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Abstract: Accurate shallow water bathymetry data are essential for coastal construction and manage-
ment, marine traffic, and shipping. With the development of remote sensing satellites and sensors, the
satellite-derived bathymetry (SDB) method has been widely used for bathymetry in shallow water ar-
eas. However, traditional satellite bathymetry requires in-situ bathymetric data. Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2) with the advanced high-resolution topographic laser altimeter system
(ATLAS) provides a new technical tool and makes up for the shortcomings of traditional bathymetric
methods in shallow waters. In this study, a new method is proposed to automatically detect photons
reflected from the shallow seafloor with ICESat-2 altimetry data. Two satellite bathymetry models
were trained, to obtain shallow water depth from Sentinel-2 satellite images. First, sea surface and
seafloor signal photons from ICESat-2 were detected in the Oahu (in the U.S. Hawaiian Islands) and
St. Thomas (in the U.S. Virgin Islands) sampling areas, to obtain water depths along the surface
track. The results show that the RMSE is between 0.35 and 0.71 m and the R2 is greater than 0.92,
when compared to the airborne LiDAR bathymetry (ALB) data in the field. Second, the ICESat-2
bathymetric points from Oahu Island are used to train the Back Propagation (BP) neural network
model and obtain the SDB. The RMSE is between 0.97 and 1.43 m and the R2 is between 0.90 and
0.96, which are better than the multi-band ratio model with RMSE of 1.03–1.57 m and R2 of 0.89–0.95.
The results show that the BP neural network model can effectively improve bathymetric accuracy,
when compared to the traditional multi-band ratio model. This approach can obtain shallow water
bathymetry more easily, without the in-situ bathymetric data. Therefore, it extends to a greater extent
with the free ICESat-2 and Sentinel-2 satellite data for bathymetry in shallow water areas, such as
coastal, island and inland water bodies.

Keywords: ICESat-2; Sentinel-2; shallow water; bathymetry; BP neural network model; multi-band
ratio model

1. Introduction

As the interaction zone between the sea and land, or between islands and the surround-
ing environment of coral reefs, the shallow water provides the basic physical environment
for the sustainability and biodiversity of marine and coastal ecosystems [1,2]. Underwa-
ter topographic survey in shallow water area is a basic marine surveying and mapping
work to obtain three-dimensional coordinates of seafloor topographic points, whose core
is bathymetry [3]. The water depth is an important topographic element in the shallow
sea. Bathymetry in shallow water areas is important for coastal construction; marine safety;
resource survey and development; fish and marine industries; marine transportation and
shipping; environmental protection and management; and island coastal zone study and
management [4–6]. In some areas, shallow water bathymetry changes over time due to sea-
water erosion and sediment transport. Therefore, acquiring high-resolution shallow water
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bathymetric data accurately and efficiently with low cost is the goal of ocean surveying
and mapping.

Traditional shallow water bathymetry is mainly measured by shipborne single-beam
or multi-beam echosounders [7–9], airborne LiDAR [10–12], SAR [13,14], optical remote
sensing [15–17] and other methods, but not all of them can be balanced with each other
in terms of measurement accuracy, efficiency and cost [18]. For example, the accuracy of
shipborne sonar measurements is high, but it consumes more time with high costs. It is so
limited in very shallow areas and difficult to deploy near the coast [19–21]. The airborne
LiDAR system has limitations in measurement work, due to the difficulty of develop-
ment and the complexity of data processing, and only commercial software provided by
companies can be used, which is costly and time consuming [22].

With the development of remote sensing technology, satellite remote sensing data are
increasing for bathymetry. Water depth retrieval using multispectral satellite images from
satellites such as WorldView, Landsat and Sentinel, is called satellite-derived bathymetry
(SDB), which determines a mathematical model (linear, polynomial, exponential, etc.) from
radiative transfer formula and uses the model to calculate its depth. However, SDB accuracy
is generally lower than that of active surveys due to correction of satellite images and in-situ
bathymetric data, as well as the limitations of mathematical models. The development
of machine learning and deep learning may improve bathymetric accuracy. For example,
Back Propagation (BP) neural network has been used in the field of remote sensing image
processing to improve the quality.

