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Abstract: The Upper Krishna Basin in Maharashtra (India) is highly vulnerable to floods. This study
aimed to generate a flood susceptibility map for the basin using Frequency Ratio and Statistical Index
models of flood analysis. The flood hazard inventory map was created by 370 flood locations in the
Upper Krishna Basin and plotted using ArcGIS 10.1 software. The 259 flood locations (70%) were
selected randomly as training samples for analysis of the flood models, and for validation purposes,
the remaining 111 flood locations (30%) were used. Flood susceptibility analyses were performed
based on 12 flood conditioning factors. These were elevation, slope, aspect, curvature, Topographic
Wetness Index, Stream Power Index, rainfall, distance from the river, stream density, soil types, land
use, and distance from the road. The Statistical Index model revealed that 38% of the area of the
Upper Krishna Basin is in the high- to very-high-flood-susceptibility class. The precision of the flood
susceptibility map was confirmed using the receiver operating characteristic and the area under the
curve value method. The area under the curve showed a 66.89% success rate and a 68% prediction
rate for the Frequency Ratio model. However, the Statistical Index model provided an 82.85% success
rate and 83.23% prediction rate. The comparative analysis of the Frequency Ratio and Statistical
Index models revealed that the Statistical Index model was the most suitable for flood susceptibility
analysis and mapping flood-prone areas in the Upper Krishna Basin. The results obtained from
this research can be helpful in flood disaster mitigation and hazard preparedness in the Upper
Krishna Basin.

Keywords: Upper Krishna Basin; flood susceptibility mapping; frequency ratio; statistical index
models; precipitation

1. Introduction

Floods are well-known catastrophic hydro-meteorological disasters that cause huge
damage to human life, settlements and industries, agriculture and animals, and the econ-
omy [1–7]. Globally, about 170 million people have been affected due to floods every
year [8,9]. Under climate change, the frequency and magnitude of floods have increased
significantly due to environmental degradation, excessive growth of the population, urban-
ization, and changing land use pattern [10,11]. According to Alfieri et al. [12], the frequency
of floods has increased by over 40% in the last two decades throughout the world, which
has caused damages of about 75 billion USD per year. Although measuring the magnitude
and reporting the destruction because of inundation are enormously challenging [2], as-
sessments and approximations of floods have significantly increased [13,14]. To minimize
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potential losses to the natural and artificial environment because of floods, flood prevention
is essential [15]. Therefore, recognizing and plotting flood susceptibility zones significantly
help with flood early warning systems, flood management and mitigation, emergency ser-
vices, and disaster risk reduction [16–19]. Many scholars have conducted studies on Flood
Susceptibility Mapping (FSM) using Remote Sensing (RS) and Geographical Information
Systems (GISs) for flood hazard analysis [20–27].

The FSM includes environmental, geological, geomorphological, meteorological, topo-
graphical factors, and soil characteristics [28–31]. The Logistic Regression (LR), Frequency
Ratio (FR), Weight of Evidence (WoE), Statistical Index (SI), Analytical Hierarchy Process
(AHP), and Artificial Neural Network (ANN) models have been used by several researchers
and government agencies to estimate flood susceptibility precisely [32–39]. Although nu-
merous models have been used for flood susceptibility analysis (FSA), the results obtained
by different models varied slightly from region to region. The meteorological and physical
characteristics of the river basin are the main factors contributing to floods [40]. Therefore,
testing and evaluation of these models can provide optimal and more reliable results [41].
Over the years, statistical methods (LR and SI) have been applied for FSA and natural
hazards mapping, and the results of these models are accurate, reliable, and effective for
flood disaster management and planning. FR and SI models are simple to run in a GIS
environment and can develop valid FSM [27,34,36,37].

India receives more than 75% of its annual rainfall during the monsoon season from
June to September [42]. During the monsoon season, flooding in the major rivers of
India is the usual phenomenon, for example, the Ganga, Brahmaputra, Narmada, Tapi,
Mahi, Godavari, Krishna, and Kaveri Rivers [11,43,44]. According to the NITI Aayog
report [45], about 7.17 million hectares of areas of India are affected by floods annually. In
addition, about 1.2 million houses are damaged by floods, 1654 human lives are lost, and
618,248 cattle lives are lost annually. The average annual economic losses are Rs 5649 crores.
Previous scholars have specified that flood risk zone identification and defensive structural
and non-structural risk reduction measures could efficiently decrease flood losses to some
extent [46,47]. According to Ullah and Zhang [48], FSM is extensively used to determine
flood-prone zones in flood management studies. Therefore, the foremost objective of the
present research is a comparative analysis of the FR and SI models for FSM in the Upper
Krishna Basin (UKB).

