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Abstract: Evaluating meteorological dynamics is a challenging task due to the variability in hydro-
climatic settings. This study is designed to assess the sensitivity of precipitation and temperature
dynamics to catchment variability. The effects of catchment size, land use/cover change, and
elevation differences on precipitation and temperature variability were considered to achieve the
study objective. The variability in meteorological parameters to the catchment characteristics was
determined using the coefficient of variation on the climate data tool (CDT). A land use/cover
change and terrain analysis was performed on Google Earth Engine (GEE) and ArcGIS. In addition, a
correlation analysis was performed to identify the relative influence of each catchment characteristic
on the meteorological dynamics. The results of this study showed that the precipitation dynamics
were found to be dominantly influenced by the land use/cover change with a correlation of 0.65,
followed by the elevation difference with a correlation of −0.47. The maximum and minimum
temperature variations, on the other hand, were found to be most affected by the elevation difference,
with Pearson correlation coefficients of −0.53 and −0.57, respectively. However, no significant
relationship between catchment size and precipitation variability was observed. In general, it is of
great importance to understand the relative and combined effects of catchment characteristics on
local meteorological dynamics for sustainable water resource management.

Keywords: catchment characteristics; precipitation variability; temperature variability; Baro river
basin; Ethiopia

1. Introduction

Precipitation and temperature (hereafter referred to as meteorological variables) dy-
namics are still issues that need to be addressed by the scientific community [1]. The
dynamic nature of meteorological variables, mainly precipitation and temperature, makes
the challenge more complex. It has been projected that as the planet warms, climate and
weather variability will increase. However, the variability in meteorological variables
cannot be consistent over time [2–5]. The inconsistencies of meteorological parameter vari-
ability can be caused by catchment characteristics and global climate change. The variation
in catchment characteristics such as topography and land use/cover has an impact on the
variability in meteorological variables such as precipitation and temperature on a local
scale. Evaluating the meteorological variability at the local scale in relation to various
watershed characteristics is crucial for sustainable water resource management.

Several studies have been conducted to better understand the relationship between
specific catchment characteristics and meteorological variable variability [6–9]. The authors
of [6,10] looked into the relationship between land use/cover change and meteorological
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variability and found a strong correlation. For example, changes in land cover have
an impact on the weather and climate by affecting the movement of energy, water, and
greenhouse gases between the land and the atmosphere [11]. While reforestation might
provide localized cooling, urban areas are expected to continue warming. According to
the authors of [12], inappropriate land use changes are a major cause of climate change.
Several studies have also reported a relationship between topography and the variability in
meteorological variables. For example, the authors of [13] examined the characteristics of
temperature variability with terrain elevation and observed a −0.865 correlation between
the temperature change rate and the elevation. This study evaluated the rank of the
correlation between elevation, longitude, latitude, topographic position, surface roughness,
and temperature variability and found that altitude had the most noticeable effect on
temperature variability, followed by latitude and longitude.

Quantifying the spatiotemporal dynamics of meteorological variables with catchment
characteristics is of great importance for improved climate projections and sustainable
water resource management; thus, this area needs more attention. A few studies have
been reported on the individual impacts of land use/cover change on rainfall variabil-
ity [6,10,12], the relationship between catchment size and rainfall variability [8,14], and
the relationship between elevation and rainfall variability [9,14]. Moreover, the effects
of watershed characteristics on streamflow variability [15] and the effects of catchment
characteristics on predicting the hydrological sensitivity to climate change [16] have also
been studied. However, to the best of our knowledge, there has been no research on an
investigation of the sensitivity of meteorological dynamics to the relative variability in
catchment characteristics. To fill this gap, three catchment characteristics, catchment size,
topography, and land use/cover change, were selected in this study, while precipitation
and temperature were selected as the meteorological variables based on data availability.

In general, this study attempted to investigate (i) the individual relationships between
land use/cover change, topography, and catchment size with precipitation and tempera-
ture variations; (ii) the relative impact of these catchment characteristics on temperature
and precipitation variability; and (iii) how well the dynamics of meteorological variables
correspond to changes in the catchment characteristics in the Baro basin.