In order to reduce the consumption of manpower and time, improve the accuracy of
measurement, and overcome the limitations of terrain and instruments, active bathymetry
technology based on LiDAR is being increasingly used for shallow water bathymetry. As
the successor of ICESat, ICESat-2 LiDAR altimetry satellite launched in September 2018 and
carried the advanced high-resolution topographic laser altimeter system (ATLAS), which
provides new data for shallow water bathymetry. Compared to conventional shallow water
bathymetry methods, ICESat-2 laser satellites can achieve large-range, periodic and low-cost
acquisition of shallow water bathymetry data, which creates some compensation for the lack
of bathymetric information in some areas. In recent years, ICESat-2 bathymetry, instead of
in-situ bathymetry data, combined with satellite images for shallow water bathymetry, has
been extensively studied. Compared with the traditional single-data bathymetry method,
this method has better performance in terms of accuracy and universality. Moreover, it is
easier to invert the water depth by simply downloading ICESat-2 products and satellite
images online for some remote areas [23]. For example, Forfinski-Sarkozi et al. [24] used
the ICESat-2 altimeter simulator MABEL (Multiple Altimeter Beam Experimental LiDAR)
to evaluate the bathymetric capability in details, and the results showed that MABEL
can measure water depths up to 8 m with a root mean square error of 0.7 m. Hsiao-Jou
et al. [25] combined ICESat-2 and Sentinel-2 data to measure the shallow water depth
of six islands and reefs in the South China Sea. It was demonstrated that the RMSE of
ICESat-2 bathymetry is 0.26–0.61 m when compared with airborne laser data, and the
RMSE of the SDB is 0.50–0.90 m. Zhang et al. [26] trained four typical models with ICESat-2
bathymetric points and multispectral images, and produced bathymetric maps of Coral
Island, Ganquan Island and Lingshang Reef in the Xisha Islands, China, where the RMSE
of ICESat-2 bathymetry is less than 0.52 m and the R2 is greater than 0.93, and the average
RMSE of the SDB is 0.16 and the average R2 is 0.90. For the Oahu area (U.S. Hawaiian
Islands), Liu et al. [27] developed a downscaled bathymetric mapping approach (DBMA)
that uses the water depth from multitemporal Landsat-8 data to calibrate the empirical
model for high spatial resolution imagery (e.g., Sentinel-2A/B, GaoFen-1/2, ZiYuan-3,
and WorldView-2). The results showed that DBMA provided high accuracy for depth,
ranging from 0 to 12 m for clear waters (0 m to 5 m for turbid waters), with a root mean
square error (RMSE) smaller than 2 m. For the St. Thomas area, Parrish et al. [28] analyzed
the performance of ICESat-2 bathymetric mapping using an example near the U.S. Virgin
Islands, and demonstrated that ATLAS had a maximum depth mapping capability of nearly



Water 2022, 14, 3862 3 of 19

1 Secchi in depth for water depths up to 38 m and had agreement within 0.43—0.60 m root
mean square error over 1 m grid resolution.

However, these studies of bathymetry based on ICESat-2 and Sentinel-2 have the
following problems: (1) ICESat-2 bathymetry has been studied in only a few individual
regions, and their methods and results may not be applicable for other regions. (2) For
satellite-derived bathymetry, the traditional mathematical models do not have good realiza-
tions in terms of model training and result accuracy. In this study, a method was proposed
to extract bathymetric signals directly from ICESat-2\ATL03 data to obtain bathymetric
points, in the sampling area of Oahu and St. Thomas. The ICESat-2 bathymetry method
was compared and validated in two completely different coastal environments. Second, the
BP neural network model was trained using ICESat-2 bathymetry points in the Oahu region
and used to generate bathymetric maps from Sentinel-2 images, which was compared with
the multi-band ratio model. Finally, the obtained bathymetric results were validated, and
their performance was compared and analyzed using in-situ bathymetric data.

2. Materials and Methods
2.1. Study Areas and Data
2.1.1. Study Areas and In-Situ Bathymetric Data

The first study area is the south of St. Thomas in the Virgin Islands of the eastern
Caribbean Sea (Figure 1). The St. Thomas is a volcanic island with a barely grassed
and rugged mountain range running east and west. The in-situ data are high-precision
airborne LiDAR bathymetry data, which were collected by the USGS and NOAA in March
2014 using the second-generation Experimental Advanced Airborne Research LiDAR
(EAARL-B). EAARL-B is an airborne pulsed laser ranging system for measuring ground
elevation, vegetation canopy and coastal topography. The time difference between the
emission and reception of the laser beam is recorded. The aircraft flew at a speed of
approximately 55 m per second in the target area and at an altitude of approximately
300 m. The laser ranging system has the root mean square error of 13.5 cm in the vertical
direction [29]. Airborne laser bathymetry data from this area are used to evaluate the
bathymetric accuracy and bathymetric penetration performance of ICESat-2.
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Figure 1. Map of the St. Thomas Island study area, which includes the ICESat-2 ground tracks.
From left to right: 20181122GT3R, 20181122GT2R, 20190221GT2L, 20181122GT1R, 20181122GT1L,
20190221GT1L.

The other study area is located in the west of Oahu (Figure 2), which is one of the eight
islands of the Hawaiian archipelago. The area of the island in this area is 1574 km2, ranking
third in the Hawaiian archipelago. The island has the largest city in the Pacific Ocean,
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Honolulu, and Pearl Harbor. The coast of the island is winding, but there are many coral
reefs along the coast and the water type is clear water [30]. This area has shallow water
LiDAR bathymetry data from SHOALS, provided by the University of Hawaii Coastal
Geology Group website. It is used to verify and analyze the bathymetric accuracy of
ICESat-2 and Sentinel-2.

