
Citation: Soliman, M.; Morsy, M.M.;

Radwan, H.G. Assessment of

Implementing Land Use/Land Cover

LULC 2020-ESRI Global Maps in 2D

Flood Modeling Application. Water

2022, 14, 3963. https://doi.org/

10.3390/w14233963

Academic Editor:

Ana-Maria Ciobotaru

Received: 23 October 2022

Accepted: 30 November 2022

Published: 5 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Assessment of Implementing Land Use/Land Cover LULC
2020-ESRI Global Maps in 2D Flood Modeling Application
Mohamed Soliman 1,2,* , Mohamed M. Morsy 2 and Hany G. Radwan 2

1 Hydrology and Drainage Department Manager, Euroconsult, Cairo 11736, Egypt
2 Irrigation and Hydraulics Engineering Department, Faculty of Engineering, Cairo University,

Giza 12613, Egypt
* Correspondence: mohamed.soliman@euroconsult.com or mohamed.soliman.J@eng-st.cu.edu.eg

Abstract: Floods are one of the most dangerous water-related risks. Numerous sources of uncertainty
affect flood modeling. High-resolution land-cover maps along with appropriate Manning’s roughness
values are the most significant parameters for building an accurate 2D flood model. Two land-cover
datasets are available: the National Land Cover Database (NLCD 2019) and the Land Use/Land
Cover for Environmental Systems Research Institute (LULC 2020-ESRI). The NLCD 2019 dataset has
national coverage but includes references to Manning’s roughness values for each class obtained
from earlier studies, in contrast to the LULC 2020-ESRI dataset, which has global coverage but
without an identified reference to Manning’s roughness values yet. The main objectives of this
study are to assess the accuracy of using the LULC 2020-ESRI dataset compared with the NLCD
2019 dataset and propose a standard reference to Manning’s roughness values for the classes in the
LULC 2020-ESRI dataset. To achieve the research objectives, a confusion matrix using 548,117 test
points in the conterminous United States was prepared to assess the accuracy by quantifying the
cross-correspondence between the two datasets. Then statistical analyses were applied to the global
maps to detect the appropriate Manning’s roughness values associated with the LULC 2020-ESRI
map. Compared to the NLCD 2019 dataset, the proposed Manning’s roughness values for the LULC
2020-ESRI dataset were calibrated and validated using 2D flood modeling software (HEC-RAS V6.2)
on nine randomly chosen catchments in the conterminous United States. This research’s main results
show that the LULC 2020-ESRI dataset achieves an overall accuracy of 72% compared to the NLCD
2019 dataset. The findings demonstrate that, when determining the appropriate Manning’s roughness
values for the LULC 2020-ESRI dataset, the weighted average technique performs better than the
average method. The calibration and validation results of the proposed Manning’s roughness values
show that the overall Root Mean Square Error (RMSE) in depth was 2.7 cm, and the Mean Absolute
Error (MAE) in depth was 5.32 cm. The accuracy of the computed peak flow value using LULC
2020-ESRI was with an average error of 5.22% (2.0% min. to 8.8% max.) compared to the computed
peak flow values using the NLCD 2019 dataset. Finally, a reference to Manning’s roughness values for
the LULC 2020-ESRI dataset was developed to help use the globally available land-use/land-cover
dataset to build 2D flood models with an acceptable accuracy worldwide.

Keywords: land cover; land-use maps; NLCD; LULC ESRI; confusion matrix; roughness layers;
accuracy assessment; flood modeling; HEC-RAS

1. Introduction

Over the past few decades, natural disasters have seriously damaged both natural
and man-made settings. One of the riskiest situations involving water is flooding, which is
primarily responsible for fatalities, damage to infrastructure, and financial losses. Because
flood events are occurring more frequently, with larger sizes, and more intensely, there
is currently a growing global awareness of the need to mitigate flood damage [1]. The
Diffusion Wave Equation (DWE) is an approximated shape of the shallow water equations
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(SWE) which is often used to model overland flows such as floods, dam breaks, and flows
through vegetated areas. Diffusive shallow water (DSW) further simplifies the SWE by
assuming that the horizontal momentum can be linked to the water height through an
empirical formula, such as Manning’s [2]. The hydraulic simulation models are crucial
instruments for comprehending the hydraulic properties of river-system flow [2].

The roughness coefficient (or Manning’s coefficient) is a significant hydraulic parame-
ter, particularly in hydraulic modeling [3,4]. Specific values for the empirical parameters,
such as Manning’s coefficient n, are frequently ambiguous due to the complexity of hy-
draulic engineering. The channel surface roughness, bed material, vegetation, channel
alignment and irregularities, channel form and size, stage and discharge, suspended sed-
iment load and bed sediment loads, etc., are all included in the roughness coefficient
(Manning’s n) as an empirical parameter [5]. Several past empirical formulas have been
proposed for estimating the surface roughness (n) values in practical problems [6].

Several researchers proposed several approaches for determining Manning’s rough-
ness values n [7–9]. Parhi calibrated and validated the value of the roughness coefficient
(n) for the Mahanadi River in Odisha using the HEC-RAS model (India). In the calibration
and verification, Parhi considered the floods of 2001 and 2003 [10]. Additionally, Shamkhi
and Attab investigated and calculated the value of n downstream of the Kut Barrage in
Wasit, Iraq, using the HEC-RAS model [11]. Using inversion techniques, Calo et al. cal-
culated the distributed Manning’s coefficient directly from water height measurements.
To do this, an inverse problem was created for calculating n using measurements of the
water height obtained from sensors and infrared imaging [2]. Using HEC-RAS software,
Abbas et al. investigated the idea of a hydraulic model to calculate Manning’s coefficient
n of the Tigris River along 3.5 km in the Maysan Governorate, southern Iraq [3]. In flood
inundation modeling and mapping, Papaioannou et al. examined the uncertainty caused
by the roughness values on hydraulic models. The initial values of Manning’s n rough-
ness coefficient are derived from field surveys and empirical formulas. To represent the
estimated roughness values, a variety of theoretical probability distributions are fitted and
evaluated for accuracy, and then flood inundation probability maps are produced using
Monte Carlo simulations [1].

Numerous sources of uncertainty impact the modeling of flood hydraulics (e.g., input
data, model structure, model parameters). The most recent advancement in HEC-RAS
software is the simulation of 2D unsteady flows in response to rain-on-grid model in-
put, accounting for soil infiltration and flood routing parameters with spatial variation of
roughness values. Water depth and velocity variability in floodplain and channel environ-
ments can be quantified using HEC-RAS 2D rain-on-grid simulations [12,13]. Manning’s
roughness coefficient (n) is commonly used to represent surface roughness in distributed
hydrologic models. Model parameter sensitivity studies identify runoff responses sensitive
to Manning’s changes. Despite the availability of defined standard Manning’s values [14],
these standard values may result in inaccurate results if applied directly to 2D models [15].
Recently, researchers concluded that by using increased roughness values compared to the
standard with a low-resolution digital elevation model (DEM) and decreased roughness
values compared to the standard with a high-resolution DEM, the 2D models perform
better [16,17].

