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Abstract: Soil erosion affects agricultural production, and industrial and socioeconomic development.
Changes in rainfall intensity lead to changes in rainfall erosivity (R-factor) energy and consequently
changes soil erosion rate. Prediction of soil erosion is therefore important for soil and water con-
servation. The purpose of this study is to investigate the effect of changes in climatic parameters
(precipitation) on soil erosion rates in the near future (2046–2065) and far future (2081–2100). For
this purpose, the CMIP5 series models under two scenarios RCP2.6 and RCP8.5 were used to pre-
dict precipitation and the R-factor using the Revised Universal Soil Loss Equation (RUSLE) model.
Rainfall data from synoptic stations for 30 years were used to estimate the R- factor in the RUSLE
model. Results showed that Iran’s climate in the future would face increasing rainfall, specially
in west and decreasing rainfall in the central and northern parts. Therefore, there is an increased
possibility of more frequent occurrences of heavy and torrential rains. Results also showed that the
transformation of annual rainfall was not related to the spatial change of erosion. In the central and
southern parts, the intensity of rainfall would increase. Therefore, erosion would be more in the
south and central areas.

Keywords: climate change; CMIP5 model; Iran; precipitation; rainfall erosivity; RUSLE model

1. Introduction

Climate is a complex system and is impacted by anthropogenic factors, such as green-
house gases [1]. Excessive consumption of fossil fuels, population growth, and land-use
change have led to significant changes in the planet’s climate after the industrial revolu-
tion [2]. Climate change is a natural phenomenon [3] but negatively affects water resources,
agriculture, environment, ecosystem, health, industry, and economy [4]. Increased green-
house gases cause changes in the amount of solar radiation, temperature, rainfall regime,
and the amount of surface flow [5]. Rising temperatures in recent decades have caused
significant changes in the hydrological cycle, such as increasing water vapor in the at-
mosphere, changing patterns and intensity of precipitation, decreasing snow cover, and
widespread melting of glaciers, and changing soil moisture and runoff [6].

According to the Intergovernmental Panel on Climate Change (IPCC), global temper-
atures have risen by about 0.74 ◦C in industrial areas due to increased greenhouse gas
emissions [7]. The increase in temperature affects the world’s rainfall regime [8]. It is
predicted that due to climate change, the intensity and frequency of rainfall in many parts
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of the world will increase in the future [9,10]. Therefore, the probability of encountering
heavy rainfall and erosion has increased in the middle and upper latitudes.

Climate change has altered the rainfall regime in recent decades so that the amount of
rainfall in high and middle latitudes is higher than in low latitudes [10]. Studies have shown
that a 1% increase in rainfall increases the rate of erosion by 0.85%, if the intensity of rainfall
does not change. On the other hand, if both characteristics of precipitation, i.e., amount
and intensity of precipitation, change simultaneously, then for every 1% increase in the
amount of precipitation, the amount of erosion increases by 1.7%. Rainfall changes, which
include the amount and intensity of rainfall, directly affect runoff and soil erosion [11].
Some studies show that rapid changes in the rate of erosion occur in response to changes in
precipitation that include the intensity, duration, and frequency of precipitation or seasonal
patterns of precipitation. Climate change leads to changes in climate variables, such as
precipitation, temperature, wind, and solar radiation, and these changes in turn affect
soil erosion [12].

Rainfall is one of the most essential climatic characteristics that severely affect ero-
sion [13]. Studies on the relationship between soil and climate change show that erosion
reaches its maximum in regions where the average annual rainfall is 300 mm [14]. Rainfall
erosivity is an important factor in the separation and transport of soil particles and can
indicate the potential for erosion [15,16]. It is the most important climatic parameter for
erosion [17]. Various factors have been proposed to calculate rainfall erosion, such as the
amount, intensity, duration of rainfall; and diameter and kinetic energy of raindrops [18].
The term rain erosion was introduced by Wischmeier and Smith in 1978 to indicate the
effect of climate on erosion [19]. To manage and protect the soil, it is necessary to determine
the amount of rain erosivity under different climatic conditions [20].

