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Abstract: In recent decades, the impact of climate change on urban flooding has increased, along with
an increase in urban population and urban areas. Hence, historical design storms require revisions
based on robust intensity–duration–frequency (IDF) relationships. To this end, the development of an
urban rain-gauge network is essential to yield the spatiotemporal attributes of rainfall. The present
study addresses two objectives: (a) to reconstruct sub-daily rainfall time series for the historical
period over an urban gauge network, and (b) to investigate the spatiotemporal variation in extreme
rainfall distribution within a city. This study considers Bangalore, India, where rainfall has been
historically monitored by two stations but a dense gauge network has recently been developed. The
study applies random forest regression for rainfall reconstruction, finding that the performance of
the model is better when the predictand and predictor stations are near to one another. Robust IDF
relationships confirm significant spatial variations in extreme rainfall distribution at the station and
the city-region levels. The areal reduction factor (ARF) is also estimated in order to understand the
likely impact of the reconstructed time series on hydrological modeling. A significant decrease in the
ARF is observed as the area grows beyond 450 km2, indicating a substantial reduction in the volume
of the design floods.

Keywords: rainfall reconstruction; extreme rainfall; random forest; uncertainty; IDF; areal reduc-
tion factor

1. Introduction

Urban areas have been experiencing frequent heavy flooding resulting from extreme
rainfall events attributed to climate change [1,2]. Rapid urbanization has been affecting
the natural land cover of regions, creating urban heat islands that intensify precipitation
through additional instability and greater moisture transport [3] (Huang et al., 2022). Urban
structures and car emissions are also worsening urban flood conditions [4]. In the recent
past, several metro cities in India have witnessed high-intensity rainfall and subsequent
floods as surface runoff exceeds the drainage capacity [5–7]. Therefore, urban flood predic-
tion at different lead times has attracted significant attention from researchers. However,
reliable flood prediction critically depends on the model forcing, since the forcing can
impart significant uncertainty to the prediction [8]. Prediction models are sensitive to mete-
orological forcing, such as precipitation and temperature, since the forcing may undergo
significant spatiotemporal variations. The present study examines the spatiotemporal
variation in extreme rainfall for an Indian city (Bangalore) to understand the importance of
reconstructing urban rainfall measurements.

Traditionally, rainfall has been measured using rain gauges, whose estimates are
considered to represent the direct point measurement of precipitation. At a regional and/or
urban scale, due to the sparse distribution of rain gauges, interpolation techniques are
adopted to estimate the rainfall at locations that are not covered by a rain gauge [9–11].
Over the last few decades, satellite- and model-based finer-resolution estimates of rainfall
have been gaining popularity; however, the point estimates of rainfall from gauge stations
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remain useful as ground truths. The authors note that the spatial distribution of rain-gauge
stations is critical because it depends primarily on the spatial variability of rainfall and
the funds available for the development and maintenance of the stations. Several studies
have been conducted to design optimal rain-gauge networks accounting for the spatial
distribution of rainfall [12]. Traditionally, only a few stations are built within a city’s
limits, assuming spatial homogeneity in rainfall over the city. It should be noted that the
density of rain-gauge networks within a city might be even higher than in rural areas [13].
Several previous studies have investigated the importance of developing distributed rain-
gauge networks for urban catchments [13,14]. Furthermore, with the growing impact of
human-induced climate change and land-use changes, urban rainfall characteristics are also
expected to undergo significant changes. The majority of the previous studies related to
urban rain-gauge networks consider the stationary statistical attributes of extreme rainfall
events. To the best of our knowledge, very few have investigated the importance of a
distributed rain-gauge network in yielding non-stationarity in extreme rainfall distribution.

Previous studies have reported that spatiotemporal changes in urban rainfall attributes
are significantly different from those in non-urban rainfall attributes [4,15]. The impact
of urbanization is not only limited to the enhancement of mean precipitation—it can
also impact the mesoscale extreme rainfall [16,17]. Common practices to understand the
spatial variability of rainfall within a city include (i) employing a numerical weather
prediction model to simulate the event-scale rainfall estimates [18], and (ii) considering
rain-gauge data or satellite and radar estimates [19]. One potential limitation of numerical
weather prediction models is that their outputs yield substantial uncertainty arising from
boundary conditions, initial values, and model structures [20,21]. In contrast, satellite and
radar estimates require efficient post-processing based on the ground truth, signifying the
importance of developing and maintaining an urban rain-gauge network. Considering
the limitations and requirements of urban rain-gauge networks, a potential alternative
is to reconstruct the historical rainfall time series from the recently developed dense
urban rain-gauge network. The reconstruction of daily–sub-daily rainfall time series is a
well-known concept that employs interpolation techniques, regression-based approaches,
clustering algorithms, tree-ring chronology, and stable-isotope-based techniques, and serves
a promising alternative to a long-running urban rain-gauge network [22–25]. Considering
these factors, the present study addresses the following objectives:

1. To reconstruct the sub-daily rainfall time series for an urban rain-gauge network using
a machine learning algorithm.

2. To investigate the spatiotemporal changes in extreme rainfall for Bangalore, India,
with an additional focus on the intracity variations.