Several studies [18,19] showed how geospatial data resolution could affect the 2D
model results. The ability of 2D flood models to generate reliable flood simulations is
primarily determined by the quality of inputted topography and surface roughness data,
as well as the level to which these data are captured in the computational mesh structure.
These two key inputs to which 2D models exhibit high sensitivity are generally given in
the digital elevation model (DEM) that represents the topography and Land-use/Land-
cover (LULC) raster maps that are used to determine the roughness coefficient (Manning’s
coefficient n), respectively [20]. Therefore, more research is needed to understand how
different land-use/land-cover data sources with assigned Manning’s roughness influence
the 2D model accuracy [21].
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The Copernicus Global Land Service (CGLS) recently delivered a 100 m resolution
land cover map that was generated by applying the vegetation sensor on the platform of the
PROBA-V satellite [22]. The data were divided into groups by comparing the land cover of
testing sites with various available local datasets [22,23]. The main advantages of land-cover
CGLS datasets are their high resolution (100 m) compared with other available land-cover
datasets, but the main issue is that they can only be used on a national scale and they do
not cover the regional scale [24]. As an advancement from the legacy of the open-source
Landsat, the National Aeronautics and Space Administration and U.S. Geological Survey
(NASA/USGS) program provides a continuous space-based record of Earth’s land [25].
Landsat data give us information essential for land cover and could be used easily to obtain
land-use/land-cover maps at 10–30 m resolution [26–29]. In partnership with several
federal agencies, the U.S. Geological Survey (USGS) has released five National Land Cover
Database (NLCD) products over the last twenty years (1992–2016) [30].

In July 2021, USGS generated and released a new version of NLCD with the resolution
of 30 m Landsat-based products named NLCD 2019 [31]. The latest version of NLCD con-
tains land-use/land-cover classes. This new version was tested at about twenty composite
sites in the conterminous United States with an overall accuracy of 91% [31]. The problem
here is that NLCD 2019 map data are only available in the conterminous United States and
has no global coverage [32].

The Environmental Systems Research Institute (ESRI) in June 2021 released a new
dataset called LULC 2020-ESRI using Artificial Intelligence of the European Space Agency
(ESA) Sentinel-2 satellite with a resolution of 10 m [27,33]. The main advantage of this
new dataset is that it can be used to represent global land-use and land-cover mapping
at national and local scales. The main issue with LULC 2020-ESRI is that it is new data
containing fewer classes of land use/land cover compared to NLCD data, and without
associated ranges for Manning’s values per each class as in NLCD data, so its accuracy was
not tested or evaluated [33].

Recent studies discussed the accuracy of land-use/land-cover global maps correspond-
ing to other local-scale ground observations [34] or comparing them to global-scale land-use
maps [35]. The studies showed that the overall accuracy of global LULC 2020-ESRI was
75% compared to ground truth data of 250 m2 resolution [35], where the resolution of the
ground data was very coarse to be confidently accepted as a reference layer. Moreover,
there is a lack of testing of the effect of implementing the global LULC 2020 -ESRI data
along with the roughness values in the 2D flood modeling applications.

Modelers typically use land-use/land-cover datasets for watershed simulations to
assign appropriate Manning’s values based on the land-use or -cover class [36]. Therefore,
HEC-RAS developers [5] released a reference to Manning’s roughness values corresponding
to the NLCD dataset classes to be used with 2D flood modeling to identify the land
use/landcover within the United States, but there are no reference Manning’s roughness
values corresponding to the LULC 2020-ESRI dataset.

There are two main purposes of this research. The first is to assess the accuracy
of the LULC 2020-ESRI data compared to the NLCD 2019 data given the availability of
recommended Manning’s roughness values for NLCD by the HEC-RAS developers [5].
The second is to produce reference Manning’s roughness (n) maps for each topology in the
global land-use maps, LULC 2020-ESRI. The generated proposed Manning’s roughness
values were based on the recommended Manning’s roughness values proposed by HEC-
RAS developers [5] for the NLCD 2019 (used as a reference) based on the standard values
in Chow’s book (Chow, 1959) [14].

This research is considered a first preliminary step toward using such global data
as LULC 2020-ESRI in 2D distributed models in any spot on the globe efficiently and
accurately by developing a standard reference Manning’s roughness value for each land-
use/land-cover class in the dataset.
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2. Materials and Methods
2.1. National Land Cover Database (NLCD 2019)

The National Land Cover Database (ver. 2.0) was released in June 2021. A new version
of the NLCD dataset (under the name NLCD 2019) was released by the USGS with a
resolution of 30 m [31]. The NLCD 2019 design aims to provide innovative, consistent, and
robust methodologies for the production of a land-cover change database from 2001 to 2019
at 2–3 years intervals land-cover with 16 different classes as shown in Figure 1. Table 1
illustrates the land-cover detailed topologies description for the NLCD 2019 map [31].
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Landsat imagery for the NLCD 2019 dataset was processed based on an integrated
training process that depends on different sources in addition to temporally and spatially
integrated land-cover analysis and modelling [32].
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Table 1. NLCD 2019 Classifications and detailed topology descriptions [31].

NLCD Value Description Detailed Description

95 Emergent Herbaceous
Wetlands

Areas where perennial herbaceous vegetation accounts for more than 80% of vegetative
cover and the soil or substrate is covered with water or periodically saturated with
water.

90 Woody Wetlands Areas where forest or shrub land vegetation accounts for greater than 20% of vegetative
cover and the soil or substrate is periodically saturated with or covered with water.

82 Cultivated Crops

Areas used for the production of annual crops, such as corn, soybeans, vegetables,
tobacco, and cotton, and also perennial woody crops such as orchards and vineyards.
Crop vegetation accounts for greater than 20% of total vegetation. This class also
includes all land being actively tilled.

81 Pasture/Hay
Areas of grasses, legumes, grass-legume mixtures planted for livestock grazing or the
production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation
accounts for greater than 20% of total vegetation.

71 Grassland/Herbaceous
Areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of
total vegetation. These areas are not subject to intensive management such as tilling, but
can be utilized for grazing.

52 Shrub/Scrub
Areas dominated by shrubs; less than 5 m tall with shrub canopy typically greater than
20% of total vegetation. This class includes true shrubs, young trees in an early
successional stage or trees stunted from environmental conditions.

51 Dwarf Scrub
Alaska only areas dominated by shrubs less than 20 cm tall with shrub canopy typically
greater than 20% of total vegetation. his type is often co-associated with grasses, sedges,
herbs, and non-vascular vegetation.

43 Mixed Forest
Areas dominated by trees generally greater than 5 m tall, and greater than 20% of total
vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total
tree cover.

42 Evergreen Forest
Areas dominated by trees generally greater than 5 m tall, and greater than 20% of total
vegetation cover. More than 75% of the tree species maintain their leaves all year.
Canopy is never without green foliage.

41 Deciduous Forest
Areas dominated by trees generally greater than 5 m tall, and greater than 20% of total
vegetation cover. More than 75% of the tree species shed foliage simultaneously in
response to seasonal change.