The most critical factor of soil erosion is the erosive power of rainfall [21]. Changes
in temperature and precipitation, such as changes in the volume and intensity of rainfall,
changing the energy of rain, and the separation power of raindrops, followed by changes in
the erosive power of rain [22]. Talchabhadel et al. [1] analyzed the effect of climate change
on soil erosion by rainfall in the Westrapti watershed. Results showed that a change in
precipitation pattern increased soil erosion. Due to global warming under climatic scenarios,
soil losses would increase by about 10%, and the average soil loss would be estimated at 8.1
tons per hectare [1]. Xu et al. [23] studied the spatial and temporal development of rainfall
erosivity stimuli affected by climate change in Huaihe watersheds. It has been shown that
most of the effect of rainfall erosivity (R-factor) occurs in summer and then in spring and
autumn and the main cause of which is heavy seasonal rainfall. Rainfall erosivity (R-factor)
is higher in northern regions than in southern regions. Based on reported results, it can
be stated that climate change has a significant effect on rainfall erosivity (R-factor) and
soil erosion [23].

Azari et al. [24] investigated the forecasted impact of climate change on rainfall
erosivity using CMIP5 climate models in Iran. Forecasts showed that in the period
2040–2060 under RCP4.5 the R-factor would increase from 2.5 to 22.5%. This increase
of R-factor is more in the mountainous areas than in the northwest. The forecast under
RCP 4.5 in the period 2060–2080 showed that in the arid regions of the southeast, center,
and east, the R-factor would decrease [24].

The use of RUSLE and GCM to forecast soil erosion in the monsoon climate in eastern
India was evaluated by Chakraborty et al. [25] who showed that due to climate change,
there was a possibility of heavy rains with more kinetic energy. The average annual erosion
was estimated between 1 and 6 tons per hectare per year. In areas susceptible to erosion,
it was about 6 tons per hectare per year, which mostly occurred in the southern and
southeastern regions. In areas with the lowest susceptibility to soil erosion, about 1–2 tons
of soil erosion per hectare per year occurred in the western and northern regions [25].

Climate change and predicting its effects on soil erosion to reduce the resulting vul-
nerability are important. In this research, the Intergovernmental Panel on Climate Change
(IPCC) models were used to predict rainfall erosivity in the whole country of Iran. The
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reason is the high accuracy of these models compared to other models. The more accu-
rately the climate change is predicted, the better the rate of future soil erosion would
be estimated. Accurate forecast can significantly help watershed management. Another
important issue in climate change is its uncertainty and the analysis of future perspective of
climate variables.

Despite the abundance of studies conducted in different regions worldwide, no studies
have been conducted to evaluate climate change on the erosivity factor in Iran. In addition,
the reliability of an erosivity map of Iran, which has been developed using the modified
Fournier erosivity index has not yet been ascertained. Therefore, the present study aimed
to calculate the R factor directly from maximum available rainfall data in the historical
period and to study the temporal variation in rainfall erosivity (R-factor) in the future
period under climate change using two scanerios in 2046–2065 and 2081–2100.

2. Materials and Methods
2.1. Study Area

Iran is located in southwest Asia between 25◦–40◦ north latitude and 44◦–63◦ east
longitude. Its population is 81 million and its area is approximately 1,648,195 km2. Lo-
cated at an altitude of 40 to 5670 m above sea level, the altitude changes have a signifi-
cant impact on the climatic diversity. Thus, Iran has a wide range of climatic conditions
in different regions with significant rainfall variation. Annual rainfall decreases from
northwest (900 mm) to southeast (200 mm). Rainstorms occur with great intensity during
spring and have a high erosion potential [26]. Figure 1 shows the spatial distribution of
synoptic stations and climate classification of Iran. Table 1 illustrates the geographical
location of stations used to calculate the R-factor.
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Figure 1. Spatial distribution of synoptic station (a), Climate Classification (b). 

Table 1. Stations with high‐resolution data to calculate the R‐factor. 

Station  Elevation  Longitude  Latitude 

Ahvaz  22.5  48°40′  31°20′ 
Arak  1708  49°46′  34°06′ 
Ardebil  1332  48°17′  38°15′ 
Banda Abbas  9.8  56°22′  27°13′ 
Birjand  1491  59°12′  32°52′ 
Bojnourd  1112  57°16′  37°28′ 
Boushehr  19.6  50°50′  28°59′ 
Gorgan  13.3  54°16′  36°51′ 
Hamedan  1679  48°43′  35°12′ 
Ilam  1337  46°26′  33°38′ 
Isfahan  1550  51°40′  32°37′ 
Karaj  1312  50°54′  35°55′ 
Kerman  1753  56°58′  30°15′ 
Kermanshah  1318  47°09′  34°24′ 
Khoramabad  1147  48°17′  33°26′ 
Qom  877  50°51′  32°42′ 
Qazvin  1279  50°03′  36°15′ 
Mashhad  999  59°38′  36°16′ 
Rasht  36.7  49°39′  37°12′ 
Sanandaj  1373  47°00′  35°20′ 

Figure 1. Spatial distribution of synoptic station (a), Climate Classification (b).