The city of Bangalore has experienced rapid urbanization in recent decades. It has
the largest carbon footprint among all Indian cities. Traditionally, rainfall in Bangalore
has been monitored by two meteorological observation stations maintained by the India
Meteorological Department (IMD)—a federal organization. In a previous study, Rupa and
Mujumdar [26] investigated the spatiotemporal changes in extreme rainfall over Bangalore
using the data observed at 17 IMD stations across urban and suburban Bangalore. In
recent years, considering the growing concern of urban flooding, a local governmental
agency—the Karnataka State Natural Disaster Management Centre (KSNDMC)—installed
a dense network of rain-gauge stations across the city. The present study developed a
random forest model between rainfall data from the IMD station (as predictors) and rainfall
observations from the KSNDMC stations (as predictands) for a common time period to
address the first objective. Furthermore, to address the second objective, we performed two
tasks: (a) identification of non-stationarity in the annual maximum rainfall (AMR) series
from the reconstructed data using the ADF test, and (b) the development of robust IDF
relationships for the stationary and non-stationary AMR series. Finally, we calculated an
areal reduction factor (ARF) to estimate the ratio between the point and the areal average
rainfall estimates. The ARF indicates the likely impact of design flood computation if the
point rainfall is used in the computation as areal average rain. A dense rain-gauge network
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assists the modelers in developing a relationship between the urban area and the ARF,
which can be applied to the point rainfall estimate prior to design flood computation. The
following section discusses the data used in this study and provides a brief description
of the study area. This is followed by an explanation of the methodology used in the
study. The results of the study are presented in Section 4, which is followed by a summary
and discussion.

2. Data and Study Area
2.1. IMD and KSNDMC Station Data

The hourly rainfall data from the IMD stations in Bangalore—IMD 43,295 and IMD
43,296—are available from 1969 to 2019. The KSNDMC provides real-time weather-related
information, forecasts, early warnings, and advisories for the management of natural
disasters in the state. The KSNDMC has installed over 6000 telemetric rain gauges (TRGs)
and more than 750 telemetric weather stations (TWSs) across the entire state to transmit
data every 15 min. The hourly rainfall data from 51 KSNDMC stations over Bangalore
were considered from the years 2010 to 2019. The locations of the IMD and KSNDMC
stations are shown in Figure 1a. For demonstration, the rainfall time series for the two
IMD stations and one representative KSNDMC station (TRG2309) are shown in Figure 1b,c,
respectively. Additional details related to the IMD stations, originally mentioned by Rupa
and Mujumdar (2018), are provided in Table 1.

Figure 1. (a) Locations of the IMD and KSNDMC stations. (b) Hourly rainfall time series for the two
IMD stations. (c) Hourly time series for a representative KSNDMC station (TRG 2309).

Table 1. Details related to the two IMD stations located in Bangalore.

SI. No. Station
Name Index No. Latitude Longitude Elevation

1 City 43295 12.97◦ N 77.58◦ E 911 m

2 HAL 43296 12.95◦ N 77.63◦ E 899 m

2.2. Study Area: Bangalore

Bangalore, lying between 77.5◦ E–77.8.0◦ E and 12.8◦ N–13.2◦ N, with a population
of 9 million (as per the 2011 census), was considered for this study (see Supplementary
Figure S1). The city is located in the southern part of India and experiences a tropical
savanna with dry winters as per the Köppen climate classification [27]. The elevation varies
between 620 m and 1082 m over an area of approximately 740 km2. As per Bhuvan—India’s
geo-platform—almost 37% of Bangalore is built-up urban land, followed by 4% built-up
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mining areas and 2% agricultural plantations. Bangalore contains multiple lakes, which are
major sources of fresh water for the city. The city receives precipitation from the southwest
(during June–September) and northeast (during October–December) monsoons, with an
average annual precipitation of around 974 mm. Summer (March–May) precipitation,
influenced by localized convective heat transfer, frequently leads to intense flooding [26].
Additionally, the city experiences average maximum and minimum temperatures of 36◦

and 14 ◦C, observed during April and January, respectively. The relative humidity in
Bangalore varies between 35 and 80% [28].