31 Barren Land
(Rock/Sand/Clay)

Areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris,
sand dunes, strip mines, gravel pits and other accumulations of earthen material.
Generally, vegetation accounts for less than 15% of total cover.

24 Developed, High
Intensity

Highly developed areas where people reside or work in high numbers. Examples
include apartment complexes, row houses and commercial/industrial. Impervious
surfaces account for 80% to 100% of the total cover.

23 Developed, Medium
Intensity

areas with a mixture of constructed materials and vegetation. Impervious surfaces
account for 50% to 79% of the total cover. These areas most commonly include
single-family housing units.

22 Developed, Low
Intensity

areas with a mixture of constructed materials and vegetation. Impervious surfaces
account for 20% to 49% percent of total cover. These areas most commonly include
single-family housing units.

21 Developed, Open
Space

areas with a mixture of some constructed materials, but mostly vegetation in the form of
lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas
most commonly include large-lot single-family housing units, parks, golf courses, and
vegetation planted in developed settings for recreation, erosion control, or aesthetic
purposes.

11 Open Water Areas of open water, generally with less than 25% cover of vegetation or soil.
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2.2. Environmental Systems Research Institute Land Use/Land CoverDatabase (LULC 2020-ESRI)

The Sentinel-2 satellites are excellent candidates for LULC mapping due to their high
spatial and temporal resolution. In addition, advances in deep learning and scalable cloud-
based computing now provide the analysis capability required to unlock the value in
global satellite imagery observations. Based on a novel, very large dataset of over 5 billion
human-labeled Sentinel-2 pixels, the Environmental Systems Research Institute (ESRI)
developed and deployed a deep learning segmentation model to create a global cover
LULC map with a resolution of 10 m. This dataset is called LULC 2020-ESRI [33]. The
global LULC 2020 map has been clipped with the conterminous U.S. boundary as shown in
Figure 2 for comparison purposes with NLCD 2019. The LULC 2020 map is classified into
ten classes as shown in Table 2. It should be noted that, however, the LULC 2020-ESRI has
finer resolution compared to the NLCD 2019, but with fewer land-cover categories, making
it a coarser dataset.
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Table 2. LULC 2020-ESRI classifications and detailed topology descriptions [33].

LULC Value Description Detailed Description

1 Water

Examples of areas having year-round water include rivers, ponds, lakes, oceans, and
flooded salt plains. These areas may not include areas with intermittent or ephemeral
water, little to no sparse vegetation, no rock outcrops, and no built-up features such as
docks.

2 Trees

Any notable grouping of tall (15 m or higher) dense vegetation, usually with a closed or
dense canopy; examples include wooded vegetation, dense tall vegetation groups in
savannas, plantations, swamps, or mangroves (dense/tall vegetation with ephemeral
water or canopy too thick to detect water underneath).

3 Grass

Examples include natural meadows and fields with little to no tree cover, open savanna
with few to no trees, parks/golf courses/lawns, and pastures. Open areas covered in
homogenous grasses with little to no taller vegetation; wild cereals and grasses without
obvious human plotting (i.e., not a plotted field).

4 Flooded vegetation

Any area with vegetation of any kind that is clearly interspersed with water for the
majority of the year; a seasonal floodplain that contains a mixture of grass, shrubs, trees,
and bare ground. Examples include flooded mangroves, emergent vegetation, rice
paddies, and other heavily irrigated and inundated agricultural areas.

5 Crops Cereals, grasses, and crops not at tree height that have been planted or plotted by
humans include corn, wheat, soy, and fallow areas of structured land.

6 Scrub/shrub

A mixture of small groupings of plants or lone plants scattered across a landscape with
exposed rock or dirt; thick woodlands with visible gaps that are plainly not taller than
trees; examples include savannas with very scant grasses, trees, or other vegetation, and
areas with a moderate to sparse cover of bushes, shrubs, and tufts of grass.

7 Built Area
Large homogenous impervious surfaces, such as parking garages, office buildings, and
residential dwellings, are all man-made structures. Examples include houses, dense
villages, towns, and cities, paved highways, and asphalt.

8 Bare ground
Examples include exposed rock or soil, deserts and sand dunes, arid salt flats/pans,
dried lake beds, mines, and areas of rock or soil with very little to no vegetation during
the entire year.

9 Snow/Ice
Large, uniform patches of always-present snow or ice, usually found exclusively in
mountainous regions or the northernmost latitudes; examples include glaciers, the
permanent snowpack, and snow fields.

10 Clouds Continual cloud cover prevents information on land coverings.

2.3. Rainfall and Peak Flow Data

For calibration and validation of the hydrodynamic model, trusted measurements
and data for rainfall and corresponding runoff are needed in the current study. Rainfall
and runoff data were extracted from USGS-StreamStats v4.10.1 [37] and National Oceanic
and Atmospheric Administration (NOAA) Atlas 14 [38]. USGS-StreamStats v4.10.1 is a
map-based web application (https://streamstats.usgs.gov/ss/ accessed on 5 May 2022)
that provides analytical tools that are useful for water-resource planning and management
and engineering purposes. It is developed by the U.S. Geological Survey (USGS); the
primary purpose of StreamStats is to provide estimates of stream-flow statistics for user-
selected ungauged sites on streams and USGS stream gauges [37]. Stream-flow statistics
can be computed from available data at USGS stream gauges depending on the type of
data collected at the stations. However, stream-flow statistics are often needed at ungauged
sites, where no stream-flow data are available to determine the statistics [37].

NOAA Atlas 14 provides a point-and-click interface that contains precipitation esti-
mates with associated frequency (return periods) for the United States and is supported by
additional information such as seasonality and temporal distribution. This Atlas 14 pre-
cipitation frequency estimate is intended as the official documentation and associated
information for the United States [38].

https://streamstats.usgs.gov/ss/
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2.4. 2D Hydrodynamic Modeling (HEC-RAS 2D)

HEC-RAS (v. 6.2) simulates unsteady flow for 1D and 2D modeling. The 2D modeling
simulates flow hydraulics over the floodplain and river channel. The model discretizes
the analysis domain into computational cells to represent elevations and calculate flow
parameters along a horizontal plane from a computational cell into an adjacent cell.

HEC-RAS 2D calculates the flow rate and water-surface elevation for adjacent cells
using cell-boundary hydraulic properties [39]. The model solves the 2D Shallow Water
Equations (SWE) or Diffusion Wave Equations (DWE) with the application of an implicit
finite volume solution algorithm. SWE is derived using continuity and momentum equa-
tions, and DWE is an approximation of SWE obtained by neglecting the inertial terms of
the momentum equations [40]. Within the HEC-RAS, DWE is the default method since it
improves modeling performance in terms of minimizing the simulation time.

The most recent advancement in HEC-RAS [41] was the simulation of 2D unsteady
flows in response to rain-on-grid model input, accounting for soil infiltration and other
losses with spatial variation of roughness values (Manning’s roughness coefficients). Water
depth and velocity variability in floodplain and channel environments can be quantified
using HEC-RAS 2D rain-on-grid simulations [41]. The HEC-RAS model implements the
Soil Conservation Service–Curve Number SCS–CN method (the most widely used method)
to account for the losses in rainfall depth and then simulates the direct runoff values at
each grid cell of the model domain [42,43].