2. Methods and Data Description
2.1. Study Area

The Baro basin is located in southwest Ethiopia, between the latitudes of 7◦24′ and
9◦25′ and longitudes of 33◦20′ and 36◦20′, and spans over 23,000 km2 (Figure 1). The
Baro River was created by the confluence of the Birbir and Geba rivers east of Metu in the
Oromia region’s Ilu Aba Bora Zone, and it is the greatest tributary, accounting for 83% of
the total water flowing into the Sobat River, which is connected to the White Nile in South
Sudan. During the rainy season from June to October, the Baro River alone supplies around
14% of Nile water [17].

The basin’s elevation ranges from 3500 m above sea level in the eastern highlands
to less than 400 m in the Gambella plain. The eastern part of the basin consists of the
hilly upland and falls steeply to the lower plain of the Gambella Region. Due to its wide
variations in elevation, there is a significant difference in temperature in the basin, with
the maximum and minimum temperatures ranging from 17.7 to 42 ◦C and 6.4 to 27 ◦C,
respectively [18]. The area shows a mono-modal rainfall pattern, with a single rainfall peak,
and from less than 1000 mm in the lower Baro to over 2500 mm. There are two distinct
seasons: Bega season (November, December, January, and February) and Kiremt season
(May to October) [19].
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lyzed. The number of years was fixed based on the fullness of the observed data, and then 
annual numbers of non-missing values were estimated for each of the stations. Some sta-
tions, such as Masha in 2016, Itang in 2015 and 2018, Alge in 2011, Bure in 2008 and 2011, 
Dembidolo from 2008 to 2011, and Humbi in 2017, have entire years of missing data. It 
was decided in this scenario to merge those stations with satellite data, where Chirps was 
chosen in this study. Again, for those stations where the location was important for this 
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orological Agency’s (ENMA) NetCDF gridded data. Some researchers found that merging 
observed station data with satellite rainfall data produced a better estimate than any of 
the original data [20,21]. 

Figure 1. Study area description showing meteorological station distributions and topographical variation.

2.2. Data Sources, Collection, and Analysis
2.2.1. Meteorological Data

Daily meteorological and gridded data for the basin’s selected stations were obtained
from the Ethiopian National Meteorological Agency (ENMA) from 2001 to 2018. Those
stations were chosen according to their longitudinal representativeness of the basin from
upstream to downstream, as well as their basin coverage (Table 1). The first stage of this
research was data quality control, which included analyzing the data availability, screening
for outliers, performing a homogeneity test, and then filling in the missing data.

The total data availability as a percentage for 18 years from 2001 to 2018 was analyzed.
The number of years was fixed based on the fullness of the observed data, and then annual
numbers of non-missing values were estimated for each of the stations. Some stations, such
as Masha in 2016, Itang in 2015 and 2018, Alge in 2011, Bure in 2008 and 2011, Dembidolo
from 2008 to 2011, and Humbi in 2017, have entire years of missing data. It was decided
in this scenario to merge those stations with satellite data, where Chirps was chosen in
this study. Again, for those stations where the location was important for this study and
there were insufficient data, data was extracted from Ethiopian National Meteorological
Agency’s (ENMA) NetCDF gridded data. Some researchers found that merging observed
station data with satellite rainfall data produced a better estimate than any of the original
data [20,21].



Water 2022, 14, 3776 4 of 18

Table 1. Meteorological stations selected in this study.

Station Name Latitude Longitude Altitude Data Period

Itang 8.1667 34.2667 415 1980–2016

Gambela 8.25 34.58333 500 2000–2018

Ayira 9.1 35.55 1555 1987–2018

Metu 8.283333 35.56667 1711 1981–2018

Bure 8.2333 35.1 1750 1980–2018

D.dolo 8.516667 34.8 1850 1987–2018

Alge 8.533333 35.66667 1880 1987–2018

Gore 8.1333 35.53333 2033 1980–2018

Masha 7.75 35.4667 2282 1980–2018

Humbi 8.68333 36.01667 2284 1986–2018

The outlier test was applied to the station data, taking into account the target station’s
elevation as well as that of nearby stations. The maximum precipitation limit for each
station was set to 100 by studying historical data from the station, although at least four
neighbors were reviewed for comparison before the outlier was removed. The missing
value for the rainfall record outlier was then filled using the inverse distance method.
Outlier test findings that were isolated and had significant variances above the mean
value of the surrounding stations were also considered suspicious and cross-checked in
the analysis. After taking into account all of these criteria, the outliers for each month
were examined.