Water 2022, 14, 3862 4 of 19 
 

 

The other study area is located in the west of Oahu (Figure 2), which is one of the 

eight islands of the Hawaiian archipelago. The area of the island in this area is 1574 km2, 

ranking third in the Hawaiian archipelago. The island has the largest city in the Pacific 

Ocean, Honolulu, and Pearl Harbor. The coast of the island is winding, but there are many 

coral reefs along the coast and the water type is clear water [30]. This area has shallow 

water LiDAR bathymetry data from SHOALS, provided by the University of Hawaii 

Coastal Geology Group website. It is used to verify and analyze the bathymetric accuracy 

of ICESat-2 and Sentinel-2. 

 

Figure 2. Map of the Oahu Island study area, which includes the ICESat-2 ground tracks. From left 

to right: 20200614GT2L, 20201205GT1L, 20190908GT1R, 20190908GT1L. 

2.1.2. ICESat-2 Data 

ICESat-2 satellite is equipped with an Advanced Terrain Laser Altimeter System (AT-

LAS), which was launched in September 2018. It uses photon counting LiDAR and an 

auxiliary system to calculate the time taken by the laser from emission to return, to deter-

mine the geodetic latitude and longitude of the photon. The instrument pulse frequency 

is 10 kHz, the nominal ground speed is approximately 7000 m/s and the footprint points 

on the ground are spaced at approximately 0.7 m [31]. The three pairs of laser beams from 

ATLAS form six ground tracks. The two ground tracks on the left and right of the same 

pair are separated by about 90 m. The two different pairs of ground tracks are separated 

by about 3.3 km [32]. 

ICESat-2 provides 21 data products divided into four levels including Level-1, Level-

2, Level-3A, Level-3B. The data used in this study are Level-2 level product ATL03 (Global 

Geolocation Photon Data). ATL03 data provide time, latitude, longitude, ellipsoidal 

height, and along-track flight distance for each photon from ATLAS. Altitude is corrected 

for several geophysical phenomena, such as the effects of atmospheric delays, solid tides, 

system pointing deviations, etc. However, the bathymetric errors caused by refraction ef-

fect have not been corrected [33,34]. 

ATL03 data provide the confidence level associated with each photonic event (land, 

ocean, sea ice, land ice, inland water) selected as a signal. The confidence level ranges from 

0 to 4, where 0 is noise; 1 is adding buffer, but the algorithm is classified as background; 

2 is low confidence; 3 is medium confidence; 4 is high confidence. The higher the 

Figure 2. Map of the Oahu Island study area, which includes the ICESat-2 ground tracks. From left
to right: 20200614GT2L, 20201205GT1L, 20190908GT1R, 20190908GT1L.

2.1.2. ICESat-2 Data

ICESat-2 satellite is equipped with an Advanced Terrain Laser Altimeter System
(ATLAS), which was launched in September 2018. It uses photon counting LiDAR and an
auxiliary system to calculate the time taken by the laser from emission to return, to deter-
mine the geodetic latitude and longitude of the photon. The instrument pulse frequency
is 10 kHz, the nominal ground speed is approximately 7000 m/s and the footprint points
on the ground are spaced at approximately 0.7 m [31]. The three pairs of laser beams from
ATLAS form six ground tracks. The two ground tracks on the left and right of the same
pair are separated by about 90 m. The two different pairs of ground tracks are separated by
about 3.3 km [32].

ICESat-2 provides 21 data products divided into four levels including Level-1, Level-2,
Level-3A, Level-3B. The data used in this study are Level-2 level product ATL03 (Global
Geolocation Photon Data). ATL03 data provide time, latitude, longitude, ellipsoidal height,
and along-track flight distance for each photon from ATLAS. Altitude is corrected for
several geophysical phenomena, such as the effects of atmospheric delays, solid tides,
system pointing deviations, etc. However, the bathymetric errors caused by refraction
effect have not been corrected [33,34].

ATL03 data provide the confidence level associated with each photonic event (land,
ocean, sea ice, land ice, inland water) selected as a signal. The confidence level ranges from
0 to 4, where 0 is noise; 1 is adding buffer, but the algorithm is classified as background;
2 is low confidence; 3 is medium confidence; 4 is high confidence. The higher the confidence
level, the more likely it is the photon signal. The algorithm assumes that noisy photons
follow the Poisson distribution and detects signal photons with outliers of the Poisson
distribution. The noise can be removed by the ATL03’s own labelling results to identify
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the surface and bottom of the water. However, due to attenuation and scattering effects in
water, the distribution of signal and noise photons is very different from that of atmospheric
photons. Therefore, many signal photons may be identified as noise, while many noise
photons are retained, and the denoising results that come with ATL03 should be used with
caution. Therefore, this study proposes a method to automatically detect signal photons
in the raw ATL03 data and determine the surface and bottom of the water, in place of the
labeling results that come with the ATL03 product.

2.1.3. Sentinel-2 Satellite Image

The Sentinel-2A and Sentinel-2B bipolar orbiting satellites were launched in June 2015
and March 2017, respectively, which carried the high-resolution multispectral imaging
(MSI) device at an altitude of 786 km. It can cover 13 spectral bands with a width up to
290 km, and a ground resolution of 10 m, 20 m and 60 m, respectively. The revisit period of
one satellite is 10 days, and the two satellites are complementary. A complete image of the
Earth’s equatorial region can be completed every 5 days. For the higher latitudes of Europe,
this cycle takes only 3 days. It is mainly used to monitor the land environment and can
provide information on the growth of terrestrial vegetation, soil coverage, the environment
of inland rivers and coastal areas, etc. [35,36].