2.5. Manning’s Roughness Coefficients by Land Classification

There are several references to be used by users to assign Manning’s roughness
values (n) as reference values. For example, in Chow’s book “open channel hydraulics”
(1959), there is a large collection of Manning’s roughness values for floodplains and main
streams [14]. HEC-RAS Mapper User’s Manual also suggested Manning’s values for the
NLCD as reference values to be used in floodplain and stream analysis [5] as shown in
Table 3.

Table 3. NLCD-Manning’s n Values Reference Table based on Chow-1959 [5].

NLCD Topology
Value Description Manning’s Roughness (n)

Value Range
Manning’s Roughness (n)

Average

95 Emergent Herbaceous Wetlands 0.05–0.085 0.068

90 Woody Wetlands 0.045–0.15 0.098

82 Cultivated Crops 0.020–0.05 0.035

81 Pasture/Hay 0.025–0.05 0.038

72 Sedge/Herbaceous 0.025–0.05 0.038

71 Grassland/Herbaceous 0.025–0.05 0.038

52 Shrub/Scrub 0.07–0.16 0.115

51 Dwarf Scrub 0.025–0.05 0.038

43 Mixed Forest 0.08–0.20 0.140

42 Evergreen Forest 0.08–0.16 0.120

41 Deciduous Forest 0.10–0.20 0.150

31 Barren Land (Rock/Sand/Clay) 0.023–0.030 0.027

24 Developed, High Intensity 0.12–0.20 0.160

23 Developed, Medium Intensity 0.08–0.16 0.120

22 Developed, Low Intensity 0.06–0.12 0.090

21 Developed, Open Space 0.03–0.05 0.040

11 Open Water 0.025–0.05 0.038
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2.6. Research Methodology

The research methodology consists of two parts. The first part is data preparation,
statistical analysis, and accuracy assessment. The second part is validating and studying
the effects of implementing the research findings in flood modeling applications.

2.6.1. Part 1: Data Preparation, Accuracy Assessment, and Roughness Analysis

To assess how accurately the global LULC 2020-ESRI spatially compared to the ref-
erence NLDC 2019 land-use data, both LULC 2020-ESRI and NLDC 2019 land-use data
inside the conterminous United States boundary was first extracted. Therefore, the conter-
minous United States total area (8,080,464.3 km2) was discretized into equal areas of about
15 km2, generating a total of 548,117 sample points to be exported at each grid centroid
to quantify the spatial correspondence between both products (i.e., LULC 2020-ESRI data
and NLCD 2019 datasets). The raster value extraction tool was used to extract the values
from both datasets. Accuracy assessment is a very demanding requirement for such LULC
classification [32,34]. The 548,117 data samples of LULC 2020-ESRI were then subjected to
accuracy assessment by generating classification confusion matrices and accuracy reports.
The confusion matrix method [34,44] was conducted to calculate the quantitative corre-
spondence relationship between the LULC 2020-ESRI and the NLCD 2019 maps, which
contain trusted high-accuracy data. The confusion matrix generates the following results:
overall accuracy, accuracy for each class, and percentage of error.

Based on the reference Manning’s roughness values mentioned in Table 3, the ap-
propriate Manning’s roughness values need to be assigned to each land-cover category
for the global LULC 2020-ESRI land-use map. A detailed per-class statistical/frequency
analysis was performed. A flow chart in Figure 3 describes this part of the conducted
methodology. The next section shows the used statistical averaging methods which were
applied to develop the proposed Manning’s roughness values:

A. Average of the most frequent in-class data (Average Manning’s Value)

For the selected class and based on the histogram/class, the average of Manning’s
roughness (n) for the most repeated categories corresponding to the class under study was
considered to represent the class roughness value as shown in Equation (1). In this method
the frequency of each repeated category was not taken into consideration.

nLULC(Average) =
nNLCD class#1 + nNLCD class#2 + . . . + nNLCD class#N

N
(1)

where:

nLULC(Average) : Average Manning’s value per LULC 2020-ESRI class.
nNLCD class#N : Manning’s value for the repeated class N from NLCD 2019 standard values.
N : Number of most repeated categories.

B. Weighted Average of the most frequent in-class data (W. A. Manning’s Value):

For the same selected categories and considering the frequency, the weighted average
of Manning’s n value was considered to be selected to represent the class as in Equation (2).

nLULC(W. Average) =
(nNLCD class#1 × fclass#1) + ( nNLCD class#2 × fclass#2) + . . . + (nNLCD class#N × fclass#N)

N
(2)

where:

nLULC(W. Average): Weighted Average Manning’s value per LULC 2020-ESRI class.
nNLCD class#N : Manning’s value for the repeated class N from NLCD 2019 standard values.
fclass#N : Frequency of points having value of class N from NLCD 2019 standard values.
N : Summation of Frequencies (f )
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2.6.2. Part 2: Calibration/Validation of the Developed Roughness Maps Using Flood
Modeling Application

To calibrate and verify the methodology of generating the proposed Manning’s rough-
ness values, nine catchment areas were randomly selected based on the data available on
StreamStats. A spatial Manning’s roughness layer for each catchment was generated based
on the proposed values from the assessment step using HEC-RAS 2D (v. 6.2) [13,21]. A
Digital Elevation Model (DEM) was downloaded for each catchment area location with
the best available resolution from U.S. national map imagery [45]. The nine rain-on-grid
simulation models have been calibrated by implementing the NLCD 2019 map as a first
step, using the reference Manning’s roughness values provided in the HEC-RAS Mapper
manual [5]. Rainfall data and peak flow values were obtained from StreamStats. The
NOAA Atlas 14 database was used to obtain the missing rainfall data that have no values
in StreamStats. Then model scenario runs were performed using the LULC 2020-ESRI
with the proposed Manning’s roughness values to be compared with the model scenario
runs using the NLCD 2019. A flow chart in Figure 4 describes this part of the conducted
methodology.
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3. Results
3.1. Data Analysis

The samples’ frequency analysis from both products (i.e., NLCD 2019 and LULC
2020-ESRI) shows an acceptable spatial correspondence between the two products. Figure 5
shows the total number of repetitions (frequency) in each topology class for the NLCD 2019
map, and Figure 6 shows the same analysis of the LULC 2020-ESRI map.
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Figure 5. Frequency analysis for the extracted samples from the NLCD 2019 dataset.
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Figure 6. Frequency analysis for the extracted samples from the LULC 2020-ESRI dataset.

The previous analysis showed that shrub land has the most repetition values derived
from both maps, followed by cultivated croplands. The lowest repetition was snow, and
clouds were not found in the study samples. However, there seems to be some confusion
in the rest of the classes. This may be due to the smaller number of LULC 2020-ESRI
classes compared to NLCD 2019, aggregating more than one class from the corresponding
reference map NLCD 2019.
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3.2. Accuracy Assessment (Confusion Matrix)

To quantify the cross-correspondence between both maps, a detailed analysis was
conducted for each class separately after excluding the snow and cloud classes. LULC
2020-ESRI land-use map data were assessed using a confusion matrix using NLCD 2019
land-use map data as well-trusted and high-accuracy data [32,34]. Table 4 shows the
accuracy assessment results.