A homogeneity test was also performed for all of the stations in the basin, and the Pettit
test was used to detect changes in the data. Homogeneity tests were used to determine
whether or not a climate time series was homogeneous over time [22]. Quantile matching
was used to adjust some data sets that were not homogeneous [23]. The inverse distance
weightage (IDW) approach, which was integrated into the climate data tool, was used
to fill in missing data. A minimum of three surrounding stations were used for spatial
interpolation. The interpolated data had a direct link with the number of surrounding
stations examined for interpolation.

On ArcGIS, the average precipitation over the basin was calculated using the Thiessen
polygon method. From the result, it was found that the basin’s average precipitation was
1555 mm. Moreover, thirty years of data showed that the annual rainfall in the basin lies
between 300 mm in the lowland and 2500 mm in the highland part of the basin. The Baro
river basin receives the maximum monthly rainfall in August and the least in January, but
there is no consistent pattern found temporally.

2.2.2. Land Use/Land Cover and Topographic Dataset

The land use and land cover change analysis for the Baro river basin was assessed using
the Google Earth Engine cloud computing platform (https://code.earthengine.google.com/
(accessed on 15 June 2022)). Google Earth Engine (GEE) makes the land use and land cover
change analysis more manageable, increasing the efficiency and involving less time [24].
An image composition of Landsat 5, 7, and 8 tier 1 TOA reflectance was applied in this
analysis. In addition, the forest loss change trend in the basin was estimated using Hansen
Global Forest Change v. 1.9 (2000–2021) on the Google Earth Engine cloud computing
platform (https://developers.google.com/earth-engine/datasets/catalog/UMD_hansen_
global_forest_change_2021_v1_9; (accessed on 12 June 2022)).

The elevation of the earth’s surface in relation to a reference datum was represented
digitally by a digital elevation model (DEM). Terrain attributes such as elevation were deter-
mined using the DEM in this study for the processing of hydrological and meteorological
station locations and watershed outlines on ArcGIS software.

https://code.earthengine.google.com/
https://developers.google.com/earth-engine/datasets/catalog/UMD_hansen_global_forest_change_2021_v1_9
https://developers.google.com/earth-engine/datasets/catalog/UMD_hansen_global_forest_change_2021_v1_9
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2.2.3. Catchment Dataset

In the upland areas of the basin, 11 catchments of varying sizes ranging from 36 to
7940 km2 were chosen. The catchments were identified in an area where it was assumed
that there was homogeneity between them, so that the catchment size would be the only
factor taken into consideration for the analysis. This reduced the impact of other catch-
ment characteristics in our analysis, such as land use, land cover, topography, antecedent
moisture conditions, and other climatological impacts.

2.3. Methodology
2.3.1. Statistical Analysis

This study used the Climate Data Tool (CDT) version 7.0, R programming, Python,
and STATA for the statistical analyses of the meteorological data for the study area. CDT
is an open-source R-based program with a simple graphical user interface for analyzing
meteorological data. CDT’s main functionalities include station data organization, quality
control, and processing; downloading and processing of various satellite rainfall estimates
and the reanalysis of data; merging station observations with proxies (satellite rainfall
estimates and the reanalysis of temperature products); data extraction from gridded prod-
ucts at any point, for any selected box, and for any administrative boundary; and various
analyses and visualizations of stations and gridded data [22,25,26]. The CDT tool was
created with the aim of bridging the critical gaps in climate services and applications,
particularly in Africa [27,28], which happens due to a challenge in the availability and
access of climate data.