3. Methodology

The present study is divided into three major tasks: (i) reconstruction of the hourly
time series for 51 KSNDMC stations for the period 1969–2019, (ii) spatiotemporal analysis
of the reconstructed rainfall series, and (iii) computation of the areal reduction factors
(ARFs) for different storm durations. A flowchart of the tasks is provided in Figure 2.

Figure 2. Schematic diagram showing the primary tasks of this study.

3.1. Rainfall Reconstruction Using Random Forest Regression

To address the first task, we developed a random forest regression model between the
IMD station rainfall data (as predictors) and the rainfall time series from a KSNDMC station
(as predictands) for the period 2010–2019. We employed a two-fold model calibration and
validation procedure to ensure the absence of data overfitting. Two-thirds of the data were
used for calibration, while the rest were used for validation. The random forest model is a
tree-based model where multiple tree blocks form a forest, where the algorithm provides
an average of the predictions over individual trees. A bootstrap sample was created by
uniformly resampling the input dataset by replacement. Following this, decision trees
were built using the resampled datasets—a process also known as bootstrap aggregation or
bagging [29]. Additionally, a manual trial-and-error procedure was performed to decide
the number of trees, which was allowed to vary between stations. The model can be run
multiple times to develop a model parametric uncertainty estimate, which is not very
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high for the current problem (results not shown). Further details related to the random
forest model are provided in Appendix A. The model’s performance was evaluated on
the basis of the coefficient of determination. A coefficient of determination value close to
1 ensures a perfect model fit, while a value above 0.5 is traditionally considered acceptable
in hydrometeorological modeling [30]. Prior to the model fitting, we applied a Box–Cox
transformation on the predictors and predictands. Furthermore, separate random forest
models were developed for the different months to account for seasonality—particularly for
the monsoon months. Finally, following calibration and validation, the model was applied
to the historical rainfall measurements (1969–2019) from the IMD stations to reconstruct the
hourly rainfall time series for the KSNDMC stations. We should note that the predictors to
the model at any given time are the observations from the two IMD stations. Hence, the
predictors do not vary for the KSNDMC stations; only the functional relationship between
the predictands and predictors varies between the KSNDMC stations.

3.2. Spatiotemporal Analysis of the Reconstructed Rainfall

For the second task, we first investigated the annual maximum rainfall (AMR) series for
non-stationarity. To achieve this, a block maxima approach was applied to the reconstructed
hourly rainfall time series to determine the AMR at each KSNDMC station. An augmented
Dickey–Fuller (ADF) test was used to identify the KSNDMC stations experiencing non-
stationarity in their AMR. The ADF test examines the null hypothesis that a unit root
exists while considering a higher-order autoregressive process. The details of the ADF test
are provided in Appendix B. Subsequently, stationary and/or non-stationary generalized
extreme value (GEV) distributions were fitted to the AMR series over each KSNDMC station.
A stationary GEV distribution is a three-parameter function where the three parameters
(i.e., location, scale, and shape) do not vary with time (Equation (1)). Additionally, the
present study considers a non-stationary GEV distribution where the location parameter
is considered to be linearly dependent on time (Equation (2)). It should be noted that
non-stationarity in the AMR series can be modeled with multiple functional relationships
that associate the GEV parameters with the time variable. However, the present study
considers a simple non-stationary GEV model to understand the spatiotemporal variation
in IDF relationships.

Xt ∼ GEV (µ, σ, ξ) (1)

Xt ∼ GEV (µ(t) = β0 + β1t , σ, ξ) (2)

In Equations (1) and (2), µ, σ, and ξ are the location, scale, and shape parameters, re-
spectively, whereas β0 and β1 are linear model parameters related to the location parameter.
The first step towards developing an IDF relationship—whether for a gauge station or a
region—is to obtain and process (if required) the GEV parameters. The following equation
is considered to estimate the intensity corresponding to a frequency r:

ẑr = µ̂+
σ̂

ξ̂

[(
−log

(
1 − r−1

))−ξ̂
− 1

]
(3)

If a KSNDMC station is experiencing stationary AMR series, Equation (3) can be
directly applied to develop an IDF relationship. However, if the AMR series for a KSNDMC
station is experiencing non-stationarity, the GEV parameters require further processing. To
account for the non-stationarity in an IDF relationship, we applied the method of Feitoza
Silva et al. [31] by considering the 95th and 5th percentile values of the location parameter
for a given KSNDMC station. To estimate the spatial variation in the IDF relationships
across the city, rainfall intensities—given the storm duration and storm design frequency
across the KSNDMC stations—were spatially interpolated using kriging interpolation at a
spatial resolution of 50 m. Additionally, developing an IDF relationship over a region rather
than for gauge stations is common practice. Hence, this study considers a spatial median
of the GEV parameter values for the gauge stations within a region to estimate the rainfall
intensities, as shown in Equation (3). For example, if the gauge stations within a region are
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non-stationary, the spatial median, spatial 75th percentile, and spatial 25th percentile values
of the 5th and 95th percentiles are considered during the calculation of rainfall intensity to
address the spatiotemporal uncertainty. The current approach combines both the temporal
and spatial variations of the GEV parameter values to yield critical information relating
to a region. The city was grouped into three regions (later referred to as city-regions) by a
k-means clustering method based on the latitude, longitude, and elevation [32]. The details
of the k-means clustering are provided in Appendix C.