Table 4. Accuracy Assessment-Confusion Matrix.

NLCD 2019
(Reference Layer)

LULC 2020-ESRI (User’s Layer)

Water
(1)

Trees
(2)

Grass
(3)

Flooded
Vegetation (4)

Crops
(5)

Scrub/Shrub
(6)

Built Area
(7)

Bare
Ground (8)

Open Water (11) 17,175 127 50 107 117 246 48 115
Developed, Open
Space (21) 25 2712 882 21 1942 1464 4624 49

Developed, Low
Intensity (22) 25 535 262 1 1101 411 5980 25

Developed, Medium
Intensity (23) 21 105 41 3 329 170 5528 43

Developed, High
Intensity (24) 9 7 1 0 43 27 2941 13

Barren Land (31) 96 50 25 9 56 2052 147 3188
Deciduous Forest (41) 127 35,081 723 62 721 2679 605 1
Evergreen Forest (42) 56 48,243 274 19 282 17,734 558 64
Mixed Forest (43) 45 11,332 205 11 117 542 364 0
Shrub/Scrub (52) 78 7279 1340 15 3353 119,366 940 1156
Grassland/Herbaceous
(71) 186 2080 5875 123 7882 59,054 932 617

Pasture/Hay (81) 88 3246 10,822 109 8706 3179 1102 21
Cultivated Crops (82) 78 1120 1828 135 108,515 2863 674 196
Woody Wetlands (90) 176 13,409 404 127 427 1487 117 9
Emergent
Herbaceous Wetlands
(95)

194 678 797 888 1097 2342 99 52

TOTAL 18,379 126,004 23,529 1630 134,688 213,616 24,659 5549
TRUE 17175 108,065 16,697 888 108,515 119,366 19,073 3188
Class Accuracy 93% 86% 71% 54% 81% 56% 77% 57%

Overall Accuracy 72%

The accuracy for each class topology was calculated considering the percentage of the
truly captured points to the total number of samples for each class. For example, the first
column in Table 4 represents the LULC 2020-ESRI Water (1) category corresponding to class
Open Water (11) in the NLCD 2019 map. This study found about 17,175 truly captured
points out of 18,379 total points in this class; this was reflected in the 93% accuracy and 17%
error in simulating this class. The overall accuracy represents the summation of all true
values percentage in all classes to the total number of samples.

3.3. Surface Roughness Analysis (Manning’s Roughness(n) Values)

The appropriate Manning’s roughness values for each topology in LULC 2020-ESRI can
be assigned considering the detailed definition of the classes in Table 2. It can be concluded
that the LULC 2020-ESRI classes Water, Bare ground, Scrub/shrub, Crops, and Flooded
vegetation approximately match the NLCD classes open water, barren land, shrub/scrub,
cultivated crops, and emergent herbaceous wetlands, respectively, based on the outcomes
of the conducted analysis in the accuracy assessment section. Accordingly, Manning’s
roughness values for these classes can be assigned easily using the corresponding classes
in the reference map (NLCD 2019) referring to the values in Table 3.
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It is worth noting that each biased classes in LULC 2020-ESRI (trees, grass, and
built area) aggregates more than one class from the reference map, NLCD 2019. Detailed
frequency analysis was conducted to ensure an efficient representation and identification
for each class individually. Figure 7 shows the mentioned classes and the frequency analysis
for spatially corresponding classes in the reference map. Further detailed statistical analysis
described was used to assign the appropriate Manning’s roughness values for the three
mentioned biased classes, applying both averaging and weighted averaging methods (refer
to Section 2).
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Figure 7. Frequency analysis for the biased classes from the LULC 2020-ESRI map. (A) Tree, (B) Built
area, (C) Grass.

As a result, from this analysis, the suggested Manning’s roughness values for each
LULC 2020-ESRI class using the two previous methods are presented in Table 5. Compari-
son between the developed Manning’s roughness values for the two methods, average and
weighted average, is illustrated in Figure 8.

Table 5. LULC 2020-ESRI proposed roughness values using average and weighted average methods.

LULC 2020-ESRI
Value 1 2 3 4 5 6 7 8

Class Description Water Trees Grass Flooded
Vegetation Crops Scrub/Shrub Built Area Bare

Ground

NLCD
Corresponding

class Values
11 42- 41- 43-

90 81- 71 95 82 52 22- 21- 23-
24 31

Average Method-Suggested Roughness Values

Minimum (n) 0.025 0.087 0.025 0.05 0.02 0.07 0.073 0.023

Maximum (n) 0.050 0.160 0.050 0.085 0.050 0.160 0.132 0.030

Average (n) 0.038 0.137 0.038 0.068 0.035 0.115 0.103 0.027

Weighted Average Method-Suggested Roughness Values

Minimum (n) 0.025 0.079 0.025 0.050 0.020 0.070 0.064 0.023

Maximum (n) 0.050 0.174 0.050 0.085 0.050 0.160 0.119 0.030

Average (n) 0.038 0.126 0.038 0.061 0.035 0.115 0.092 0.027
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Figure 8. LULC 2020-ESRI base Manning’s roughness values using both average and weighted
average methods.

3.4. Hydrodynamic Modeling

Rain-On-Grid (ROG) simulations for the modeling of 2D unsteady flows and flood-
plain parameters in response to precipitation input were implemented in HEC-RAS V.6.2
software to validate the performance of the presented methodology [13,46]. Nine catch-
ments were randomly selected based on the data availability in StreamStats and NOAA
Atlas 14. Figure 9 shows the location of the selected catchments in the conterminous
United States. Rainfall and runoff flow data were extracted from StreamStats and NOAA
Atlas 14, respectively. The selected catchments have varied areas (from 8 km2 to 460 km2)
with a mixed land-use cover. Table 6 shows the selected catchment locations and areas.
Figures A1–A9 in Appendix A show the DEM and land-use land-cover maps with the
spatial distribution for these catchments. Figure 10 shows DEM and land-use maps for
each class for catchment CA-01 as an example.
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Table 6. Locations and areas for the selected catchments.

Catchment
Outlet-Location (UTM-WGS 84) Catchment

Area (km2)
Gage

NumberState Latitude Longitude

CA-01 Oregon 43.25261790 −123.0261716 459.47 14318000

CA-02 Idaho 42.03277500 −115.3686083 217.29 13162500

CA-03 Wyoming 44.53830075 −107.2264592 50.78 06300500

CA-04 Colorado 39.33415000 −106.5753000 18.73 09078200

CA-05 Arizona 34.08282162 −110.9242900 161.02 09497900

CA-06 Oklahoma 34.68258000 −98.00893000 90.21 07312950

CA-07 Iowa 41.33667771 −92.22240371 67.95 05472445

CA-08 St.Louis 39.87476000 −92.02406000 149.27 05500500

CA-09 Washington 47.64707639 −120.0539556 7.82 12462700

3.4.1. Calibrating HEC-RAS 2D Models

Model calibration and validation based on water level and flow observations are neces-
sary to determine any model’s ability to reproduce reality [47]. The HEC-RAS (v.6.2) model
was calibrated using the calibration data in Table 7 and as mentioned in the methodology
section. The main objective of this step was to assess the effect of implementing the developed
Manning’s roughness values on the modeling results’ accuracy and quantify the derived
errors and uncertainty. The collected rainfall data and corresponding runoff values at different
return periods were divided into two sets, one for calibration (2-year return period) and the
other for validation (100-year return period), as presented in Table 7. All rainfall and runoff
data were extracted from StreamStats, except the 100-year return period rainfall data for some
of the catchments, which were extracted from NOAA Atlas 14. All catchments’ data were
found in both data sources (USGS-StreamStats and NOAA Atlas 14), but no rainfall data were
found covering CA-01, CA-02, or CA-03 in the 100-year return period.