2.3.2. Land Use/Cover Change Analysis

Top-of-atmosphere (TOA) reflectance products from Landsat-5 Thematic Mapper (TM),
Landsat-7 Enhanced Thematic Mapper Plus (ETM+), and Landsat-8 Operational Land
Imager (OLI) were used for land cover change analyses (available online: https://code.
earthengine.google.com/ (accessed on 15 June 2022)). Following that, the Landsat datasets
covering the study area were imported as image collections into Google Earth Engine
(GEE), a cloud-based geospatial analysis tool, for further preprocessing activities.

For land use/cover classification, the random forest (RF) classifier was used. It was
trained using 70% of the training data sets that were randomly chosen, and the remaining
30% were used for model validation. RF was chosen because, in comparison to other
classifiers, it produces a higher classification accuracy, needs less model training time, and
is less sensitive to training samples. Finally, the validation accuracy and kappa accuracy on
GEE were used to evaluate the classification model’s overall performance. To understand
specifically the relationship between forest change and meteorological variability, the
annual forest loss trend for the basin and sub-basin was estimated using the Hansen
Global Forest Change v1.9 (2000–2021) (available online: https://developers.google.com/
earth-engine/datasets/catalog/UMD_hansen_global_forest_change_2021_v1_9; accessed
on 12 June 2022)). The land use/cover change between the periods of 2000, 2018, and
2022 was also estimated on GEE using the following calculations for estimating the LULC
change rate:

R =
Lt − Lt−1

Lt−1 × ∆t
× 100% (1)

where R is the LULC change rate, Lt is the land cover type in year t, Lt−1 is the land cover
in the most recent time interval, and ∆t is the time interval.

2.3.3. Sensitivity Analysis

We used the Pearson correlation coefficient to evaluate the sensitivity of the precipita-
tion and temperature variability to changes in land use/cover, elevation, and catchment
size. The Pearson coefficient is known as the best approach for measuring the relationship

https://code.earthengine.google.com/
https://code.earthengine.google.com/
https://developers.google.com/earth-engine/datasets/catalog/UMD_hansen_global_forest_change_2021_v1_9
https://developers.google.com/earth-engine/datasets/catalog/UMD_hansen_global_forest_change_2021_v1_9
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between variables of interest, as it is based on the method of covariance [29]. It indicates
the magnitude of the correlation as well as the direction of the relationship:

r =
n(∑ xy)− (∑ x)(∑ y)√[

n ∑ x2 − (∑ x)2
][

n ∑ y2 − (∑ y)2
] , (2)

where r is the correlation coefficient, n is the number in the given dataset, x is the first
variable in the context, and y is the second variable.

3. Results and Discussions
3.1. Relationship between Variability in Rainfall and Topography

The temporal variability in rainfall in the basin was estimated and compared spatially
throughout the basin. The graph below shows that the rainfall variability was highest
(Figure 2a) during the dry season, dropped during the Kiremt season, and then rose again
starting in September. The highest coefficient of variation (CV) value was noticed in January
(13.04), where it decreased to July and August (1.17) and where the minimum value was
found. Comparing the variability before and after interpolation, it was found that rainfall
data after interpolation has the lowest coefficient of variation (from 0.62 to 3.01), which
might have been caused by the interpolation factor. The coefficient of variation value
estimated from the observed data prior to interpolation and the observed data merged with
the satellite data, on the other hand, gave almost identical estimates for the two variables
(from 1.17 to 13.04). Therefore, it is vital to either estimate the variability using observed
data prior to interpolation or to use merged rainfall data with satellite data in order to
reduce the uncertainty that may occur in the estimation of rainfall variability due to the
interpolation of the missing data.
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The rainfall variability was also estimated at the seasonal scale, as shown in the figure
below (Figure 2b), and it was found that the maximum variation was calculated in the dry
season from January to March (5.76), which decreased down in the Kiremt season (1.04).
Then, starting from the fourth season (October to December), the trend started to rise again.
Overall, regardless of the catchment spatial variability, the temporal variability both at
the monthly and seasonal scales of rainfall followed a similar pattern. For all stations, the
highest variability in rainfall occurred in January, when it fell during the Kiremt season
and then rose again. The graph below (Figure 2) shows the patterns of the spatiotemporal
variability in rainfall for selected stations in the basin.