Table 1. Stations with high-resolution data to calculate the R-factor.

Station Elevation Longitude Latitude

Ahvaz 22.5 48◦40′ 31◦20′

Arak 1708 49◦46′ 34◦06′

Ardebil 1332 48◦17′ 38◦15′

Banda Abbas 9.8 56◦22′ 27◦13′

Birjand 1491 59◦12′ 32◦52′

Bojnourd 1112 57◦16′ 37◦28′

Boushehr 19.6 50◦50′ 28◦59′

Gorgan 13.3 54◦16′ 36◦51′

Hamedan 1679 48◦43′ 35◦12′

Ilam 1337 46◦26′ 33◦38′

Isfahan 1550 51◦40′ 32◦37′

Karaj 1312 50◦54′ 35◦55′

Kerman 1753 56◦58′ 30◦15′

Kermanshah 1318 47◦09′ 34◦24′

Khoramabad 1147 48◦17′ 33◦26′

Qom 877 50◦51′ 32◦42′

Qazvin 1279 50◦03′ 36◦15′

Mashhad 999 59◦38′ 36◦16′

Rasht 36.7 49◦39′ 37◦12′

Sanandaj 1373 47◦00′ 35◦20′

Semnan 1130 53◦33′ 35◦35′

Shahre kord 2048 50◦51′ 32◦17′

Shiraz 1484 52◦36′ 29◦32′

Sari 23 53◦00′ 36◦33′

Tabriz 1361 46◦17′ 38◦50′

Tehran 1190 51◦19′ 35◦41′

Urmia 1315 45◦05′ 37◦32′

Yasouj 1831 51◦41′ 30◦50′

Yazd 1273 54◦17′ 31◦54′

Zahedan 1370 60◦33′ 29◦28′

Zanjan 1663 48◦29′ 36◦41′
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2.2. Climate Models

In recent years, simulations of the fifth phase of the Coupled Model Intercomparison
Project (CMIP) have been completed [27]. and have been presented in the Fifth Assessment
Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC) [28]. The CMIP5
series models have higher resolution [29]. The greatest emphasis of these models is the
climate impact on socio-economic issues and their role in sustainable development [30].
The general framework of these models is based on greenhouse gas reduction and climate
adaptation methods [31].

These models use a new emission scenario to represent the greenhouse gas concen-
tration path [32]. RCP scenarios include a severe reduction scenario (RCP2.6), and two
intermediate scenarios (RCP4.5 and RCP6) and scenario (RCP8.5) [33]. These scenarios
are named, based on their radiation level in 2100, which is 2.6, 4.5, 6, and 8.5 W/m2,
respectively [34]. Table 2 illustrates the features of the four emission scenarios.

Table 2. Features of Representative Concentration Pathway (RCPs).

Scenarios Radiative Forcing Concentration of
Carbon Dioxide(ppm) Temperature (C◦) Pathway

RCP2.6 3 W/m2 490–530 1.5 Peak and Decline
RCP4.5 4.5 W/m2 580–720 2.4 Stabilization without overshoot pathway
RCP6 6 W/m2 720–1000 3 Stabilization without overshoot pathway

RCP8.5 8.5 W/m2 >1000 4.8 Rising radiative forcing pathway

Due to the better performance of CMIP5 series models, many studies around the
world have used these models [35,36]. In this study, precipitation data of CMIP5 models
under RCP2.6 and RCP 8.5 scenarios were used to forcast future precipitation and its effect
on rainfall erosion. Global Circulation Models (GCMs) are the most reliable models for
forecasting climate and for simulating climate parameters [37]. These models are used
for predicting climate change [38] and provide information about the Earth’s condition,
including the state of atmosphere, carbon cycle, and circulation of oceans They can simulate
climate change under RCP scenarios [39]. Although the models can predict future global
climate change, their output has a high spatial resolution [40]. Therefore, application of
these models on a local scale is not appropriate [41]. The high spatial resolution makes the
model output unsuitable for investigating the hydrological effects of climate change on a
regional scale [42].