3.3. Computation of ARF

In the final task, we estimated an areal reduction factor (ARF) to understand the
importance of the reconstructed rainfall series in hydrological modeling. When applied
to the point rainfall, an ARF provides the areal rainfall for a given intensity and a given
storm duration; hence, it ranges between 0 and 1 [33]. While several approaches have been
considered in previous studies to estimate the ARF, the present study applies a common
approach that was originally suggested by the US Weather Service in Technical Paper 29 [34].
We considered four durations (15 min, 30 min, 1 h, and 2 h) for the ARF calculation. Further
details related to the ARF estimation are provided in Appendix D.

4. Results
4.1. Reconstruction of Historic Rainfall

Results related to the cross-validation of the random forest model are presented in
Figure 3. The coefficient of determination (R2) values for the KSNDMC stations are marked
in various colors. For reference, the locations of the IMD stations are marked in red. We
found that KSNDMC stations closer to an IMD station typically show a higher coefficient of
determination (R2) value as compared to KSNDMC stations that are far from IMD stations.
In particular, the KSNDMC stations near IMD 43,295 exhibited higher R2 values compared
to the KSNDMC stations near IMD 43,296. This observation may be related to the greater
accuracy of IMD 43,295 than of IMD 43,296 in monitoring sub-hourly rainfall. We found
that the performance of the random forest regression was better during February and
December than in the other months, because the R2 for these two months was greater
than 0.6. However, the performance of the model was relatively poorer during April, July,
and September, as several KSNDMC stations experienced an R2 of less than 0.6 during
these months. Overall, we found that the random forest regression performs satisfactorily
during the validation period, as it captures the error variance efficiently. Hence, this model
can be deployed for the historical reconstruction of hourly rainfall series over KSNDMC
stations. The representative results of this reconstruction for three KSNDMC stations
(2306, 2309, and 2318) for the year 2019 are presented along with the observed rainfall in
Figure 4. The present study did not plot a reconstructed time series for earlier periods,
since an observed time series was not available over any KSNDMC station. The results
indicate that although the reconstructed time series exhibits patterns that are similar to the
observations, it typically underestimates the high extremes, which might result in an overall
underestimation of the rainfall climatology. We found that the observed extremes and the
predicted extremes had a Pearson’s correlation coefficient of around 0.7 for 30 stations (see
Table S1 for additional details). Nevertheless, it should be noted that machine learning
models typically underestimate the extremes; hence, the final outcome should not be
influenced by the inefficiency of random forest models.
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Figure 3. Performance of the random forest model shown for 12 months ((a–l) January–December).
The coefficient of determination values for the KSNDMC stations are marked in various colors.
Additionally, the locations of the two IMD stations are marked in red.

Figure 4. Observed (a–c) and reconstructed (d–f) time series of hourly rainfall for three representative
KSNDMC stations (station numbers: 2306, 2309, and 2318) for the year 2019.

4.2. Spatiotemporal Analysis of the Extremes

Results related to the non-stationary analysis of the AMR are presented in Figure 5.
Figure 5a depicts the KSNDMC stations that experienced non-stationarity in their AMR
following an ADF test. The AMR series for the KSNDMC stations were developed using
the reconstructed time series. A stationary GEV model test was fitted over the KSNDMC
stations that rejected the null hypothesis of the ADF. The stationary GEV model parameters
are shown in Figure 5b. The interquartile ranges in the boxplots for Figure 5b,c represent the
spatial variation in the stationary and non-stationary GEV parameters across the KSNDMC
stations, respectively. We found that 57% of the KSNDMC stations experienced stationarity
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in their AMR series, as opposed to the 43% that experienced non-stationarity. As expected,
the scale and shape parameter values remained similar between the stationary and non-
stationary GEV models. The location parameter in a non-stationary GEV model is a function
of time. However, we found that the trend component (β1) was small in the non-stationary
model. Therefore, the absolute mean location parameter of the stationary model remained
the same as the intercept term (β0) of the non-stationary model. As mentioned in Section 3,
this study adopted a slightly different approach in constructing IDF relationships between
the stationary and non-stationary KSNDMC stations.

