in Figure 5c, the equipotential line at the location IJ (along the axis of symme-
try) is a vertical line. From Figure 5a, the equipotential line at the location IJ (x = w/2) is close
to a vertical line. Theoretically, if this equipotential line is vertical, both the boundaries and
flow net in the region ABCIJDA in Figure 5a are the same as those in Figure 5c. Hence, when
w/d is sufficiently large, the normalized average drawdowns on the segments BC and CD in
Figure 2a can be equivalent to those in Figure 3a.

Similarly, when the ratio w’/s is sufficiently large, the normalized average drawdowns
on the segments BC and CD in Figure 2c can be equivalent to those in Figure 3b. As shown
in Figure 5b,d, the regions ABIJCDA have the same boundaries and flow nets, for the
equipotential line at the location IJ (x = w’/2) in Figure 5b is close to a vertical line.

2.2.2. Approximate Expressions for RBC(q2) and RCD(q2)

From Figure 5a, if x is sufficiently large, the equipotential lines are vertical, and hence
the head value has nothing to do with y, but only with x. From the study of Aravin and
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Numerov [23], the asymptotic equation of the head value h(x) when x is sufficiently large is
expressed as

h(x) = − q2

k
· x

d
− q2

k
· R1 (14)

R1 =

{
1
π

[
T
d ln

(
T+d
T−d

)
+ ln

(
T2−d2

d2

)]
, 0 < d < T

ln 4/π, d = T
(15)

In the region ECDE in Figure 3a, the segments CE and DE are impervious boundaries,
and the vertical hydraulic gradient along the segments is zero. Hence, the average head h(x)
at any x–location (x ≥ 0) within this region is a linear function, which can be expressed as

h(x) = − q2

k
· x

d
+ hCD(q2)

(16)

where hCD(q2) is the average head on the segment CD in Figure 3a.
When x is sufficiently large, the relationship h(x) = h(x) is obtained. Substituting

Equations (14) and (16) into h(x) = h(x) gives hCD(q2) = −q2/k·R1. Then, considering that the
upstream head in Figure 3a is zero, the normalized average drawdown on the segment CD
is expressed as

RCD(q2)
=

SCD(q2)

q2/k
= −

hCD(q2)

q2/k
= R1 (17)

The conditions on the segment BC are z = iy (−s ≤ y ≤ 0) and ω = −kh. Substituting
them into Equation (7), the head value on the segment BC is obtained:

y =
2d
π

cos−1
[

sin h
(
−πkh

2q2

)
/sin h

(
−πkh0

2q2

)]
− 2T

π
cos−1

[
tan h

(
−πkh

2q2

)
/tan h

(
−πkh0

2q2

)]
(18)

Then, the normalized average drawdown on the segment BC is expressed as

RBC(q2)
=

SBC(q2)

q2/k
= −

hBC(q2)

q2/k
= −1

s

∫ 0

−s

kh
q2

dy (19)

where the kh/q2 value is determined by Equation (18).

2.2.3. Approximate Expressions for RBC(q1) and RCD(q1)

From Figure 5b, if x is sufficiently large, the equipotential lines are vertical, and the
head value has nothing to do with y but only with x. When x→∞, h→−∞ and ϕ =−kh→
∞ can be obtained. Substituting ϕ→ ∞ into Equation (11) gives t→ ∞. Then, substituting
t→ ∞ into Equation (10) gives t’→ 1. Finally, substituting t’→ 1 into Equation (9), the
asymptotic equation of the head h(x) is expressed as

h(x) = − q1

k
· x

s
− q1

k
· R2 (20)

R2 =

{
1
π

[
− ln ξ0 +

(
T
s + 1

)
ln
(

T
s + 1

)
−
(

T
s − 1

)
ln
(

T
s − 1

)]
, 0 < s < T

ln 4/π, s = T
(21)

In the region EBCE in Figure 3b, the segments BE and CE are impervious boundaries,
and hence the average head h(x) at any x–location (x ≥ 0) within this region is a linear
function, which can be expressed as

h(x) = − q1

k
· x

s
+ hBC(q1)

(22)

where hBC(q1) is the average head on the segment BC in Figure 3b.
When x is sufficiently large, the relationship h(x) = h(x) is obtained. Substituting

Equations (20) and (22) into h(x) = h(x) gives hBC(q1) = −q1/k·R2. Then, considering that the
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upstream head in Figure 3b is zero, the normalized average drawdown on the segment BC
is expressed as