Sixty-one climate models have been used to simulate the baseline and future periods
in the fifth report of the Intergovernmental Panel on Climate Change (IPPC). In this study 4
models were used that included CSIRO-Mk3.6.0, CCSM4, GFDL-ESM2g, and HadGEM2-es
SRES CPs [43] (Table 3). Using climatic parameters simulated by IPCC-CMIP5 series of
models, possible changes in R-factor were estimated.

Table 3. Specification of CMIP5 series models used in this study.

Models Institute Resolution

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research
Organization (CSIRO), Canberra, Australia 1.88◦ × 1.88◦

CCSM4 National Center for Atmospheric Research (NSAR),
Boulder, CO, USA 1.25◦ × 0.94◦

GFDL-ESM2g Geophysical Fluid Dynamics Laboratory (NOAA),
Princeton, NJ, USA 2.00◦ × 2.02◦

HadGEM2-es Met Office Hadley Center (MOHC), Exeter, UK 1.88◦ × 1.25◦

2.3. Downscaling Methods

Several methods have been proposed for downscaling the output of GCMs models [44].
In this research, the Delta or Change Factor (CF) downscaling method was used [45]. The
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change factor method is a common error correction method that is often used to reduce
the error between GCM outputs and observational data [45] and is one of the simplest
ways of statistical downscaling [46]. It is a ratio of changes between future forecasts and
current climate simulations of a GCM model [47]. It uses monthly precipitation data
recorded at synoptic stations. To obtain climate data on a local scale, the difference between
precipitation ratios is used, based on the average of long-term monthly data for the future
and current periods (base time). The CF values are calculated by dividing the average
of each future weather month (evaluated by climate models) by the average of the same
month at the base (recorded value of the synoptic station).

Precipitation parameter changes were calculated using the following equation [48]:

∆Pi =

(
PGCM,FUT,i

PGCM,BASE,i

)
(1)

where ∆Pi indicates the scenario of climate change of precipitation parameter for 30 years,
and i is the number of months of a year that are between 1 and 12, PGCM,FUT,i defines
the 20-year average precipitation simulated by GCMs for the future periods per month;
PGCM,BASE,i describes the 30-year average precipitation simulated by the GCMs for the
period similar to the base period for each month in this study is from 1986 to 2016.

To obtain the time series of future climate scenarios, the climate change scenarios
were added to the observational values (1986–2016) that were obtained by the
following equation [49]:

P = Pobs × ∆Pi (2)

where Pobs describes the observed daily precipitation series in the 1986–2016 time period,
P shows the time series of the future climate scenarios of precipitation, and ∆Pi defines the
downscaled climate change scenarios.

In this study, the entire climate database was divided into four periods: the base
time database was (1986–2016), the middle-time was (2046–2065), and the longtime future
climate prediction was (2065–2081). Additionally, to evaluate precipitation forecasted
by GCM, these forecasts were compared with the actual precipitation data recorded
(1986–2016) at the synoptic stations.

2.4. Estimation of Rainfall-Runoff Erosivity (R-Factor)

To estimate rain erosivity (R-factor), the Revised Universal Soil Loss Equation (RUSLE)
was used [50]. The RUSLE, revised as an experimental erosion model, is known as a
standard method to estimate the mean risk of erosion on arable lands [51]. The Revised
Universal Soil Loss Equation (RUSLE) has been developed by the U.S. Department of
Agriculture Soil Conservation Service [52].

The RUSLE model estimates soil erosion as a combination of six factors that include
rain erosivity (R), soil erodibility (K), slope length, and degree (LS), cultivation system (C),
and management operations (P). This model was used to predict annual soil loss [52]

E = R× K× LS× C× P (3)

where E is the annual soil loss.
The most important factor to be investigated is the rainfall erosivity (R-factor), which

was obtained using the following equation [53]:

R =
1
n

n

∑
j=1

mj

∑
k=1

(EI30)K (4)

in which R denotes the average annual rainfall erosivity (MJmmha−1h−1year−1),
n is the year’s number of data observations, mj defines the number of erosive events
in the j year, and EI30 defines the rainfall erosivity index of a storm K.
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Studies have shown that the product of kinetic energy of rainstorm (E) and its maxi-
mum rainfall intensity of 30 min (I30 ) is a suitable indicator for rainfall erosivity (R-factor).
The EI30 index indicates the ability of rain to separate soil particles. The rainfall erosivity
index (EI30 ) was calculated, based on the following Equation (3) [54]:

EI30 = I30

(
m

∑
r=1

KE.d

)
(5)

where KE defines rainstorm kinetic energy per unit height of the rainstorm (MJha−1mm−1),
and d defines the height of rainstorm (mm).