Figure 5. (a) KSNDMC stations that experienced non-stationarity in their annual maximum rain-
fall series following an ADF test. (b,c) The parameters of the stationary and non-stationary GEV
models, respectively.

Spatial plots for the rainfall intensity values, given the storm duration and storm
frequency, are presented in Figure 6. To avoid further complications in the computation,
we considered only the stationary KSNDMC stations. Rainfall intensity values over the
KSNDMC stations were spatially interpolated over Bangalore using the kriging approach.
In Figure 6, the rows represent three durations—1, 3, and 5 h—while the columns represent
three return periods: 10, 25, and 50 years. The results show that the rainfall intensity
is highest at the center of the city for any storm duration and frequency. The spatial
heterogeneity in rainfall intensity is substantially higher for shorter storms as compared to
the longer storms, which is potentially linked to the influence of scattered thunderstorms
on the short-duration storms. Longer storms in the city typically occur as a result of the
monsoonal and post-monsoonal deep depressions covering the entire city which, in turn,
cause spatial homogeneity in the rainfall intensity. The IDF relationships are traditionally
more useful when they are developed for a region than for a gauge station. Therefore, the
city was divided into three zones using k-means clustering. Figure 7 depicts the KSNDMC
stations belonging to the three zones. Zone 1 contains the fewest stations, while Zone 2
has the most. During clustering, the three groups were overlapped with the results of the
ADF test. We found that the non-stationary KSNDMC stations were primarily located
in Zone 3. Therefore, stationary IDF relationships were developed for Zone 1 and Zone
2 (Figure 8a,b). At the same time, a non-stationary IDF relationship was developed for
Zone 3 (Figure 8c). In Figure 8, the rows represent the three return periods—10, 25, and
50 years—while the columns represent the three zones. The IDF relationship for Zone 3
yields the spatiotemporal variation in the IDF. However, the IDF relationships for Zone 1
and Zone 2 only consider a spatial variation, since the GEV parameters of the KSNDMC
stations located in these zones are considered to be stationary. The results show that spatial
uncertainty in the rainfall intensity decreases with the increase in the storm duration.
Similarly, rainfall intensity is typically higher for low-frequency storms as compared to
high-frequency ones. However, the IDF relationship between Zones 1 and 2 remains almost
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the same unless non-stationarity in the KSNDMC stations is considered. In Zone 3, the
95th percentile in the location parameter results in higher rainfall intensity as compared
to the 5th percentile. The results indicate that, as compared to the past, design storms
may experience a higher rainfall magnitude over Zone 3 in the future. Changes in IDF
relationships can be attributed to global climate and land-use changes. However, such
an attribution study is beyond the scope of the present work. In conclusion, we found
that spatial heterogeneity in IDF relationships exists at a finer resolution. However, at the
city-region level, spatial heterogeneity is not substantial unless non-stationarity in the AMR
series is considered.

Figure 6. Rainfall intensity values across Bangalore for a given storm duration and frequency.
Columns represent three return periods—(a–c) 10, (d–f) 25, and (g–i) 50 years—whereas the rows
represents three durations: (a,d,g) 1, (b,e,h) 3, and (c,f,i) 5 h. KSNDMC stations that witnessed
stationarity in their annual maximum hourly rainfall series were considered for the analysis. Spatial
interpolation was performed according to the kriging method.
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Figure 7. Map showing the three groups of KSNDMC stations. Clustering was performed by k-means,
where grouping was carried out based on the coordinates and elevation.

Figure 8. IDF relationships for the three zones across Bangalore (as the columns): (a,d,g) Zone 1,
(b,e,h) Zone 2, and (c,f,i) Zone 3. Rows represent the three return periods: (a–c) 10, (d–f) 25, and
(g–i) 50 years. Zone 1 and Zone 2 do not have any KSNDMC stations with non-stationarity in their
annual maximum hourly rainfall series, whereas Zone 3 experiences non-stationarity in its annual
maximum hourly rainfall series. For Zones 1 and 2, a spatial median, 75th percentile, and 25th
percentile of the GEV parameters were considered to develop the IDF relationships, whereas for Zone
3, the 95th percentile and 5th percentile of the trend component in the location were first estimated
for the KSNDMC stations. Following that, spatial processing was carried out in the same manner as
in Zones 1 and 2.