RBC(q1)
=

SBC(q1)

q1/k
= −

hBC(q1)

q1/k
= R2 (23)

The conditions on the segment CD are z = iy (s≤ y≤ T) and ω =−kh + iq1. Substituting
them into Equations (9) and (11), the head value on the segment CD is obtained:

y =
2s
π

[π

2
− tan−1(t1)

]
+

2T
π

tan−1
( s

T
t1

)
(24)

t1 =

√[
ξ0sinh2

(
πkh
2q1

)
− (T/s)2

]
/
[

1− ξ0sinh2
(

πkh
2q1

)]
(25)

when y = s, kh/q1 = (−2/π)sinh−1[T/(s
√

ξ0)]; when y = T, kh/q1 = (−2/π)sinh−1[1/
√

ξ0].
Then, the normalized average drawdown on the segment CD is expressed as

RCD(q1)
=

SCD(q1)

q1/k
= −

hCD(q1)

q1/k
= −1

d

∫ T

s

kh
q1

dy (26)

where the kh/q1 value is determined by Equations (24) and (25).

2.2.4. Correction

The exact and approximate solutions are used to calculate the four normalized average
drawdowns, respectively. Figure 6a–d present the calculation results of RBC(q2), RCD(q2),
RBC(q1), and RCD(q1), respectively.

Figure 6. Calculation results of the four normalized average drawdowns: (a) RBC(q2), (b) RCD(q2),
(c) RBC(q1), and (d) RCD(q1).
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From Figure 6, the approximate values have nothing to do with w/T and w’/T but only
with s/T (or d/T). The exact values change with w/T or w’/T, and their curves gradually
converge to the curves of the approximate values.

From Figure 6a,b, with an increase in w/T or a decrease in d/T, either of which leads
to an increase in w/d, the approximate values are closer to the exact values. For RBC(q2), the
approximate values are very close to the exact values when w/T > 0.1 or d/T < 0.5. For
RCD(q2), the approximate values are close to the exact values on the whole; only when d/T
≥ 0.9 and w/T < 0.5 do the results show a large deviation between the approximate and
the exact values.

From Figure 6c,d, with an increase in w’/T or a decrease in s/T, either of which
leads to an increase in w’/s, the approximate values are closer to the exact values. The
approximate values are very close to the exact values when w’/T > 0.5 or s/T < 2w’/T. The
ratio w’/T > 0.5 is easy to achieve in engineering practice.

By contrast, when w/d or w’/s is small, the deviation between the approximate and
exact values is large. In this case, it may cause a certain error in the seepage calculation if the
approximate solutions are directly used to calculate the normalized average drawdowns.
Therefore, the correction for the approximate solutions is needed.

Figure 7 presents the calculation results of the normalized flow rate q/(kH), based
on Equation (6). Here, s/T = 0.1 and k’/k = 0.1 are adopted for Figure 7a; s/T = 0.75 and
k’/k = 0.9 are adopted for Figure 7b. The four normalized average drawdowns in Case 1
are all calculated by the exact solutions. In addition, in Cases 2–5, three normalized average
drawdowns are calculated by the exact solutions, whereas the fourth is calculated by the
approximate solutions. In Cases 2–5, RBC(q2), RCD(q2), RCD(q1), and RBC(q1) are calculated by
the approximate solutions, respectively. Then, the flow calculation results in Cases 2–5 are
compared with those in Case 1, respectively, and the effects of the approximate values of
the four normalized average drawdowns on the flow calculation results are studied.

Figure 7. Calculation results of the normalized flow rate when (a) s/T = 0.1, k’/k = 0.1 and
(b) s/T = 0.75, k’/k = 0.9.

From Figure 7, the calculation results in Cases 2 and 4 are close to those in Case 1,
whereas the results in Cases 3 and 5 differ from those in Case 1. The results show that
using the approximate values of RBC(q2) and RCD(q1) does not affect the calculation results.
However, the approximate values of RCD(q2) and RBC(q1) exerts a notable effect on the
calculation results.