Level-1C images of Sentinel-2A and Sentinel-2B for this study are available free of
charge from the ESA Sentinel science data center. The images are geometrically projected
with the UTM/WGS84 (Universal Transverse Mercator/World Geodetic System 84) with
top-of-atmosphere reflectance. Level-1C images are geometrically corrected orthophotos
and are not radiometrically calibrated or atmospherically corrected. Therefore, it is nec-
essary to process the Level-1C data into Level-2A data. Level-2A images are the bottom
of atmosphere corrected reflectance that has undergone radiometric calibration and atmo-
spheric correction. In the processing from Level-1C to Level-2A datasets, the used Level-1C
images are processed using the Sen2Cor plugin [37]. This plugin is embedded in the free
Sentinel app platform SNAP [38]. Sen2Cor is based on the scene classification and look-
up tables from the radiative transfer model (LibRadtran). It is primarily concerned with
terrestrial areas but is the default Level 2A processor for atmospheric correction [39,40].

2.2. Methods
2.2.1. Shallow Water Bathymetry Mapping

The main work of this study is first to search the ICESat-2 laser altimetry points and
Sentinel-2 imagery in the study area. Next, the histogram of the elevation distribution is
applied to the ICESat-2 point cloud, to find and filter out the surface photons. Multiple
moving median filtering is performed on the remaining photons to find sea floor signal
photons. Next, accurate ICESat-2 bathymetric points are obtained by calculating the
elevation difference between the surface and seafloor signal photon points and applying a
refraction correction. The Sentinel-2 images are pre-processed to obtain reflectance for each
band. The bands reflectance and water depth of ICESat-2 bathymetry points are used to
train the multi-band ratio model and the BP network model to invert the water depth from
Sentinel-2 images. Finally, the water depths detected by ICESat-2 and the SDB derived
from Sentinel-2, are validated using in-situ bathymetric data. Figure 3 shows the workflow
of this study.

2.2.2. Detection of ICESat-2 Bathymetry Points

When the ICESat-2 satellite operates, the ATLAS instrument emits laser pulses at a
fixed frequency. The corresponding ATL03 product is the time and space information of all
photonic point clouds. The point cloud profile obtained along the flight direction is shown
in Figure 4.
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Figure 4. ATL03 photon point cloud cross−section.

Although the ATLAS laser beam can penetrate the water surface, most photon reflec-
tions come from the sea surface. The raw data are divided into multiple spatial segments
with an aggregation distance of 1000 m along the flight path, and a two-degree Gaussian
distribution is applied to each spatial segment to fit a histogram. Because of the large
number of photons that can accumulate near the surface and the seafloor, bimodal his-
tograms can be formed in most spatial segments. The primary wave crest is close to the
sea surface and the secondary wave crest is close to the sea floor to determine the sea
surface elevation [25]. The vertical bin size in the histogram of the elevation distribution is
an empirical value of 0.1 m, which is selected according to the Sturges formula [25,41] of
Equation (1).

C = R/(1 + log 2n) (1)

where C is the size of the vertical bin, R is the vertical variation range, and n is the number
of samples. The two-degree Gaussian fitting function is as follows (Equation (2)):

h = a1 e

(
− (x − µ1)

2

σ2
1

)
+a2 e

(
− (x − µ2)

2

σ2
2

)
(2)

where a1 and a2 are peak height (the number of photons in the elevation interval), µ1 and µ2
are the expected value corresponding to the wave crest (the elevation value corresponding
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to the wave crest), σ1 and σ2 are the standard deviation of the wave crest (related to the full
width half maximum). Photons with elevations between µ1 ± 3σ1 are considered to be the
ocean surface.

The photons on the surface of the ocean and above are removed and the remaining
photons are those reflected underwater. Most of these remaining photons are reflected
from the seafloor. For these photons, because the elevation of the seafloor signal photons
is generally in the middle, multiple median filtering is used to detect the seafloor signal
photons. This is due to the different distribution of the seafloor topography in different
areas and the uneven distribution density of photon point cloud. In order to achieve higher
accuracy and resolution in the final results, two different median filtering methods are used
in the two study areas from which the benthic photons are detected, to ensure that the
noise points are removed, and the true benthic signal photons are retained.

Median filtering retains only one bathymetric point in each filter window, resulting in
many true bathymetric signals being filtered out, and resulting in very few bathymetric
points. This study uses an improved median filtering method by setting the filtering step
size during filtering. The end position of the previous filter window is not the start position
of the next filter window, but the start position of the previous filter window plus the
filter step size is the start position of the subsequent filter window. This means that there
are overlapping parts between adjacent filtering windows, so that the real bathymetric
signal points filtered out in the previous filtering have a chance to be retained in the next
filtering. In this study, in the sampling area of Oahu, the number of photon points is used to
determine the size of the filter window and the filter step size. In the St. Thomas sampling
area, the along-orbit flight distance is used to determine the filter window size and filter
step size. The value of the wave window size and the filter step size is obtained from
the empirical value of multiple experiments. For example, in the Oahu area, 25 photon
points are used as the filter window size, and 5 photon points are used as the filter step
size. Two times the median filters are applied in the same experiment, to remove noise. The
remaining photons are those reflected from the seafloor, and the elevations of the remaining
photons are calculated.