4.3. Areal Reduction Factor

For the final task, we computed the areal reduction factor for four storm durations as
a function of the circular area. The ARF values, as a function of the storm duration and
circular area, are presented in Figure 9. We found that the ARF values remained close to 0.8,
irrespective of the storm duration, until the circular area was less than 450 km2. The ARF
value for a 15-min storm was slightly lower than that for longer storms. However, as the
circular area increased beyond 450 km2, the ARF value decreased substantially. When the
entire area was considered, the ARF value reduced to 0.4 for a 15-min storm, indicating a
reduction in the areal rainfall estimate. Here, we should mention that longer storm events
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were estimated from the sub-hourly (15-min duration) rainfall series. Hence, the ARF
estimates related to longer storms may be subject to post-processing uncertainties. We
found that the ARF values for longer storms did not decrease substantially as the circular
area increased, indicating a close match between the point and areal estimates of rainfall.
In summary, the ARF results indicate that an urban rain-gauge network can substantially
influence urban hydraulic modeling by significantly reducing the volume of design storms.

Figure 9. Areal reduction factor for Bangalore for different storm durations as a function of the area.
The method suggested in US Weather Service Report TP-29 was used for ARF calculation.

5. Summary and Discussion

The present study analyzed the spatiotemporal variation in extreme rainfall for the
Indian city of Bangalore. To this end, we reconstructed the historic rainfall series over a
recently developed urban rain-gauge network using random forest regression. Long-term
rainfall data observed from two IMD stations were considered as the predictors. Following
the reconstruction, we investigated the non-stationarity in the annual maximum rainfall
series of hourly reconstructed data using the ADF test. The IDF relationships were derived
at the gauge level as well as at the city-region level. Finally, to understand the influence
of urban rain-gauge monitoring networks over hydraulic design, we computed the areal
reduction factor as a function of the storm duration and the circular area. The major
findings of this study are as follows:

1. A random forest model can efficiently reconstruct hourly rainfall time series. KSNDMC
stations located near IMD stations showed higher coefficient of determination values
as compared to those located farther from the IMD stations.

2. Almost half of the KSNDMC stations exhibited non-stationarity in their AMR series,
indicating that a stationary GEV model would not be sufficient to model the AMR at
these stations. Additionally, non-stationarity in AMR series also implies that the IDF
relationships for these stations are a function of time. We found that a non-stationary
extreme value distribution with a trend component in the location parameter can
efficiently model the AMR data.

3. Substantial spatiotemporal variations exist in the IDF relationships over the KSNDMC
stations and for the three city-regions. Rainfall intensity is highest at the center of
Bangalore for any rainfall duration and frequency, indicating the impact of severe
urbanization on the spatiotemporal characteristics of extreme rainfall. The results
confirm that the IDF relationships for non-stationary grid points have been changing
over the years.

4. The ARFs for different durations are close to 0.8 until the circular area is less than
450 km2. As the area increases beyond that, the ARF decreases to 0.4. The ARF
results indicate that the areal average rainfall estimated from point rainfall estimates
decreases as the area increases if a rain-gauge network is considered. An ARF value
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between 0.4 and 0.8 indicates an overestimation in design floods if the areal average
rainfall is considered directly in design flood calculation without applying the ARF.

The present study concludes that substantial variations in the extreme rainfall at-
tributes exist within the Bangalore city limits. Furthermore, the spatiotemporal variation
in the extreme rainfall attributes changes with the change in the rainfall duration and fre-
quency. Therefore, IDF relationships vary between gauge locations within the city. Similar
differences in the IDF properties are evident between city-regions as well. As the IDF
relationships vary between gauge stations and city-regions, the design storm estimates
within the city are also likely to vary. A similar situation was reported by a recent study
that analyzed rainfall variation over Hyderabad (India) using automatic weather station
records [35]. Their study found that the rainfall depth and intensity are typically higher for
the oldest part of Hyderabad compared to relatively newly developed areas.

The present study could have a significant influence on urban stormwater drainage
network designs. In recent years, a multi-institutional project has developed an early flood
warning system for Bangalore [36]. The findings of this study could assist in the flood-
warning project by improving the quality of meteorological forcing of the Storm Water
Management Model (SWMM) by developing robust IDF relationships and an ARF plot for
the city. Traditionally, urban drainage network designs do not consider the spatial variation
in design storm estimates, which could potentially lead to the underestimation of future
extreme rainfall events. This study successfully showed that a distributed urban drainage
network can efficiently yield the spatiotemporal variation in extreme rainfall. However, the
development and maintenance of such an urban rain-gauge network is subject to funding.
As climate change and climate variability influence extreme events in the near future, it
will be essential for hydraulic modelers to account for the spatial variation in design storms.
The present study provides a basis to pursue additional funding for building a resilient
urban stormwater drainage network.