To sum up, RBC(q2) and RCD(q1) can be directly calculated by the approximate solutions,
regardless of the value of w/d and w’/s. To avoid large errors in the flow calculation results,
approximate solutions for RCD(q2) and RBC(q1) need to be corrected within the following
scopes: s/T ≤ 0.1(or d/T ≥ 0.9) and w/T < 0.5 (for RCD(q2)); w’/T ≤ 0. 5 and s/T ≥ 2w’/T
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(for RBC(q1)). Outside the scopes, the approximate solutions can be directly used to calculate
RCD(q2) and RBC(q1).

The ratio of exact and approximate values of the normalized average drawdowns
is used as the correction coefficient. Within the scopes of correction, RCD(q2) and RBC(q1)
are the product of the approximate values and the correction coefficients. Data fitting is
applied to obtain the correction coefficients suitable for the scopes of correction:

β1 =

{
0.097 ln(w/T) + 1.017, s/T = 0
−[0.018 ln(w/T) + 0.002] ln(s/T) + 1.015, 0 < s/T ≤ 0.1

(27)

β2 = (0.04s/T + 0.066) ln
(
w′/T

)
− 0.08s/T + 1.12 (28)

where β1 and β2 are the correction coefficients for RCD(q2) and RBC(q1), respectively.
Based on Equations (17) and (23), the approximate expressions for calculating RCD(q2)

and RBC(q1) are

RCD(q2)
=

{
β1 · R1, s/T ≤ 0.1 andw/T < 0.5

R1, else
(29)

RBC(q1)
=

{
β2 · R2, w′/T ≤ 0.5 ands/T ≥ 2w′/T

R2, else
(30)

Although the approximate solutions can be directly used to determine RBC(q2) and
RCD(q1), the integrals of Equations (19) and (26) need to be solved numerically. The numeri-
cal integration scheme seems unattractive to engineers. To facilitate the calculation, linear
fitting is adopted to obtain the simplified formulas for RBC(q2) and RCD(q1). Figure 8a,b
present the fitting results for RBC(q2) and RCD(q1), respectively. The fitting curves have large
correlation coefficients and satisfactory accuracy. Finally, the approximate expressions for
RBC(q2) and RCD(q1) are

RBC(q2)
= 0.6659s/T (31)

RCD(q1)
= 0.5265s/T (32)

Figure 8. Linear fitting for (a) RBC(q2) and (b) RCD(q1).

2.3. Implementation

Based on the approximate expressions (29)–(32), the four normalized average draw-
downs RBC(q2), RCD(q2), RBC(q1), and RCD(q1) can be determined by simple calculation. Then,
substituting them into Equations (5) and (6), the flow rates q1, q2, and q are obtained.

Substitute the calculated q1 and q2 into the exact models in Figure 2a,c, and use the
analytical solutions of the two models to obtain the drawdowns in the regions ABCDA
and A’B’C’D’A’. Then, by the superposition of the drawdowns of the two models, the
drawdowns at each point in Figure 1c can be obtained. Finally, the head value at each point
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is the difference between the upstream or downstream head and the obtained drawdowns.
When w/d and w’/s are sufficiently large, the approximate models in Figure 3a,b can be
used to replace the two exact models to determine drawdowns at each point.

In engineering practice, people pay more attention to the quantity of seepage. The
quantity of seepage (or flow rate) in the aquitard (including leakage through the wall
body and seepage under the wall) can be quickly estimated by Equations (5) and (6). The
following sections focus on the flow calculation.

3. Verification and Discussion

For general cases, the accuracy and applicability of the proposed method (TPM) are
verified compared with the numerical method.

The proposed method contains solutions for the following four special cases:

1. The wall penetration depth in the aquitard is zero (s/T = 0).
2. The cut-off wall fully penetrates the aquitard (s/T = 1).
3. The wall permeability is very small compared to the aquitard permeability.
4. The wall thickness is very small compared to the aquitard thickness.

There have been several analytical solutions for these four special cases. They can be
obtained from the studies of Aravin and Numerov [23], Anderson [31], Wang [26], and
Yakimov and Kacimov [32], respectively. For convenience, these analytical solutions are
denoted as Aravin, Anderson, Wang, and Yakimov, respectively.

Here, the proposed method is compared with these analytical solutions to verify that
it is also applicable to these special cases. For general cases where these analytical solutions
are not applicable, the proposed method is also applicable, which can be proved by the
comparison with the numerical method. In addition, the effects of the wall permeability and
thickness on the flow rate are discussed compared with Wang and Yakimov, respectively.