2.2.3. Refraction Correction

The rate of propagation of photons in air is approximately 2.997 × 108 m/s. When
photons from ATLAS enter the ocean and continue to travel in the water, they are re-
fracted at the air–water interface. Once in seawater, the rate of photons will change to
2.235 × 108 m/s, when the photon travels at a lower speed and changes direction. There-
fore, refraction introduces the horizontal offset and the vertical offset, compared to the
photon geolocation given in the ATL03 product. The geographic coordinates of the photons
given in the ATL03 data are calculated only considering the propagation of the laser in
a single air medium. This means that a lower rate will allow photons to travel a greater
theoretical distance than the actual distance, making the bottom of the water deeper than
the actual depth [23,42]. Therefore, the refraction error must be corrected.

Figure 5 is the schematic diagram of the refraction of the laser beam at the interface of
air and water. The red points are the points obtained with the line propagation condition,
and the green point is the real photon point after refraction correction. Because the satellite
observes the earth almost vertically, assuming the average orbital altitude of 496 km and the
ground beam spacing of 3.3 km, the actual maximum value of θ_1 in normal mode is only
arcsin (3.3 km/496 km) ≈ 0.38◦. The horizontal correction (≈ 0.003D) is calculated to be
negligible and can cause a maximum horizontal offset of 9 cm at a depth of 30 m [18,23,43].
Therefore, only the refraction correction in the vertical direction needs to be calculated.
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The law of refraction can be expressed as follows:

n2

n1
=

sin θ1

sin θ2
(3)

where n1 (≈1.00029) and n2 (≈1.34116) are the refractive index of air and water bodies,
respectively. Although the refractive index of seawater varies depending on the temperature
and salinity of the water, and the wavelength of the laser beam, the error here is negligible.
θ1 and θ2 are the incident angle and the refraction angle, respectively. The law of refraction
can be expressed as follows by the relationship of trigonometric functions.

n2

n1
=

S
R

(4)

where R is the actual distance the laser beam would travel underwater if refraction occurred,
and S is the theoretical distance the laser beam would travel underwater assuming no
refraction occurred. Therefore, the calculation formula of water depth after refraction
correction is as follows:

Z = D·n1

n2
(5)

where Z is the water depth after refraction correction, and D is the water depth without re-
fraction correction. The water depth value (D) can be obtained by calculating the difference
between the photon elevation of the seafloor and the photon elevation of the sea surface.

Finally, the tidal heights from the tidal website were used to convert the datum from
WGS84 to Mean Lower Low Water (MLLW).

2.2.4. Satellite-Derived Bathymetry Based on BP Neural Network Model

The multilayer feedforward network using the BP algorithm is the most widely used
neural network at present, which is called the BP neural network. Its biggest function
is to map complex nonlinear functional relations. BP neural network is a self-adaptive
nonlinear dynamic network system composed of neuron models, thresholds, activation
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functions, and so forth, connected to each other. The basic structure of the multilayer
feedforward neural network is from front to back: input layer, hidden layer (1 or more
layers), output layer. Figure 6 shows the satellite-derived bathymetry structure based on BP
neural network model. The errors generated in the training process of BP neural network
are in accordance with the backward propagation principle. It is widely used in the field of
remote sensing image processing [44,45].
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The learning process of this neural network consists of two processes: the forward
propagation of the signal, and the backward propagation of the error. In forward prop-
agation, the input samples are passed in from the input layer and then processed layer
by layer, through each hidden layer before being passed to the output layer. If the actual
output of the output layer does not match the desired output, it is transferred to the back
propagation of the error. The back propagation of the output error is in some form layer by
layer, through the hidden layer to the input layer. The error is apportioned to all neurons
in each layer to obtain the error signal of each layer. They are used to adjust the weights of
the neurons in each layer. The weights are continuously adjusted by cycling through the
input and output sample sets, in order to reduce the output errors of all input samples to a
satisfactory accuracy. It takes the specified training error as the target and continuously
adjusts and updates the training error that does not meet the target, from the output layer
to the input layer, until it reaches the target error and stops iterative updates.

For the training of this network, the reflectance of the red, green and blue bands
corresponding to the ICESat-2 bathymetry points in the Sentinel-2 image is used as the
input layer, and the water depth obtained by ICESat-2 is used as the output layer. The
number of nodes in the hidden layer is 10. The training data accounts for 70% of the
input data, the validation data accounts for 15%, and the test data accounts for 15%. The
activation function is Sigmoid, the training function is Trainlm (this training function
uses the Levenberg-Marquardt algorithm, the memory requirement is the largest, and the
training speed is the fastest). The number of trainings is 1000, the learning rate is 0.001, and
the training requirement accuracy is 10−7.