It should be noted that there could be two major concerns related to the overall
framework of this study: The first concern is related to the performance of the random
forest model in efficiently reconstructing the hourly rainfall time series over the KSNDMC
stations. Previous studies have found that spatially interpolated rainfall time series can be
significantly different from the observed/measured series (for example, My et al., 2022 [37]).
The present study found that KSNDMC stations located close to IMD stations performed
better than those located farther away from the IMD stations. This is to be expected,
because the local features of a region (such as the geomorphic factors, i.e., elevation, land
use, lakes) influence the rainfall at the KSNDMC stations. Hence, the association between
IMD rainfall and KSNDMC rainfall weakens as the distance between the two stations
increases. Therefore, the reconstructed hourly rainfall series for the historic period might
not provide an appropriate representation of the observed rainfall. In turn, an inappropriate
reconstruction of the hourly rainfall series could potentially impact the estimation of IDF
relationships. The present study took multiple steps to ensure an appropriate representation
of the hourly rainfall series, including (i) considering seasonality in the model cross-
validation, (ii) preprocessing the model inputs, and (iii) employing multiple machine
learning models (although the results are not shown). Alternatively, hierarchical models
(such as Bayesian dynamic hierarchical models) could be considered to account for the
spatial correlation among the KSNDMC stations. A similar analysis cannot be efficiently
performed with the original KSNDMC station data for the period 2010–2019, since this
would lead to large uncertainties in the IDF relationships resulting from the low sampling
variability in the annual maximum rainfall series. Additionally, this study assumes that
the functional relationships between the predictand and predictor series remain stationary
over the calibration/validation and reconstruction periods. This assumption does not
restrict the model in transferring the non-stationarity in the IMD rainfall time series to the
KSNDMC rainfall time series. Previous studies have shown that linear models cannot yield
the non-stationarity in predictand time series if it is absent in the predictand series [38,39].
The present study found that almost half of the stations had experienced non-stationary
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in the reconstructed time series; therefore, a stationary functional relationship between
the predictand and the predictor does not play an influential role in the current problem.
Furthermore, a ‘stationary’ assumption is very common for bias correction and statistical
downscaling models for future projections [40]. It should be noted that the reconstruction of
urban hydrometeorological observations is a challenging task, since efficient reconstruction
approaches (such as tree-ring chronology) cannot be applied in the absence of input data.
The second major concern regards the non-stationary extreme value distribution (EVD).
This study assumes that non-stationarity in the EVD may arise in the location parameter.
Furthermore, a linear trend in the location parameter was considered in this study. However,
it should be noted that non-stationarity in the EVD may arise in the shape parameters, in
the scale parameters, or in any combination of parameters. Such non-stationarity may not
necessarily follow a linear trend. In such cases, the EVD parameters and hyperparameters
can be estimated from a maximum likelihood estimation. The best non-stationary EVD can
be selected based on the performance criteria. However, the present study refrained from
considering non-stationarity in the shape and scale parameters because the linear trend in
the location parameter was statistically significant.

The spatiotemporal variation in extreme rainfall within the city can be primarily at-
tributed to geomorphic features and population changes. Additionally, hydro-climatological
variables—such as SST teleconnection—can also potentially influence the spatiotemporal
variation, as they have a strong association with urban rainfall [41,42]. Climate change
and climate variability could have enhanced the spatiotemporal variation in cities as they
emerged as global hotspots. Bangalore, in particular, has spatial variations in its eleva-
tion and has experienced a significant increase in population over the last few decades;
both could have potentially influenced the statistical attributes related to the extremes.
It should be noted that the identification of the drivers influencing the spatiotemporal
variability is beyond the scope of this study. However, a future study could relate the
potential predictors (such as land use and land cover, population, elevation, etc.) with the
EVD parameters and hyperparameters using a simple multivariate linear regression model.
Several cities around the globe have experienced a similar situation to that of Bangalore,
i.e., an increase in population along with the growing impact of climate change. Therefore,
spatiotemporal variations in the extreme rainfall characteristics can be expected in other
such cities as well. If an urban rain-gauge network is developed, it would be possible
for researchers to estimate a robust areal reduction factor that could assist in hydraulic
design. For Bangalore, this study found a significant decrease in the ARF with the increase
in the circular area, indicating a substantial reduction in the volume of the design storms.
In conclusion, this study demonstrated the presence of spatiotemporal variations in the
extreme rainfall attributes of the city, which should be addressed with the assistance of an
urban rain-gauge network.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14233900/s1, Figure S1: Location of the city of Bangalore.
Figure S2: Histogram showing the number of stations, with respective p-values; 27 stations clearly
have stationary rainfall time series, while the others are non-stationary. Figure S3: Elbow curve, where
k = 3 is chosen. Table S1: Correlation between model-predicted extremes and observed extremes for
30 KSNDMC stations. Extreme rainfall is estimated using a point-over-threshold approach; the 95th
percentile of sub-daily rainfall is taken as the threshold. Table S2: Number of stations in each zone.
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Appendix A. The Random Forest Regression Algorithm