KE = er∆vr (6)

where er is the unit precipitation energy (MJha−1mm−1), ∆vr defines the rainstorm conti-
nuity (hr) in time r, and I30 describes the most precipitation intensity of 30 min (mm h−1).

er = 0.29 [1− 0.07 exp (−0.05ir)] (7)

where ir is the rainfall intensity throughout the period (mm h−1).
I30 was calculated using the following equations:

I30 = 2p For D ≤ 30 min (8)

I30 =
2P.ip

b.tp

(
1− exp

(
b.tp

2D

))
(9)

where tp is the peak rain time, D defines the rainfall duration, b describes the base time of
rainfall, ip is the maximum rainfall intensity, and p is the rainfall.

R-factor was estimated using monthly and annual precipitation data recorded by Ira-
nian synoptic stations for 32 years. The R-Factor values in Iran were between
(1.17 and 5.5) compared to the R-factor values of the United States, which was in the
range (20–550); it is very low, perhaps due to low rainfall [55].

2.5. Yearly Erosivity Density Ratio

According to Kinnell and [53], the erosion density coefficient is the R-factor ratio to
precipitation. In practice, erosion is measured in units of precipitation (mm), the unit of
which is MJ ha-1 h-1 that was obtained by the following equation:

ED =
R
P

(10)

where ED defines the erosion density, R is the mean yearly precipitation erosivity, and P
describes the yearly rainfall.

2.6. Examination of R-Factor Performance

To validate the estimated R-factor, results were compared to the observational data of
the synoptic stations by the following equations [56,57]:

RMSE =

√
∑i−1

n (yo − ye)
2

n
(11)

MAE =
∑|yo − ye|

n
(12)

R =
∑n

i=1(y0 − y0) − (y0 − ye)√
∑n

i=1(y0 − y0)
2 ∑n

i=1(y0 − ye)
2

(13)
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The lower error between estimated and observed results shows that the RUSLE model
has a good performance in estimating rainfall erosivity.

3. Results
3.1. Analysis of Future Precipitation

The output of climate models to predict rainfall erosivity is often biased toward the
required scale [56]. Therefore, to evaluate the performance of these models in predicting
climatic parameters, the statistical criteria presented in Section 2.6 were used. Table 4
illustrates the average absolute errors at all stations studied. Low RMSE and MAE values
indicate better performance of models. Based on previous studies the RMSE values less
than half of the SD (Standard Deviation) of the observed data (RMSE/Sdobs < 0.65) may
be considered low and acceptable [58,59]. Based on Table 4, this equation applies.

Table 4. Evaluation error index for precipitation of each station in historical duration.