In addition, the satellite-derived bathymetry establishes the mapping between the
radiant energy of the water sampling unit and the water depth, based on the radiative
transfer equation or empirical equation. It uses the grey scale value (or reflectance) of
the optical remote sensing image to calculate the water depth value of each image pixel.
In general, the reflectance of the water surface decreases as the water depth increases.
However, the attenuation degree of the shorter wavelength band is smaller than that of the
longer wavelength band, which makes the logarithmic ratio of the reflectance of different
wavelength bands, have a higher correlation with the water depth. Lyzenga et al. proposed
a band ratio model using LiDAR bathymetry data combined with satellite remote sensing
imagery. It links the water surface remote sensing reflectance of the two bands (blue and
green bands) with the water depth and derives the logarithmic conversion relationship,
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between the ratio of the high absorption band and the low absorption band, as shown in
Equation (6) [46–49]. Then the linear model is built between ratio and water depth.

R =
ln [n R w(λ i)]

ln [n R w(λ j)]
(6)

where R is the band ratio, n is a constant and Rw is the reflectance of bands λi and λj.
In recent years, Tian [50] improved the traditional logarithmic transformation model.

It adjusts the logarithmic adjustment factor to 2 factors for each band, and the results
show a significant improvement in bathymetric inversion capability [4]. The logarithmic
transformation relationship in the improved model is shown in Equation (7).

R =
ln [m R w(λ i)]

ln [n R w(λ j)]
(7)

At present, the commonly used linear regression remote sensing water depth models
mainly include single-factor model, two-factor model, multi-factor model, etc. The model
used in this study is the multi-factor model (Equation (8)).

Z = a1 R1+a2 R2 +a3 R3+b (8)

where a1, a2, a3 and b are regression coefficients, and R1, R2 and R3 are the results of
Equation (7) with the blue-green bands, the blue-red bands and the green-red bands as
inputs, respectively.

3. Results and Analysis
3.1. ICESat-2 Bathymetric Points

Since the latitude and longitude of the ICESat-2 bathymetric photon points and the ref-
erence data points cannot be exactly the same, the natural proximity interpolation method
is used to interpolate the reference data to the position of the ICESat-2 bathymetry photon
points, without extrapolating to the area without data. Natural proximity interpolation
is expected to perform well, even if the interpolation points are at the boundaries of the
interpolated dataset, since this interpolation is computed using area-based weights [23,51].

The acquisition dates of ICESat-2\ATL03 in the Oahu area are 8 September 2019,
14 June 2020 and 5 December 2020. The acquisition dates of ICESat-2\ATL03 in the St.
Thomas area are 22 November 2018 and 21 February 2019. This study uses the methods in
Sections 2.2.2 and 2.2.3 to derive nearshore shallow water depths from ICESat-2 data for
three dates (four ground tracks) on western Oahu, and two dates (six ground tracks) on
St. Thomas. The ICESat-2 bathymetry performance is verified and analyzed by comparing
ICESat-2 bathymetry points, with LiDAR bathymetry data in the area. The evaluation
metrics include mean absolute error (MAE), mean relative error (MRE), root mean square
error (RMSE), and coefficient of determination (R2).

Figures 7 and 8 show the raw ICESat-2 photons and processing results for the Oahu
area on 8 September 2019. Figures 9 and 10 show the raw photons and processing results
for the St. Thomas area on 21 February 2019. Figure 11 shows the detected signal photons
points reflected from the water surface and bottom of the Oahu area from ICESat-2 data
from four ground tracks. Figure 12 shows the detected signal photons points reflected from
the water surface and bottom of the St. Thomas area from ICESat-2 data from six ground
tracks. The blue points are signal photons reflected from the sea surface, and the black
points are signal photons reflected from the seafloor. Figure 13 shows the comparative
correlation between ICESat-2 bathymetric points obtained in the two study areas, and
airborne LiDAR bathymetry data. Table 1 shows the results of the comparison of the
four ground tracks in the Oahu area. Table 2 shows the results of the comparison of the
six ground tracks in the St. Thomas area. For the four surface tracks in the Oahu area, MAE
is between 0.31 m and 0.51 m, MRE (defined as mean absolute error divided by mean water
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depth) is between 2% and 8%, RMSE is between 0.35 m and 0.58 m, and R2 is greater than
0.92 for all four tracks. For the six surface tracks in the St. Thomas area, MAE is between
0.26 m and 0.51 m, MRE values are all less than 3%, RMSE is between 0.37 m and 0.71 m,
and the R2 of the six ground tracks are all greater than 0.99.
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Table 1. Validation of ICESat-2 bathymetry results in Oahu area.

Date Ground Track MAE (m) MRE RMSE (m) R2

2019/09/08 1L 0.32 8% 0.35 0.92
2019/09/08 1R 0.31 7% 0.39 0.97
2020/06/14 2L 0.47 2% 0.58 0.98
2020/12/05 1L 0.51 7% 0.55 0.93

Table 2. Validation of ICESat-2 bathymetry results in St. Thomas area.