3.1. Comparison with the Numerical Method in General Cases

The professional finite element software ABAQUS (Version 6.14-4) is used as a tool
of the numerical method. To avoid the flow calculation results from being affected by the
boundaries AA and A’A’, the horizontal length of the aquitard on one side of the cut-off
wall is recommended to be more than three times the aquitard thickness. The numerical
model obeys the boundary conditions in Figure 1c described earlier.

Representative examples are verified by the comparison between the proposed method
(TPM) and the finite element method (FEM). The following parameters are adopted:
k’/k = 0.01, 0.1, 0.5, 0.9; s/T = 0.1, 0.25, 0.5, 0.75; w/T = 0.01–1. The flow calculation results
of the examples for s/T = 0.1, 0.25, 0.5, 0.75 are presented in Figure 9a–d, respectively.

From Figure 9, the results of TPM are in good agreement with those of FEM when
k’/k ≤ 0.5. When k’/k > 0.5, a deviation between the results of TPM and FEM occurs. The
deviation increases as an increase in k’/k. Nevertheless, the deviation decreases as an
increase in w/T. In addition, the deviation first increases as an increase in s/T and then
decreases as an increase in s/T.

To find the potential maximum deviation, Figure 10a shows the flow calculation results
of TPM and FEM when k’/k = 0.9. The ratio k’/k = 0.9 is adopted here, because the change
in flow rate is very small as an increase in k’/k when 0.9 ≤ k’/k < 1. From Figure 10 a, the
result curves of FEM coincide when s/T = 0.25, 0.5, and 0.75, indicating that the ratio s/T
has little effect on the flow rate. The relative error of the results between TPM and FEM is
calculated, whose formula is |qTPM − qFEM|/qFEM × 100(%). The qTPM and qFEM represent
the flow calculation results of TPM and FEM, respectively.

The relative error is shown in Figure 10 b. It can be seen that the potential maximum
deviation occurs when w/T is small, and it is less than 20%. When w/T > 0.1, the relative
error is less than 10%. Thus, when 0.5 < k’/k < 1, the proposed method can be considered
satisfactory in the accuracy and applicability.
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Figure 9. Flow calculation results of representative examples for (a) s/T = 0.1, (b) s/T = 0.25,
(c) s/T = 0.5, and (d) s/T = 0.75.

Figure 10. Comparison of flow calculation results between TPM and FEM when k’/k = 0.9: (a) flow
calculation results and (b) relative error.

3.2. Special Cases where the Ratio s/T Is Zero or One

When the wall penetration depth in the aquitard is zero, seepage only occurs under
the wall; when the cut-off wall fully penetrates the aquitard, seepage only occurs through
the wall body. For these two special cases, the proposed method in this study can be
degenerated into models that do not need superposition of drawdowns. Rewrite the flow
calculation Formulas (5) and (6) into the degradation formulas suitable for the special cases
of s/T = 0 (or k’/k = 1) and s/T = 1, as shown in Equations (33) and (34), respectively. When
k’/k = 1, the flow rate is not affected by s/T, and hence this case is equivalent to the case of
s/T = 0.

H/q = H/q2 = ξ20 + 2RCD(q2)
(33)
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H/q = H/q1 = ξ10 + 2RBC(q1)
(34)

When s/T = 0 (or k’/k = 1), the degradation Formula (33) is compared with Aravin,
and the flow calculation results are shown in Figure 11a. When s/T = 1, the degradation
formula (34) is compared with Anderson, and the flow calculation results are shown in
Figure 11b. From Figure 11, the results of the degradation formulas are in good agreement
with those of the two analytical solutions, which indicates that the degradation formulas
are suitable for the special case of s/T = 0 (or k’/k = 1) and s/T = 1.

Figure 11. Flow calculation results of examples for (a) s/T = 0 (or k’/k = 1) and (b) s/T = 1.

3.3. Effect of Wall Permeability

A comparison of flow calculation results among Wang, TPM, and FEM is shown in
Figure 12. Figure 12a–c show the results for s/T = 0.25, 0.5 and 0.75, respectively.

Figure 12. Comparisons of flow calculation results among Wang, TPM, and FEM for (a) s/T = 0.25,
(b) s/T = 0. 5, and (c) s/T = 0.75.
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From Figure 12, the wall permeability has a big impact on the calculated flow results.
When the permeability ratio k’/k is very small—that is, k’/k = 0.01—the results of TPM
and Wang coincide with those of FEM, except for a slight difference where w/T is very
small. The results show that the wall permeability can be neglected when it is very small
compared to the aquitard permeability, and TPM and Wang are both suitable. When the
wall permeability is neglected, seepage only occurs under the wall. Then, the model in
Figure 1c can be degenerated into the model in Figure 2a and the degradation formula for
the flow rate is expressed as Equation (33).