Station Model RMSE RMSE/SD < 0.65 MAE Station RMSE RMSE/SD < 0.65 MAE

Ardebil

GFDL-ESM2g 10.64 0.43 8.32

Hamedan

15.57 0.29 12.33
HadGEM2-es 69.39 2.83 38.15 42.06 0.78 136.63

CSIRO-Mk3.6.0 10.1 0.41 8.31 29.03 0.54 21.73
CCSM4 10.33 0.42 8.31 20.76 0.38 14.17

SD observed 24.5 - - - 54 - -

Arak

GFDL-ESM2g 10.28 0.27 6.76

Ilam

38.5 0.44 62.58
HadGEM2-es 260.71 6.95 89.92 54.5 0.63 161.13

CSIRO-Mk3.6.0 10.4 0.28 14.38 10.11 0.12 8.3
CCSM4 11.44 0.31 8.54 136.74 1.57 49.44

SD observed 37.5 - - - 87 - -

Urmia

GFDL-ESM2g 15.64 0.12 11.82

Karaj

10.56 0.10 7.1
HadGEM2-es 270.27 2.05 88.4 19.09 0.19 12.79

CSIRO-Mk3.6.0 11.2 0.08 11.95 8.6 0.09 12.66
CCSM4 12.84 0.10 9.24 9.06 0.09 4.97

SD observed 132 - - - 101 - -

Bandar abbas

GFDL-ESM2g 18.76 0.18 11.94

Kerman

8 0.14 4.97
HadGEM2-es 108.99 1.04 45.63 11.5 0.20 7.57

CSIRO-Mk3.6.0 20.1 0.19 14.14 7.2 0.12 6.98
CCSM4 20.36 0.19 12.14 8.46 0.15 5.04

SD observed 105 - - - 58 - -

Birjand

GFDL-ESM2g 7.32 0.42 3.82

Kermanshah

41.24 0.21 17.54
HadGEM2-es 24.84 1.42 14.66 73.45 0.37 21.32

CSIRO-Mk3.6.0 6.53 0.37 5.08 24 0.12 11.25
CCSM4 7.04 0.40 4.02 25.11 0.13 17.58

SD observed 17.5 - - - 198 - -

Bojnourd

GFDL-ESM2g 11.52 0.18 7.78

Khorram abad

8.05 0.06 4.97
HadGEM2-es 22.27 0.34 15.18 11.5 0.09 7.57

CSIRO-Mk3.6.0 10.9 0.17 8.89 11.2 0.08 6.98
CCSM4 21.76 0.33 15.82 8.46 0.06 5.04

SD observed 65 - - - 135 - -

Boushehr

GFDL-ESM2g 83.75 0.88 142.12

Ahvaz

25.24 0.20 16.4
HadGEM2-es 70.3 0.74 287.07 85.45 0.68 36.35

CSIRO-Mk3.6.0 19.17 0.20 16.2 29.04 0.23 21.25
CCSM4 34.3 0.36 34.3 29.49 0.24 17.58

SD observed 95 - - - 125 - -

Shahre kord

GFDL-ESM2g 2.65 0.10 16.15

Yasuj

1.44 0.06 16.19
HadGEM2-es 6.36 0.24 52.17 6.36 0.25 75.17

CSIRO-Mk3.6.0 9.6 0.36 7.65 5.4 0.22 15.65
CCSM4 5.6 0.21 12.85 5.68 0.23 10.82

SD observed 27 - - - 25 - -

Isfahan

GFDL-ESM2g 5.67 0.16 4.13

Mashahd

58.55 2.34 34.05
HadGEM2-es 64.61 1.82 29.48 10.96 0.44 8.94

CSIRO-Mk3.6.0 5.1 0.14 3.62 7.8 0.31 11.51
CCSM4 5.86 0.17 4.73 8.88 0.36 7.51
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Table 4. Cont.

Station Model RMSE RMSE/SD < 0.65 MAE Station RMSE RMSE/SD < 0.65 MAE

SD observed 35.5 - - - 25 - -

Qom

GFDL-ESM2g 11.11 0.13 7.15

Sanandaj

41.45 0.92 17.15
HadGEM2-es 16.2 0.19 15.12 68.85 1.53 22.41

CSIRO-Mk3.6.0 19.52 0.23 15.65 21.2 0.47 13.89
CCSM4 8.56 0.10 7.85 22.11 0.49 16.75

SD observed 84 - - - 45 - -

Qazvin

GFDL-ESM2g 7.25 0.12 7.8

Semnan

6.58 0.14 5.15
HadGEM2-es 9.59 0.15 12.65 6.4 0.14 36.65

CSIRO-Mk3.6.0 7.75 0.12 8.81 5.1 0.11 3.62
CCSM4 6.71 0.11 8.91 5.21 0.11 4.51

SD observed 63 - - - 47 - -

Gorgan

GFDL-ESM2g 13.39 0.23 9.58

Shiraz

3.52 0.05 19.19
HadGEM2-es 29.95 0.52 19.35 9.98 0.15 25.17

CSIRO-Mk3.6.0 24.59 0.42 16.5 1.2 0.02 7.85
CCSM4 13.39 0.23 11.4 7.61 0.12 11.12

SD observed 58 - - - 65 - -

Therefore, the CSIRO-Mk3.6.0 can forecast climate variables with low error.
Results showed that the CSIRO-Mk3.6.0 model had the best performance (minimum

error), and then CCSM4, GFDL-ESM2g, and HadGEM2-es models had the best performance,
respectively. According to the results of Table 4, the CSIRO-Mk3.6.0 model was selected as
the best model for Ardabil, Bojnourd, Bushehr, Shahrekord, Isfahan, Qazvin, Gorgan, Ilam,
Kermanshah, Sanandaj, Semnan, Shiraz, and Tabriz stations. At Arak, Urmia, Yasuj, and
Mashhad stations, the CCSM4 model had the best results compared to the observational
data. The data obtained from the GFDL-ESM2g model at Hamedan, Kerman, Khorramabad,
Sari, Tehran, Yazd, Zanjan stations were most consistent with observational data. Other
stations used the HadGEM2-es output.