Random forest regression is considered to be one of the most efficient general-purpose
learning techniques [43]. It is primarily a collection of decision trees, where the outcome is
obtained as the average of predictions from all of the trees. Decision trees are made of nodes,
where each node is treated as a junction that splits the data based on certain conditions.
In the present study, the squared error of sample data was considered as the function to
measure the quality of the split. The major disadvantage of using single decision trees is that
they overfit the training data, leading to low predictive accuracy. The problem of overfitting
is avoided by building many individual trees, and the same procedure is extended and
represented as a random forest [29]. The present study considered 10 decision trees.

Compared to decision trees, a random forest algorithm calculates error rates with
a higher accuracy. In a random forest, as the number of trees increases, the error rate
converges. The out-of-bag (OOB) error is computed using the training set, which gives
a good estimate of the performance of the forest on unseen data. Hence, separate model
training and model validation are not required—the modeler can utilize the entire dataset.

Appendix B. Augmented Dickey–Fuller Test

The augmented Dickey–Fuller test (ADF test) is a statistical significance test used to
investigate whether a given time series is stationary or non-stationary. The null hypothesis
states that a unit root (α in Equation (A1)) is present and, hence, the time series is non-
stationary. The mathematical expression for the Dickey–Fuller test is provided below.

yt = c + βt + αyt−1 + φ ∆Yt−1 + et (A1)

The Dickey–Fuller test investigates whether the unit root in Equation (A1) is 1. In
Equation (A1), yt−1 is the lag1 of the time series, while ∆Yt−1 is the first-order difference
of the time series. The augmented Dickey–Fuller test evolved based on Equation (A1),
which includes higher-order regressive terms and is one of the most common forms of unit
root test.

yt = c + βt + αyt−1 + φ1 ∆Yt−1 + φ2 ∆Yt−2 + . . . φp ∆Yt−p + et (A2)

Since the null hypothesis assumes the presence of a unit root, the statistical significance
of the unit root can also be estimated as a p-value, which should be less than the significance
level (e.g., 0.05) in order to reject the null hypothesis. A histogram exhibiting p-values
across the KSNDMC stations is presented in the Supplementary Materials (Figure S2)

Appendix C. K-Means Clustering

K-means clustering is a commonly used unsupervised learning algorithm to group a
set of data. The grouping of data, known as clustering, is performed to achieve minimal
coherence within the clusters. Coherence is measured as sum of squares, and it is termed
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as inertia. The optimal number of clusters is chosen from an elbow curve, as shown in the
Figure S3 the Supplementary Materials. An elbow curve is a plot of the within-cluster sum
of squares (wcss), which is a measure of the variability of the observations within each
cluster and the number of groups, k (in the present study, k varies from 1 to 5).

wcss = ∑k
l=1 ∑m

p=1 distance(dp, cl) (A3)

where c is the cluster centroid, while d represents the data points in each cluster. The
number of clusters varies from 1 to k, and the number of data points within the cluster
varies from 1 to m. In the present study, latitude, longitude, and elevation were chosen as
the parameters to decide how to group the station data. Table S2 in the Supplementary
Materials shows the number of stations in each zone.

Appendix D. Areal Reduction Factor

The areal reduction factor (ARF) relates the point rainfall to the areal rainfall. Urban
hydraulic modeling requires the knowledge of temporal and spatial variability of average
rainfall over a region, making ARF analysis essential for the modeling. The ARF values
range from 0 to 1. The present study used the following equation, originally suggested by
the Technical Paper 29 (U.S. Weather Bureau 1957), to calculate the ARF:

ARFTP−29 =
1
n ∑n

j=1 R̂J
1
k ∑k

i=1(
1
k ∑n

j=1 Rij
(A4)

where

k = number of stations in the area.
n = number of years.

Rij = annual maximum point rainfall for year j at station i = max (rj
i1 , rj

i2 . . . rj
id).

d = number of specific durations in the year.

rj
iu = specific duration of point precipitation at station i in year j on day u.

Rj = annual maximum areal rainfall for year j = max (r̂j
1 , r̂j

2 . . . r̂j
d)

r̂j
1 = specific duration of areal precipitation at specific time u for year j.

The equation for ARF was obtained from the work of Allen and Degaetano, 2005. In
this study, durations of 15 min, 30 min, 1 h, and 2 h were considered for the areas ranging
from 100 km2 to 740 km2. The circular area was calculated using the procedure suggested
by Allen and Degaetano in 2005 [34].
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