We divided the elevation difference into three groups, lower elevation (400–500 m),
medium elevation (500–2000 m), and higher elevation (2000 and above), to clearly show
the relationship between rainfall variability and the topographical variation in the study
area. Then, a boxplot was developed as shown in Figure 3 below.
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As can be seen from Figure 3, the variability in rainfall showed a decrease in the basin
with a rise in elevation. The results of this study support the findings of Pendergrass et al.,
2017 [30] that climate warming increases rainfall variability. Figure 2a also shows that
Itang, the basin’s lowest station at an elevation of 415 m above mean sea level (amsl), had
a larger coefficient of variation value (13.01) in January. Furthermore, this figure shows
that the precipitation variability was generally stronger at shorter time scales, with the
monthly variability being greater than the seasonal variability, for example (see Figure 2a).
This result agrees with those reported in [31], the authors of which came to the conclusion
that rainfall variability is higher at shorter time scales. Recent studies also show that
future global and regional warming increase precipitation variability over a range of time
scales [32–34].

3.2. Relationship between Variability in Temperature and Topography

Temperature variation in the basin was also examined to determine its relationship to
elevation variation. The elevation of the basin was divided into three categories for this
analysis: 400–500 m as low elevation, 500–2000 m as medium elevation, and 2000–3000 m
and above as high elevation. Then, we drew a graph to illustrate the relationship between
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the two, and it was observed that as elevation increased, the variability in the maximum and
minimum temperatures decreased (see Figure 4). On the other hand, we observed that the
minimum temperature variability was greater (with a coefficient of variation of 12.4 in the
lower elevation and 2.6 in the higher elevation) than the maximum temperature variability
(with a coefficient of variation of 6.5 in the lower elevation and 1.5 in the higher elevation).
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3.3. Relationship between Variability in Rainfall and Catchment Scale

The upper Baro catchment’s watersheds of varying sizes were chosen to explore the
relationship between catchment size and rainfall variability. Watersheds were chosen in
areas where other variables such as climate and the land use and land cover distribution
were expected to be homogeneous in order to minimize their impact on our analysis. As
a result, 11 watersheds ranging in size from 36 to 7940 km2 were chosen in the upper
Baro, where climatological and land use/cover homogeneity was expected. The areal
precipitation for each watershed was then estimated using the Thiessen polygon method.
Finally, the average coefficient of variation for each watershed was calculated seasonally
and monthly to see if there was a relationship between rainfall variability and catchment
size. The map below (see Figure 5) shows the basin’s selected watersheds for this analysis.

The coefficient of variation for each season was used to calculate the rainfall variability
in those watersheds, but no clear relationship between rainfall variability and catchment
size was found (see Figure 6 below). This finding supports the conclusions reached by the
authors of [8,35], who concluded that there was no significant relationship found between
precipitation and catchment size based on their analysis. This study goes beyond that,
attempting to determine whether the meteorological variability was linked to catchment
size; however, no significant relationship was discovered between the two.
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3.4. Relationship between the Variability in Meteorological Variables and Land Use/Cover Change

Due to the high population density in the region, the land use/cover of the Baro basin
is continually changing [36,37]. According to research conducted in the area, in the Ilu Aba
Bora Zone, which contributes to the majority of the Baro basin, 80% of the new agricultural
land was converted from forests [38]. For estimating the forest loss change trends in the
basin, a time series of annual forest loss was extracted using Google Earth Engine from
Hansen Global Forest Change v. 1.9 (2000–2021) (https://developers.google.com/earth-

https://developers.google.com/earth-engine/datasets/catalog/UMD_hansen_global_forest_change_2021_v1_9
https://developers.google.com/earth-engine/datasets/catalog/UMD_hansen_global_forest_change_2021_v1_9
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engine/datasets/catalog/UMD_hansen_global_forest_change_2021_v1_9; (accessed on
12 July 2022)). The Hansen global forest change dataset characterizes the forest extent and
changes worldwide from 2000 to 2021 using a time-series analysis of high-resolution (30 m)
Landsat images. The authors of [39,40] found that the Hansen dataset was effective for
performing land cover analyses at the local government level in their studies.