3.2. Precipitation Prediction under Climate Change

To assess the effect of different months of the year on rainfall erosivity, different
months in the simulated periods and basis periods were compared. For this purpose, the
average annual rainfall in the observed and simulated periods under RCP2.6 and RCP8.5
scenarios was used. Figure 2 shows the average annual precipitation predicted using the
CSIRO-Mk3.6.0 model, during the near future (2046–2065) and the far future (2081–2100)
under the RCP2.6 and RCP8.5 scenarios.

Results showed the selected models predicted an upward trend at some stations and a
downward trend for precipitation at other stations. For example, the models predicted a
decreasing trend for Semnan station compared with base times. Additionally, the models
predicted an increasing trend of annual rainfall for Sanandaj station. Results of the models
were moderately different from each other. Although the amount of rainfall at different
stations during the near future (2046–2065) and the far future (2081–2100) under the RCP2.6
and RCP8.5 scenarios had different trends, the intensity of rainfall had a constantly in-
creasing trend so that rainfall moved toward extreme precipitation which can increase the
R-factor and can increase erosion in the coming years.

3.3. Spatial Distribution of R-Factor Erosivity in Current and Future Periods

Various studies have obtained R-factor using regression equations between precipita-
tion and rainfall erosivity. To investigate the effect of climate change on rainfall erosivity,
annual precipitation data was used. According to annual rainfall of each station and
the values of relevant erosivity of rainfall, an appropriate regression relationship was
selected. Table 5 illustrates the R-factor calculated by the equation for each station. In the
equations, P defines the average annual precipitation, and R denotes the rainfall erosivity
(MJ mm ha−1 h−1 year−1). Additionally, R2, MAE and RMSE were used to select the best
regression relationship for the estimation of the R-factor of the Smith—Wischmeier method.
Based on previous studies that RMSE values less than half of the SD (Standard Deviation)
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of the observed data (RMSE/SDobs < 0.65) may be considered low and acceptable [58,59].
Based on Table 4, this equation applies.
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future period (2046–2065 (a) and 2081–2100 (b)) compared to the historical period (1986–2016).

It is difficult to collect the data required to calculate the R-factor using the proposed
method in all the regions of the country. The study of spatial variables of R-factor by these
methods helps estimate the R-factor. Figure 3 shows the spatial distribution of R-factor for
the historical period for all stations. Additionally, Figure 4 shows the scatter plot between
observed and baseline annual rainfall erosivity values at sample Gorgan and Qazvin.
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Table 5. Relationship between indices of yearly precipitation and erosivity factor and evaluation of
radial basis function to estimate rainfall erosivity index.

Station Regression Equations R2 RMSE SD RMSE/SD < 0.65 MAE

Ahvaz R = 0.111P + 5.50 0.68 0.6 1.2 0.5 0.08
Arak R = −0.4406P + 4.9161 0.55 0.29 2.33 0.12446352 0.08

Ardebil R = −2.6982P2 + 4.423P + 2.29 0.87 0.26 2.65 0.09811321 0.04
Banda Abbas R = −0.5223P + 7.15 0.85 1.12 2.68 0.41791045 0.13

Birjand R = −1.2727P + 5.69 0.69 0.8 2.9 0.27586207 0.15
Bojnourd R = 0.6157P + 3.53 0.71 0.58 3.2 0.18125 0.11
Boushehr R = −3.401P2 + 6.329P + 5.63 0.85 2.21 5.6 0.39464286 0.23
Gorgan R = −0.3555P + 4.25 0.9 0.16 2.5 0.064 0.03

Hamedan R = 0.2458P + 4.10 0.91 0.34 3.96 0.08585859 0.07
Ilam R = −0.6888P + 2.19 0.84 0.66 4.5 0.14666667 1.41

Isfahan R = −0.2607P + 5.44 0.69 0.4 3.5 0.11428571 0.04
Karaj R = 0.1628P + 4.59 0.54 0.35 2.1 0.16666667 0.07

Kerman R = −3.1598P + 6.53 0.65 0.64 2.15 0.29767442 0.09
Kermanshah R = −0.0102P + 4.64 0.78 0.28 3.1 0.09032258 0.05
Khoramabad R = −0.2267P + 4.93 0.64 0.27 2.1 0.12857143 0.05