Water 2022, 14, x FOR PEER REVIEW 16 of 45 
 

 

Table 6. Locations and areas for the selected catchments. 

Catchment 
Outlet-Location (UTM-WGS 84) Catchment Area 

(km2) Gage Number 
State Latitude Longitude 

CA-01 Oregon 43.25261790 −123.0261716 459.47 14318000 
CA-02 Idaho 42.03277500 −115.3686083 217.29 13162500 
CA-03 Wyoming 44.53830075 −107.2264592 50.78 06300500 
CA-04 Colorado 39.33415000 −106.5753000 18.73 09078200 
CA-05 Arizona 34.08282162 −110.9242900 161.02 09497900 
CA-06 Oklahoma 34.68258000 −98.00893000 90.21 07312950 
CA-07 Iowa 41.33667771 −92.22240371 67.95 05472445 
CA-08 St.Louis 39.87476000 −92.02406000 149.27 05500500 
CA-09 Washington 47.64707639 −120.0539556 7.82 12462700 

3.4.1. Calibrating HEC-RAS 2D Models 
Model calibration and validation based on water level and flow observations are nec-

essary to determine any model’s ability to reproduce reality [47]. The HEC-RAS (v.6.2) 
model was calibrated using the calibration data in Table 7 and as mentioned in the meth-
odology section. The main objective of this step was to assess the effect of implementing 
the developed Manning’s roughness values on the modeling results’ accuracy and quan-
tify the derived errors and uncertainty. The collected rainfall data and corresponding run-
off values at different return periods were divided into two sets, one for calibration (2-
year return period) and the other for validation (100-year return period), as presented in 
Table 7. All rainfall and runoff data were extracted from StreamStats, except the 100-year 
return period rainfall data for some of the catchments, which were extracted from NOAA 
Atlas 14. All catchments’ data were found in both data sources (USGS-StreamStats and 
NOAA Atlas 14), but no rainfall data were found covering CA-01, CA-02, or CA-03 in the 
100-year return period. 

 

(A) 

Figure 10. Cont.



Water 2022, 14, 3963 17 of 45Water 2022, 14, x FOR PEER REVIEW 17 of 45 
 

 

 

Figure 10. DEM and land-use maps for Catchment CA-01 (A) DEM, (B) NLCD 2019 land-use map, 
(C) LULC 2020-ESRI land-use map. 

Using the collected data in Table 7 and implementing the DEM and projected land-
use layers in Appendix A, the HEC-RAS 2D ROG modeling was utilized to solve for the 

(B) 

(C) 

Figure 10. DEM and land-use maps for Catchment CA-01 (A) DEM, (B) NLCD 2019 land-use map,
(C) LULC 2020-ESRI land-use map.

Using the collected data in Table 7 and implementing the DEM and projected land-use
layers in Appendix A, the HEC-RAS 2D ROG modeling was utilized to solve for the flow
peaks, times to the peak, maximum depths, and velocity values over the catchment area.
This model was built using the NLCD 2019 along with Manning’s roughness guidance
values in Table 3.

Calibration was conducted using the mentioned methodology with the variation of the
Soil Conservation Service Curve Number (SCSCN). The initial SCS–CN was selected based
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on the soil type and land use land cover in the catchment and according to the suggested
values based on urban hydrology for small watersheds (TR-55) [48]. The calibrated Curve
Number (CN) for each catchment in order to catch the observed peak flow for a 2-year
return period is illustrated in Table 7.

Table 7. Rainfall, peak flow, and calibrated curve number (CN) data for the selected catchments [37,38].

Catchment
Catchment
Area (km2)

Selected
(SCS-CN)

2-Year Return Period 100-Year Return Period

Precipitation
P (mm)

Peak Flow
Q (m3/s)

Precipitation
P (mm)

Peak Flow
Q (m3/s)

CA-01 459.47 77 66.5 268.2 N/A N/A

CA-02 217.29 72 33.0 12.6 N/A N/A

CA-03 50.78 74 63.5 15.0 N/A N/A

CA-04 18.73 80 40.6 3.9 68.8 10.5

CA-05 161.02 75 68.6 39.4 139.7 260.5

CA-06 90.21 69 91.4 22.6 230.1 362.5

CA-07 67.95 70 115.3 90.9 186.18 213.8

CA-08 149.27 72 86.4 51.0 237.5 294.5

CA-09 7.82 74 52.8 5.8 59.7 7.5

The calibrated results using NLCD 2019 maps were used as a baseline case. Table 8
shows acceptable accuracy in simulating the peak flow value corresponding to the dis-
tributed rain-on-grid in the baseline case. Then the proposed Manning’s values either
for the average or weighted average method for LULS-2020-ESRI were used in the hy-
drodynamic modelling and compared with the baseline case for calibration. HEC-RAS
2D calibration model results for the selected catchments (e.g., flow hydrographs at catch-
ments outlets and maximum depths over the catchment areas) are shown in Appendix B;
Figures A10–A12.

The 2D flood-modeling results are expressed in flow hydrographs corresponding to
the base map and the global LULC map along with the proposed Manning’s value and the
flood maximum depths over the catchment area. Figure 11 shows the HEC-RAS 2D results
for the first catchment (CA-01) as an example using DEM and land-cover maps illustrated
in Figure 10, and the calibration results for other catchments are shown in Appendix B.
The accuracy of the developed Manning’s roughness was tested by applying the statistical
performance indicators to the set of simulated peak flow values, maximum depths, and
maximum velocities. Table 8 shows the calibration results and values of Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) [47]. Calibrating was conducted using the
data in Table 7 for a 2-year return period. Calibration results were extracted, tabulated,
and tested using the statistical performance indicators considering NLCD 2019 results as a
reference for peak flow, depth, and velocity values over the study area (baseline case).
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Table 8. Calibration data and analysis results for a 2- years return period.