When k’/k is large (k’/k > 0.01), the results of TPM are consistent with those of FEM,
for the effect of wall permeability has been considered by the TPM method. In this case, the
results of Wang differ from those of FEM. The reason is that the quantity of leakage through
the wall body increases as an increase in k’/k, whereas the leakage is not considered by
Wang. It can also be seen that the difference in the results between Wang and FEM increases
as a decrease in w/T or an increase in s/T; in these cases, the quantity of leakage through
the wall body has a large proportion in the total flow rate. The difference shows that the
effect of the wall permeability on the flow rate should be considered when k’/k > 0.01,
especially when w/T is small or s/T is large.

3.4. Effect of Wall Thickness

A comparison of flow calculation results among Yakimov, TPM, and FEM is shown
in Figure 13. The ratio s/T = 0.5 and k’T/(kw) = 10−6, 0.001, 0.1, 0.25, 0.5, 1, 2.5, and 5
are adopted here, which makes it easy to obtain the flow calculation results of Yakimov.
Figure 13a–c show the results for w/T = 0.01, 0.1, 0.5, and 1, respectively.

Figure 13. Comparisons of flow calculation results among Yakimov, TPM, and FEM for (a) w/T = 0.01,
(b) w/T = 0.1, (c) w/T = 0.5, and (d) w/T = 1.

From Figure 13, the wall thickness has a great influence on the calculated flow results.
When the thickness ratio w/T is very small—that is, w/T = 0.01—the calculated results
of TPM and Yakimov are very close to those of FEM. The results indicate that the wall
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thickness can be neglected when it is very small compared to the aquitard thickness, and
TPM and Yakimov are both suitable.

While w/T is large (w/T > 0.01), the calculated results of TPM are consistent with
those of FEM, for the effect of wall thickness has been considered by the TPM method. In
this case, the results of Yakimov differ from those of FEM, as the assumption w/T→ 0 was
applied to obtain the solution. Furthermore, the difference in the results of Yakimov and
FEM increases as an increase in w/T. The difference indicates that the effect of the wall
thickness should be considered when w/T > 0.01.

4. Conclusions

Groundwater seepage with a fully penetrating cut-off wall may occur through the
body of the wall and under the wall. Leakage through the wall body embedded in the
aquitard and seepage under the wall are two important seepage paths. Due to the mutual
influence of seepage through these two paths, the seepage problem is complicated. An
analytical method is proposed to solve this problem in this study. Analytical formulas for
flow rates are obtained by superposition of drawdowns of two exact models, namely, the
model with only leakage through the wall body and the model with only seepage under
the wall, respectively. Analytical solutions are quoted or derived for the two exact models.
To facilitate the engineering application, approximate models of the exact models are
introduced, and their solutions are applied to the analytical formulas. Then, the accuracy
and applicability of the proposed method are verified compared with the numerical method.
The following conclusions can be drawn:

1. Based on the proposed method, the seepage problem, which simultaneously includes
leakage through the wall body embedded in the aquitard and seepage under the wall,
can be solved by a simple analytical method.

2. The exact solutions for the exact models are applicable to all situations, in principle,
but they involve Legendre’s elliptic integrals of the first and third kinds, which makes
the solution complicated. The simplified solutions obtained from the approximate
models can be applicable to most situations. For situations outside the scope of
application, corrections are given through comparison with the exact solutions, and
hence the simplified solutions can be applicable to more-general situations.

3. When the wall penetration depth in the aquitard is very small or the wall permeability
is very small compared to the aquitard permeability, leakage through the wall body
can be neglected. If the cut-off wall fully penetrates the aquitard, seepage only occurs
through the wall body. For these cases, the proposed method can be degenerated into
models that do not need superposition of drawdowns and the degeneration formulas
are applicable.

4. The wall permeability and thickness have large effects on the flow calculation results.
When the permeability ratio is large (k’/k > 0.01) and the thickness ratio is large
(w/T > 0.01), the effects of the wall permeability and thickness should be considered
at the same time.
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