Using the Hansen dataset, it was found that the largest annual forest losses in the Baro river
basin happened in 2012, 2013, and 2014, with losses of 8605ha, 8289ha, and 5895ha, respectively,
and with an increasing cumulative trend from 2001 to 2021. As a result, the basin lost an average
of 2265.04 ha per year, as shown in Figure 7a,b. These data are consistent with the findings of the
Global Forest Watch, which conducted a continuous study on Ethiopian deforestation rates and
statistics from 2000 to 2021 (https://www.globalforestwatch.org/dashboards/country/ETH;
accessed on 8 October 2022).
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NDVI imagery was also developed and estimated for the Baro river basin using
Landsat 7 and 8 Collection 1 Tier 1 8-Day NDVI Composite, as shown in Figure 8 below,
and the NDVI showed an increasing trend with a range of 0.083. However, this does
not necessarily imply that open and dense forests are expanding; rather, it means that
negligible areas are being converted to bare land. As the authors of [31] indicated, NDVI
values between 0.2 and 0.5 indicate sparse vegetation such as shrubs and grasslands, and
NDVI values between 0.6 and 0.9 suggest dense forest.
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Figure 8. NDVI time series chart estimated from Landsat 7 and 8 for Baro river basin.

On the other hand, to examine the relationship between rainfall variability and land
use/cover changes, the LULC change was estimated for the Sor_Geba catchment, which
is located in the upper part of the basin. This catchment was chosen because it is a
homogeneous area with consistent climatic and topographic conditions, enabling us to
concentrate exclusively on the influence of landcover changes on meteorological variability.
The land use/cover change between 2000 and 2018 was determined using Google Earth
Engine. According to the findings, between 2000 and 2018, the forest cover decreased from
3656 km2 to 3287 km2, whereas the agricultural land increased from 3653 km2 to 4169 km2.
Moreover, shrubland showed a pattern of decrease from 611 km2 to 463 km2 (see Figure 9).

The Hansen global forest change estimates were also used to evaluate the trend in
forest degradation for the Sor_Geba catchment, and the years 2012, 2013, and 2014 show an
annual maximum loss of 2434, 3568, and 2261 ha, respectively. This equates to an estimated
average annual loss of 821.63 hectares in the watershed, with a total increasing trend from
2001 to 2018 and a range of 3241 ha. The results of the analysis are consistent with previous
research [41] and the authors of [42] who looked at the overall land use/cover changes in
the catchment.

In general, when forest degradation increased in the basin, both rainfall and temper-
ature variability showed an increasing trend. Figure 10 shows that the variability in the
maximum temperature, minimum temperature, and rainfall is increasing, indicating that
they have a positive correlation with forest loss. This study is supported by the findings
of Buba et al., 2020 [43], who looked into the relationship between forest degradation and
climate variability in Nigeria. Their evaluation found a positive relationship between forest
loss and climate variability (temperature and rainfall variability), with a correlation of 0.58.
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Figure 10. Comparison of trends showing the annual forest loss, annual rainfall variability, and
temperature changes in Sor_Geba catchment, where Tmax_mean and Tmin_mean represent the
maximum and minimum annual mean temperatures.

3.5. Correlation of Catchment Size, Topography, and Land Use/Cover with Precipitation and
Temperature Variability

A correlation analysis was carried out to determine which catchment characteristics
have the greatest influence on the variability in precipitation and temperature. First, by
ranking the area from small (36 km2) to large (7940 km2), the relationship between catchment
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size and precipitation variability was examined. A correlation of−0.13 was found, indicating
a negligible relationship between the two (Figures 11c and 12c and Table 2c).
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Figure 11. Scatter plot showing the correlation analyses between (a) elevation and the variability in 
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Figure 11. Scatter plot showing the correlation analyses between (a) elevation and the variability in
rainfall, maximum temperature, and minimum temperature, (b) forest loss and rainfall variability,
and (c) catchment size and rainfall variability.
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Figure 12. Correlation maps (a) between Elev, CV Tmax, CV Tmin, and RF CV, representing elevation,
variability in maximum temperature, variability in minimum temperature, and variability in rainfall,
respectively, where variability is measured by the coefficient of variation (CV); (b) between forest loss
and annual rainfall variability; and (c) between catchment size (km2) and annual rainfall variability.
The red color indicates a perfect match with a correlation of 1, the blue color indicates a high degree of
correlation between the variables, followed by the orange color for a moderate degree of correlation,
and the white color indicates a negligible relationship between the variables.
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Table 2. The correlation analysis between precipitation and temperature with (a) elevation, (b) forest
loss, and (c) catchment size, where the abbreviations are the same as defined in Figure 10 above.