Catchment CA-01 CA-02 CA-03 CA-04 CA-05 CA-06 CA-07 CA-08 CA-09

Rainfall and
Peak Flow Data

Precipitation P2-yrs (mm) 66.50 33.00 63.50 40.60 68.60 91.40 115.30 86.40 52.80

SCS-CN 77 72 74 80 75 69 70 72 74

StreamStats Q2-yrs (m3/s) 268.20 12.60 15.00 3.90 39.40 22.60 90.90 51.00 5.80

NLCD 2019 map
(Baseline case)

QNLCD (m3/s) 267.07 12.36 14.80 3.78 39.81 22.18 91.00 50.68 5.75

Time to peak (h) 19.00 28.00 20.17 15.50 25.67 19.60 17.17 28.60 13.17

Error in peak QLULC (%) 0.42 1.90 1.33 3.08 1.04 1.86 0.11 0.63 0.86

LULC
2020-ESRI Map

Average
Manning’s

Roughness (n)

QLULC-Average (n) (m3/s) 238.33 11.41 14.10 3.45 35.44 19.90 87.13 44.39 5.38

Time to peak (h) 20.17 30.17 20.67 16.00 26.17 19.76 17.83 32.60 13.83

Error in QLULC-Average (n) (%) 10.76 7.69 4.73 8.73 10.98 10.27 4.25 12.41 6.43

Error in depth (cm) RMSE 3.13 2.33 2.30 1.91 1.41 2.00 4.29 8.37 6.12

MAE 9.04 4.15 5.43 3.28 2.51 5.34 9.13 13.20 9.53

Error in velocity
(cm/s)

RMSE 10.62 7.62 5.37 4.99 2.72 3.65 6.16 3.90 3.93

MAE 18.92 13.64 13.58 7.56 5.83 7.08 12.51 6.92 10.41

LULC
2020-ESRI

Map-W.
Average

Manning’s
Roughness (n)

QLULC-W. Average (n) (m3/s) 254.23 11.50 14.50 3.62 37.05 20.23 88.83 47.58 5.48

Time to peak (h) 19.50 30.00 20.17 15.83 25.83 19.65 17.67 31.00 13.83

Error in QLULC-W. Average (n) (%) 4.81 6.96 2.03 4.23 6.93 8.79 2.38 6.12 4.70

Error in depth (cm) RMSE 2.93 2.23 1.96 1.28 1.06 1.96 4.06 4.58 6.03

MAE 7.87 3.95 5.03 2.84 2.16 5.12 8.60 8.85 9.44

Error in velocity
(cm/s)

RMSE 6.61 7.50 3.89 2.95 2.00 3.63 6.07 3.90 3.84

MAE 17.15 13.55 13.15 6.10 5.46 7.00 12.29 6.92 10.29
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3.4.2. Validation Results: Testing the LULC 2020-ESRI Maps along with the Proposed
Roughness Values

To verify the results, the same analysis conducted on LULC 2020-ESRI maps in the
calibration process was repeated but using a 100-year return period. The results of the
hydrodynamic model using the NLCD 2019 dataset for a 100-year return period and using
the calibrated CN numbers were used as the baseline case for the validation process of
LULC 2020-ESRI. The results show an acceptable agreement with accurate capturing of
the peak flow and flood parameters (depth and velocity). Table 9 shows the simulation
analysis results for the validation simulations. The same analysis was conducted in the
calibration stage and the errors were calculated relative to the StreamStats observations,
showing a very good performance and relatively low magnitude of errors.

It should be noted that the errors in peak-flow capturing and the driven errors in
depths and velocities were relatively reduced with the increase in the rainfall return
period. Accordingly, the 24 hr rainfall depth comparison between the analysis results was
summarized and presented in bar charts. Figures 12 and 13 show a comparison between the
driven errors in peak-flow capturing for both calibration and validation sets of simulations,
respectively.

Table 9. Validation data and analysis results for a 100-year return period.

Catchment CA-04 CA-05 CA-06 CA-07 CA-08 CA-09

Rainfall and Peak
Flow Data

Precipitation P100-yrs (mm) 68.8 139.7 230.1 186.18 237.5 59.7

SCS-CN 80 75 69 70 72 74

StreamStats Q100-yrs (m3/s) 10.51 260.51 362.46 213.79 294.50 7.50

NLCD 2019 map
(Baseline case)

QNLCD (m3/s) 10.35 257.86 355.54 215.17 290.50 7.35

Time to peak (h) 15.50 16.63 13.63 16.20 22.88 13.37

Error in peak QLULC (%) 1.52 1.02 1.91 0.65 1.36 2.00

LULC 2020-ESRI
map-Average

Manning’s
Roughness (n)

QLULC-Average (n) (m3/s) 9.55 243.64 331.89 207.54 264.43 6.97

Time to peak (h) 16.00 17.00 13.83 16.63 26.08 13.50

Error in QLULC-Average (n) (%) 7.73 5.51 6.65 3.55 8.97 5.17

Error in depth (cm) RMSE 3.33 2.42 2.00 5.73 8.37 6.02

MAE 9.62 5.18 5.34 11.77 13.20 9.55

Error in velocity
(cm/s)

RMSE 11.29 5.41 3.65 8.07 3.90 4.29

MAE 20.11 11.13 7.08 16.45 6.92 11.52

LULC 2020-ESRI
map-W. Average

Manning’s
Roughness (n)

QLULC-W. Average (n) (m3/s) 10.04 253.06 337.37 210.98 280.58 7.10

Time to peak (h) 15.83 16.83 13.83 16.33 24.80 13.40

Error in QLULC-W. Average (n) (%) 3.00 1.86 5.11 1.95 3.42 3.40

Error in depth (cm) RMSE 1.84 1.87 2.80 5.01 6.55 5.93

MAE 4.06 4.29 7.32 11.26 12.66 9.52

Error in velocity
(cm/s)

RMSE 4.22 3.88 5.19 8.04 5.58 4.25

MAE 8.72 9.90 10.03 16.38 9.90 11.39

The analysis shows a severe reduction in the driven errors from the Manning’s rough-
ness values generated from the weighted average (nw.avg) compared to the one generated
from the average method (navg). As an example from the first catchment (CA-01) results
in Figure 12, the derived error using NLCD 2019 maps was 0.42% as a baseline case (com-
pared with StreamStats v4.10.1 values) and about 10.7% when implementing ESRI maps
(compared with NLCD 2019 results) when using average Manning’s n values, and the error
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was reduced to 4.8% when implementing the global maps along with weighted average
(nw.avg) values.
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Figure 13. Peak-flow error using LULC 2020-ESRI along with (navg) and (nw.avg) values compared to
the base validation results.

From the analysis results, Tables 8 and 9, it was found that the time to peak using
LULC 2020-ESRI with weighted average Manning’s roughness values (nw.avg) was always
closer to the base line case, compared to those values using proposed average Manning’s
roughness values (navg) in both the calibration and validation cases. Figures 14 and 15
show the time to the peak comparison using the implemented maps for the calibration and
validation simulations, respectively.
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Figure 14. Time to peak flow in hours using LULC 2020-ESRI with (navg) and (nw.avg), compared to
base map calibration results.
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Figure 15. Time to peak flow in hours using LULC 2020-ESRI with (navg) and (nw.avg), compared to
base map validation results.