Date Ground Track MAE (m) MRE RMSE (m) R2

2018/11/22 1L 0.37 3% 0.54 0.99
2018/11/22 1R 0.32 2% 0.43 0.99
2018/11/22 2R 0.52 3% 0.71 0.99
2018/11/22 3R 0.34 1% 0.41 0.99
2019/02/21 1L 0.26 2% 0.37 0.99
2019/02/21 2L 0.41 2% 0.54 0.99

In general, the bathymetric data obtained from the ICESat-2 satellite agrees well with
the in-situ bathymetric dataset. Comparing the ICESat-2 bathymetry results for the Oahu
and St. Thomas sampling areas, it can be seen that the maximum detection depth for the
Oahu sampling area does not exceed 30 m, with greater measurement error. In contrast,
the St. Thomas sampling area has the maximum detection depth of approximately 35 m,
with much lower error and 99% correlation with the validation data. It shows that the
relative error of bathymetry in the St. Thomas area is smaller, the correlation is higher,
and the bathymetric results are better if the area is at the same depth. This may be mainly
because ICESat-2 photon points reflected from the seafloor in the Oahu area, are much less
dense and unevenly distributed. In contrast, the ICESat-2 photon points reflected from
the seafloor in the St. Thomas area are denser and more evenly distributed. The filtering
with the distance along the track as the filter window retains more noise points, while the
method with the number of photons as the filter window gives better results. Better results
are obtained by using the along-orbit distance as a filter window, in the St. Thomas area.

The results show that ICESat-2 satellite altimetry data can obtain high accuracy shallow
water bathymetry. It can be used as training data for shallow water bathymetry from remote
sensing images and provide information reference for some areas where bathymetry data
are lacking.

3.2. Satellite-Derived Bathymetry with Sentinel-2 Imagery

In the sampling area of Oahu, ICESat-2 bathymetry points and preprocessed Sentinel-2
images are used to train BP neural network model, which is compared to multiband ratio
model. The two trained models are used to derive bathymetry from Sentinel-2 images and
compared with airborne LiDAR bathymetry data to verify their accuracy.

Although the maximum water depth detected by ICESat-2 in the sampling area
near Oahu is about 30 m, more than 92% of the points have a water depth of less than
20 m. Therefore, only results for water depths between 0 m and 20 m are retained when
calculating water depths using Sentinel-2 images. Figure 14 shows the results of the satellite-
derived bathymetry for the model trained using ICESat-2 bathymetry points. Sentinel-2
images were acquired on 10 December 2019, 30 December 2019, 28 January 2022 and
22 February 2022. Figure 15 and Table 3 show the comparison and verification results of
SDB and in-situ bathymetry data, where MBR is the multi-band ratio model, BPNN is the
BP neural network model, N is the number of bathymetric points of the SDB, RMSE is the
root mean square error and R2 is the coefficient of determination.
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Table 3. Validation results of SDB in the Oahu area.

Date
MBR BPNN

N RMSE (m) R2 N RMSE (m) R2

2019/12/10 87,065 1.03 0.95 88,322 0.97 0.96
2019/12/30 134,134 1.49 0.89 128,952 1.43 0.90
2022/01/28 129,175 1.57 0.92 130,786 1.18 0.93
2022/02/22 133,228 1.51 0.92 133,228 1.29 0.94

For the multiband ratio model, the RMSE is between 1.03 m and 1.57 m with an
average of 1.4 m, and R2 is between 0.89 and 0.95 with an average of 0.92. For the BP neural
network model, the RMSE is between 0.97 m and 1.43 m with an average of 1.22 m, and
R2 is between 0.90 to 0.96 with an average of 0.93. For the SDB of the Sentinel-2 images
for the four dates, the highest accuracy is for the image of 2019/12/10. Since this image
has more cloud coverage in the study area, the cloud-covered portion is filtered out when
processing the Sentinel-2 imagery, resulting in fewer points in the exported SDB compared
to the other three dates. However, for the image on 2019/12/30, the accuracy of the SDB
derived from the image is worse than the other three dates. The result where the SDB has
the largest number N and R2 of 0.89, is the smallest value of the four dates.

Although both models require setting parameters during training, the setting of
parameters in the multi-band ratio model directly affects the final computational results. In
contrast, in the BP neural network model, the parameters are only related to the training of
the model. In terms of bathymetric accuracy, the bathymetric results of BP neural network
have lower RMSE and higher R2. However, as far as the model itself is concerned, the
multi-band ratio model can visually reflect the mapping relationship between water depth
and remote sensing images. The BP neural network model can only obtain the final output
results. Comparing the two models, the BP neural network model has higher validation
accuracy and can better fit the relationship between ICESat-2 bathymetry points, and the
reflectance of multispectral images. Compared with the multi-band ratio model, the BP
neural network model has better results in this study.