Qom R = −35.975P2 + 27.186P − 3.1351 0.81 0.99 2.7 0.36666667 0.89
Qazvin R = 0.0469P + 4.3155 0.63 0.23 3.2 0.071875 0.08

Mashhad R = −0.128P + 4.67 0.9 0.31 2.5 0.124 0.06
Rasht R = −1.2644P + 4.18 0.58 3.84 6.3 0.60952381 0.05

Sanandaj R = 0.0737P + 4.3091 0.84 0.79 3.01 0.26245847 0.15
Semnan R = −0.5948P + 4.99 0.52 0.56 2.2 0.25454545 0.1

Shahre kord R = −0.2402P + 5.07 0.67 0.32 2 0.16 0.004
Shiraz R = −0.174P + 5.7783 0.66 0.62 2 0.31 0.09

Sari R = 0.0328P + 3.99 0.81 0.31 2 0.155 0.06
Tabriz R = −1.2084P + 5.21 0.82 0.59 2 0.295 0.11
Tehran R = −0.1245P + 4.37 0.63 0.3 2 0.15 0.08
Urmia R = −0.1517P + 4.45 0.45 0.36 2 0.18 0.07
Yasouj R = 0.0694P + 4.96 0.57 0.49 2 0.245 0.07
Yazd R = −5.2782P + 6.3442 0.71 2.53 2 1.265 0.49

Zahedan R = −2.1561P + 6.7889 0.58 1.22 2 0.61 0.15
Zanjan R = 0.2839P + 3.5779 0.69 0.41 2 0.205 0.08
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Figure 3. Rainfall erosivity in historical period.
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Figure 4. Scatter plot between observed and baseline annual rainfall erosivity at (a) Gorgan and
(b) Qazvin station.

3.4. The Prediction of R-Factor under Climate Change

Using projected rainfall data, relative changes of mean annual R-factor were computed
for future time periods (near and far-future) with respect to the baseline time period under
two warming scenarios (RCP4.5 and RCP8.5). The spatial distributions of mean annual
R-factor during the historical and the future time periods based on different scenarios are
shown in Figure 5. Compared to the historical period, R-factor was expected to increase
and decrease. It would change from 46.51% to 159% for the near future (2050), and from
−48% to 154% for the far future (2090). In general, the central and southern regions of Iran
are expected to have more climate change.
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4. Discussion and Conclusions

The present study provides insights into the analysis of the R-factor for the historical
and future periods under climate change in Iran.

In this study, four models CSIRO-Mk3.6.0, CCSM4, GFDL-ESM2g, HadGEM2-es from
the 5th CMIP report were used for precipitation downscaling. Based on the obtained results,
the CSIRO-Mk3.6.0 model had the lowest estimation error. The results of other researchers
in the application of climate change models in Iran [45,60,61] confirmed this model.

Based on results, the average rainfall will increase significantly in the near and far
future in the west of Iran. This situation is also significant for the southern regions of the
country. However, a significant decrease is expected for the north of Iran, the southeast and
some central regions. The results of other researchers [24,55,62,63] in Iran also confirmed
these results.

Accordingly, the maximum difference in rainfall in the future was related to Arak
station (483.82 mm), while the highest decrease was related to Sari station (453.51 mm). [14],
also described the continued increase in rainfall during the 2050s and 2090s. Results showed
significant variations in rainfall forecasts in western Iran.

Based on results, changes in precipitation compared to the historical period in the
range of −51 mm and 48 mm were observed. Additionally, the most change under editer
was under the RCP 8.5 scenario. Differences in the results indicated uncertainty in the
scenarios as well as in the climate models used [64].

This study shows that the change in rainfall patterns has increased the R-factor the
study area in recent times. Climate change has a significant impact on the R-factor. Precipi-
tation rates are expected to increase in coming years, which could lead to increased R-factor
and soil erosion rates. Additionally, it has been proven by [35,65,66] that the amount and
intensity of the precipitation would have a negative effect on soil, so that it can increase the
erosion rate.

Additionally, climate change can significantly affect land cover, which can reinforce a
particular process of erosion. To predict future rainfall erosivity and soil erosion trends, the
interaction between rainfall and land cover must be evaluated.

Considering the effect of climate change, soil erosion will increase in all parts of Iran in
the future compared to the base period. According to the obtained results, the vulnerability
of central and southern parts of Iran is more than of the northern parts, so twice as much
management is required.
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