4. Discussion

Based on the statistical analysis results, it is obvious that the data from NLCD 2019 is
denser and more accurate where it can catch the observed peak flow with an error ranging
from 0.42% to a maximum of 3.08% for calibration and validation processes, respectively.
These error rates were lower in the long return period (100-year validation process) than for
the short return period (2-years calibration process) (Tables 8 and 9). However, the NLCD
2019 is only available for the conterminous U.S. and it cannot be used for global coverage.
Due to the main advantage of global coverage for the LULC 2020-ESRI map, there was
a need to make full use of the NLCD 2019 dataset to enhance the accuracy and propose
Manning’s roughness values for the LULC 2020-ESRI dataset.

A confusion matrix was prepared in order to compare between the two datasets (NLCD
2019 and LULC 2020-ESRI), and cross-correspondence between both maps was achieved
based on the full description for each class in the two datasets illustrated in Tables 2 and 3.
Based on the results shown in Table 4, the “water” class was the most accurately mapped
class (93%), followed by “trees” (86%), “crops” (81%), “built area” (77%), and “Grass” (71%).
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Lowest accuracy was obtained for the classes “Bare Ground” (57%), “Scrub/shrub lands”
(56%), and “Flooded vegetation” (54%). The comparison results show an overall accuracy
of around 72% with an error of 28% for the LULC 2020-ESRI map compared to the NLCD
2019 land-use map as a reference map (Table 4). From the recent publications regarding the
global-coverage maps’ accuracy assessment referenced to ground truth with a mapping
unit of 250 m2 data [35], it was found that the overall accuracy of LULC 2020-ESRI maps
had the highest value of 75%, which is consistent with the results from the current study.

Table 5 illustrates the most matching classes between the two datasets; most of the
classes in LULC 2020-ESRI were matched with only one class in the NLCD 2019 dataset,
except for only three biased classes: grass, trees, and built area. Two statistical techniques,
average and weighted average methods, were used to detect the proposed Manning’s
roughness values for biased classes.

Based on the HEC-RAS 2D ROG analysis, implementing the proposed LULC 2020ESRI
Manning’s roughness values for both average and weighted average methods (Table 8), it
was concluded that the weighted average values (nw.avg) in all simulations showed relatively
less time to peak and accurate peak-flow values. The average error in the peak flow is
5.22% (2.0% min. to 8.8% max.) for weighted average values (nw.avg) compared to 8.5%
(4.4% min. to 12.4% max.) when using the LULC 2020-ESRI map with average Manning’s
roughness values (navg) (Table 8). Appendix B shows flow hydrographs at the catchments’
outlets using the implemented maps.

Using both of the statistical performance measures mean square error (RMSE) and
mean absolute error (MAE), the HEC-RAS computational results were extracted and GIS
tools were used to calculate floodplain inundated maximum depths and velocities. It has
been concluded from the results in Table 8 that the LULC 2020-ESRI maps using weighted
average Manning’s roughness values (nw.avg) in all simulations give lower error values
with an overall value (RMSEdepth) of 2.7 cm, compared to 3.72 cm when using average
Manning’s roughness (n) values, and an MAEdepth of 5.32 cm, compared to 7.75 cm when
using average Manning’s roughness values (navg). The same analysis was repeated to
measure the errors (RMSE and MAE) in the velocity simulation, and it was found to
confirm the same performance.

Testing the same catchments’ responses to the ROG HEC-RAS model using the valida-
tion dataset with 100-year 24 h rainfall (Table 9) reveals that during high return periods,
the error in capturing the peak value was reduced to an average of 3.13% when using
weighted average Manning’s roughness values (nw.avg), compared to 6.62% when using
average Manning’s roughness values (navg). Also, during the validation process, the error
values in the water depth RMSE and MAE were with an average value of 3.8 cm and 4.2 cm,
respectively, when using weighted average Manning’s roughness values (nw.avg), compared
to 4.7 cm and 8.1 cm, respectively, when using average Manning’s roughness values (navg).
The same analysis was repeated to measure the errors (RMSE and MAE) in the velocity
simulation, and it was found to confirm the same performance.

One of the main outputs of the current study is the generated new base/reference
for Manning’s roughness values for each class in the global land-use maps LULC 2020-
ESRI. The generated maps using these Manning’s roughness values have been tested and
confirmed to drive a low magnitude of error with an acceptable accuracy in both calibration
and validation processes. Recommended Manning’s roughness values to be compatible
with the global LULC 2020-ESRI maps are presented in Table 10.
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Table 10. Recommended Manning’s roughness (n) values for the global LULC 2020-ESRI topologies.

LULC 2020-ESRI Suggested Roughness Values

LULC-Value Description Minimum (n) Maximum (n) Weighted
Average(n)

1 Water 0.025 0.05 0.038

2 Trees 0.079 0.174 0.126

3 Grass 0.025 0.05 0.038

4 Flooded vegetation 0.05 0.085 0.061

5 Crops 0.02 0.05 0.035

6 Scrub/shrub 0.07 0.16 0.115

7 Built Area 0.064 0.119 0.092

8 Bare ground 0.023 0.03 0.027

5. Conclusions

The more crucial input data for flood modeling are land use and land cover, translated
into corresponding Manning’s roughness values to effectively replicate the water depth and
velocity. Currently, there are two available datasets for land cover and land use, NLCD 2019
and LULC 2020-ESRI. In contrast to the LULC 2020-ESRI dataset, which has worldwide
coverage but no reference to Manning’s roughness values, the NLCD 2019 dataset has
national coverage but with available references to Manning’s roughness values for each
class derived from prior studies. The main conclusions of this study can be summarized as
follows:

• A confusion matrix was used to compare the two publicly available land-use and
land-cover datasets for a total of 548,117 sample points in the conterminous United
States.

• During the calibration and validation procedures using the HEC-RAS 2D model, the
NLCD 2019 dataset was evaluated using the measured peak flows for nine catchments
in the conterminous United States with an accepted error in peak flow of 0.42% to a
maximum of 3.08%.

• The LULC 2020-ESRI dataset can be used to depict the global coverage with an overall
accuracy of 72% compared to the NLCD 2019 dataset, which is consistent with recent
scientific studies.

• Compared to the average method, the weighted average approach is the most effective
way to determine Manning’s roughness values for the LULC 2020-ESRI dataset.

• Manning’s roughness values were suggested (see Table 10) for the classes in LULC
2020-ESRI to be used as standard reference values for the 2D flood-modeling proce-
dure.

• The suggested Manning’s roughness values for the LULC 2020-ESRI dataset were
calibrated and validated against the NLCD 2019 dataset using the HEC-RAS 2D model,
and their accuracy was deemed acceptable. The overall RMSE in depth was 2.7 cm,
the MAE in depth was 5.32 cm, and the accuracy of the computed peak flow value
had an average error of 5.22% (2.0% min. to 8.8% max.).

• Using LULC 2020-ESRI and the suggested Manning’s roughness values (nw.avg) results
in lower-magnitude errors for long return periods than for short return periods.

• This work should be updated and modified for any new release of LULC-ESRI or
NLCD land use/land cover.

Finally, the proposed Manning’s roughness values for LULC 2020-ESRI in this research
can be used as a reference and implemented efficiently in the distributed 2D hydrodynamic
models.
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6. Patents

Standard Manning’s Roughness (n) values corresponding to each class compatible
with LULC-ESRI maps to be implemented in flood distributed 2D modeling.
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