4. Discussion
4.1. ICESat-2 Bathymetric Error

From Tables 1 and 2, for the ICESat-2 bathymetry results for Oahu Island and
St. Thomas Island, the MAE, RE, RMSE and R2 for the Oahu Island area are all worse
than those for St Thomas Island. It is worth noting that the poor validation accuracy of
the ICESat-2 bathymetry points in the Oahu area may be more attributable to the in-situ
bathymetric data. The airborne LiDAR bathymetry (ALB) data for this area are acquired
before 2004, and the ICESat-2 bathymetric data are acquired after 2018, during which
relatively minor changes in seafloor elevation are inevitable. For inshore shallow water
areas, the water bodies on land are constantly transporting debris particles and various dis-
solved nutrients to the ocean. In the marginal sea, large amounts of sediments of terrestrial
origin and biogenic sediments formed by the upper seawater organisms, will settle and
accumulate to the bottom. This may cause some minor changes to the seafloor. In addition,
the mobility of water bodies and sea level changes may also contribute to the result.

In contrast, the ALB data for the St. Thomas area are acquired in 2014, resulting in less
variation in seafloor elevation and better accuracy of the validation results. It can be seen
from Figures 7 and 8 that the water surface fluctuation in the sampling area near Oahu
is relatively large, and the shock is relatively obvious, and the sea surface amplitude can
reach 0.34 m. The sea surface fluctuation in the St. Thomas sampling area is relatively
small, which may be one of the reasons for the water depth error of ICESat-2. In addition,
the errors from the airborne LiDAR bathymetry data itself can have an impact on the
validation of ICESat-2 bathymetry results. The difference between the two study areas for
the maximum water depth may be due to the water quality environment of the study area.
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4.2. Satellite Bathymetric Error

This study uses ICESat-2 bathymetry points in the Oahu study area to train the
model and derive the SDB from Sentinel-2 images. Firstly, according to the law of error
propagation, the error is directly related to the error of the ICESat-2 bathymetry points.
Secondly, the image quality of Sentinel-2 also affects the results. Meanwhile, we found that
not all images of dates can get SDB with better accuracy. Image pre-processing from L1C to
L2A is important for satellite-derived bathymetry, where sunlight flicker and white caps can
seriously affect the reflectance obtained by the Sentinel-2, and its residuals can cause errors
in bathymetry [38,52–54]. The local water clarity, water column conditions and substrate
type at the time of image acquisition, will also affect the accuracy of bathymetry [37,55–57].
Thirdly, the ALB data of the Oahu area were collected before 2004, while the acquired
Sentinel-2 images were collected after 2018. The time interval can have an impact on the
validation results. In addition, in order to accurately match the geographic location of the
SDB points and the reference ALB points, this study interpolates it, which will also cause
errors during the interpolation process and affect the verification results.

It is worth noting that when training the multi-band ratio model, the values of the ratio
parameters m and n in Equation (8) can have some impact on the accuracy of the results. In
this study, the values of m and n are different for each date of the Sentinel-2 image training
model, and the values are obtained through multiple experiments. Although the improved
Equation (8) has two ratio parameters, the training accuracy is higher when the values of
m and n are taken to be the same or similar.

4.3. Error Correction

Refraction correction and tidal correction are essential for bathymetry when using
the ICESat-2 dataset. According to the refraction correction formula (5), the refraction
correction of water depth is about 25.42% of the original water depth, and the refraction
correction, for the maximum water depth of 35 m in this study, is about 8.9 m. The tidal
heights of the Oahu Island sampling area at the time of ICESat-2 data acquisition on
2019/09/08, 2020/06/14, and 2020/12/05 are 0.38 m, 0.13 m, and 0.25 m, from querying
the tide website. The tidal heights in the St. Thomas area at the time of ICESat-2 data
acquisition on 2018/11/22 and 2019/02/21 are 0.23 m and 0.05 m. It can be seen that the
refraction correction can significantly improve the accuracy of the ICESat-2 bathymetry
points, and tidal correction can somewhat eliminate the bathymetric datum differences
between ICESat-2 bathymetry and ALB data.

5. Conclusions

In this study, automatically detecting signal photons from the sea surface and bottom
is proposed based on ICESat-2 data. The ICESat-2 bathymetry points are used to train the
BP neural network model and to estimate shallow water depth from Sentinel-2 images.
ICESat-2 bathymetry experiments in the Oahu and St. Thomas regions demonstrate the
feasibility of bathymetry using ICESat-2 data in shallow water areas. The satellite-derived
bathymetry experiment in the Oahu region further validates the effectiveness of fused
bathymetry, between ICESat-2 and Sentinel-2. The RMSE is between 0.97 and 1.43 m and
the R2 is between 0.90 and 0.96, which are better than the multi-band ratio model with
RMSE of 1.03–1.57 m and the R2 of 0.89–0.95. The better performance of BP neural network
in satellite-derived bathymetry was demonstrated by comparing multi-band ratio model
and neural network model.

In general, the bathymetric method in this study is an active–passive fusion bathymet-
ric method with combining ICESat-2 and Sentinel-2, which can avoid the limitations of
traditional methods by replacing the in-situ bathymetric data with ICESat-2 bathymetric
data. It can acquire bathymetric data more effectively for shallow water areas where no
in-situ data are available. It has very important applications in shallow water areas such as
islands, and coastal and inland lakes, especially in remote areas.
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