(a)

Variables Elev CV Tmax CV Tmin RF CV

Elev 1 −0.533 −0.723 −0.471

CV Tmax −0.533 1 0.429 0.430

CV Tmin −0.723 0.429 1 0.697

RF CV −0.471 0.430 0.697 1

(b)

Variables Forest loss Annual CV

Forest loss 1 0.65

Annual RF CV 0.65 1

(c)

Variables Catch. size (km2) Annual RF CV

Catch. size
(km2) 1 −0.13

Annual RF CV −0.13 1

As shown in Table 2a, the relationship between elevation, rainfall, and temperature
variability was also investigated. The Pearson correlation between rainfall variability with
elevation, maximum temperature variability with elevation, and minimum temperature
variability with elevation was estimated in the analysis and found to be −0.47, −0.72, and
−0.53, respectively, with a negative sign indicating an inverse relationship between the two.

Furthermore, for the years 2001 to 2018, a correlation was determined to investigate the
relationship between land cover change (represented by forest, which is the main landcover
type in the area) and rainfall variability (Table 2b). As a result, a 0.65 correlation with a
positive relationship was observed between forest loss and rainfall variability.

Generally, it was found that land use/cover changes and elevation variation were the
two most influential factors for the variability in meteorological variables.

4. Conclusions

Several studies have been conducted to assess the impact of climate change and land
use/cover change on hydrological processes and catchment characteristics. However, in
reverse, the impact of those catchment characteristics on meteorological variable dynamics
remains limited. The sensitivity of meteorological variable dynamics to variations in catchment
characteristics was investigated in this study, focusing on three catchment characteristics:
catchment size, elevation (topographical difference), and land use/cover changes.

Statistical tools were used to assess the variability in rainfall and temperature with
these catchment characteristics. Climate data tools, R programming, and STATA were used
to assess the variability in rainfall and temperature, while Google Earth Engine was used to
assess the changes in land use/cover. After selecting meteorological stations and arranging
them longitudinally along river basins, a correlation was developed between elevation
changes and the variability in rainfall and temperature.

Watersheds from the basin were selected to study the relationship between catch-
ment size and rainfall variability. Those watersheds were chosen in a region where the
climatological and catchment characteristics were assumed to be homogeneous in order
to minimize their effects on the analysis of this special topic. The catchment sizes were
then arranged from small (36 km2) to large (7940 km2) for a specific time period, and a
correlation with rainfall variability was estimated. As a result, no significant relationship
between the two was found.
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A correlation was also checked between land use/cover changes with precipitation
and temperature variability. We found a good correlation between rainfall variability and
land use/cover changes (0.65) compared to the correlation between land use/cover changes
and temperature variability.

In general, we observed that land use/cover changes had the greatest influence on
precipitation variability, followed by elevation variation, whereas elevation variation has
the greatest influence on temperature variability. However, no correlation was found
between catchment size and precipitation variability. More research is needed to assess
the effect of catchment size on meteorological variability, taking into account all other
characteristics within the watersheds. It is also desirable to make decisions using full
meteorological data rather than filled data, and considerations such as the impact of areal
averaging must also be considered.

Only two meteorological variables, precipitation and temperature, were used for
the analysis of meteorological variable dynamics in this study, but we urge that future
researchers consider other variables, such as wind and humidity, in their analyses. We also
recommend more research into such issues, taking into account the impact of combined and
relative effects in order to draw a conclusion about the overall sensitivity of meteorological
dynamics to changes in catchment characteristics.
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