2. Study Area

The Krishna Basin is the second-largest river basin in Peninsular India [49] (refer
to Figure 1a). The river has its source near Jor village (Mahabaleshwar) at an elevation
of 1337 m in Maharashtra. The river flows for a length of 1400 km and joins the Bay
of Bengal in Andhra Pradesh. The Krishna Basin extends over the parts of Maharash-
tra, Karnataka, Telangana, and Andhra Pradesh. The total area of the Krishna Basin is
2.59 Lakh sq. km. The present study is mainly confined to the UKB up to the Almatti
Dam in Karnataka [50] (refer to Figure 1b). The UKB covers parts of Satara, Sangli, and
Kolhapur districts in Maharashtra and Belagavi, Bagalkote, and Vijaypura districts in
Karnataka (refer to Figure 1c). The catchment area above Almatti dam is approximately
35,925 km2 [50]. The major tributaries of Krishna in the upper reaches are Koyna, Warna,
Panchganga, Dudhganga, and Ghataprabha. The UKB is roughly triangular. It is entirely
covered by Deccan trap lava flows. The alluvium mainly occurs along the banks of Krishna
River and its major tributaries and thickness vary from 2 to 20 m. The average annual
rainfall (AAR) of the UKB is 1347 mm. Nevertheless, annual rainfall varies from 600 mm
to 6208 mm. According to the 2011 census, the total population in the UKB occupying
three districts in Maharashtra is about 8,170,973 [51]. In the UKB, the Krishna River and its
tributaries are susceptible to recurrent flooding during the monsoon season). Some of the
recent devastating floods that occurred in the UKB were in 2005, 2006, 2009, 2011, and 2019.
Recently, a disastrous flood hit the UKB in August 2019. The list of the locations affected by
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the 2019 flood was obtained from various published reports [52,53]. The flood data were
classified into training and testing datasets.
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Figure 1. Study area: (a) India; (b) Krishna Basin; (c) Upper Krishna Basin.

3. Materials and Methods

Flood conditioning factors (FCFs) data were obtained from various sources and Table 1
depicts the details. The FSM output was validated by the receiver operating characteristics
(ROC) curve. Figure 2 shows a detailed methodology used for FSA.

Table 1. Parameters used for flood susceptibility mapping, their sources, and descriptions.

Flood Conditioning
Factors Data Type Descriptions Source

Elevation

Raster grid Derived from ASTER DEM
(30 m × 30 m) using ArcGIS

USGS
https://earthexplorer.usgs.gov (accessed on

23 August 2022)

Slope
Aspect

Curvature
TWI
SPI

Rainfall Attribute data
Derived from raingauge rainfall data
and converted into raster data with

30 m × 30 m cell size

Department of Agriculture, Maharashtra, India
Meteorological Department, and Karnataka Sate

Natural Disaster Monitoring Center, India

Distance from the river Vector data (Line) Derived from stream networks of the
UKB (30 m × 30 m) using ArcGIS

USGS
https://earthexplorer.usgs.gov (accessed on 23

August 2022)

Stream density Raster grid

Derived from ASTER DEM
(30 m × 30 m) using fill, flow

accumulation, drainage density
command in ArcGIS

USGS https://earthexplorer.usgs.gov (accessed on
23 August 2022)

Soil types Vector data
(Polygon)

Digital soil map of the world-ESRI
shape file FAO http://www.fao.org (accessed on 22 August)

Land use Raster grid Landsat 8 OLI/TIRS, 30 m × 30 m USGS https://earthexplorer.usgs.gov (accessed on
25 August 2022)

Distance from the road Vector data (Line)
Derived from road networks of the

district and converted into raster data
with 30 m × 30 m cell size

DIVA-GIS
https://www.diva-gis.org › gdata (accessed on

23 August 2022)

Flood inventory database Vector data (Point) Google Earth and Reports Electronic Media (News), Print Media
(Newspaper), Social Media, and Published Reports

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
http://www.fao.org
https://earthexplorer.usgs.gov
https://www.diva-gis.org
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Figure 2. Flow chart of the research methodology.

3.1. Flood Location Data

Flood location data are critical to investigate the association between flood-influencing
aspects and flood incidences. The flood inventory map was prepared using the 370 flood
locations affected by the August 2019 flood in the UKB (refer to Figure 3). The flood location
data were obtained through various reports. The flood sites were classified randomly as
training (70%) and (30%) testing sites to build and evaluate the flood models. Accordingly,
259 (111) flood locations were used as training (testing) data.

3.2. Flood Controling Factors

The FCFs were selected based on the area’s physical characteristics, data availability,
and literature reviews [54–58]. The analyses of the relationship between flood-controlling
elements and flood occurrences required a precise flood inventory map [59]. The flood con-
ditioning parameters comprised elevation, slope, aspect, curvature, Topographic Wetness
Index (TWI), Stream Power Index (SPI), rainfall, distance from rivers, stream density, soil
types, land use, and distance from the road (refer to Table 1). All factors were converted
into raster format with 30 × 30 m spatial resolution. The scaling factors (elevation, slope,
TWI, SPI, rainfall, stream density, and distance from the rivers and road) were classified
into six classes using the natural breaks classification (refer to Figure 4). The elevation is the
most recurrently used key factor for FSM. The lower-elevation areas have a high possibility
of flooding and are more susceptible to flood disasters [37,60]. The UKB elevation map was
prepared using the Digital Elevation Model (DEM) (refer to Figure 4a). The elevation in the
UKB stretched between 425 m and 1435 m. According to Souissi et al. [61], the velocity of
surface runoff and the infiltration rate of water are affected by the slope. Therefore, ground
slope is essential for FSA and FSM (refer to Table 1). The slope of the basin varied from
0 degrees to 70.61 degrees (refer to Figure 4b). The aspect is one of the crucial FCFs [62].
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It influences the received rainfall and shows the direction of the maximum slope of the
area surface. The aspect map of the UKB was classified into the 9 classes, and the aspect
map of the UKB was created in ArcGIS (refer to Figure 4c). Curvature was categorized into
three classes: concave, flat, and convex. According to Young and Mutchler [63], a convex
slope can generate considerably extra runoff as compared to a concave slope. Hudson
and Kesel [64] (2000) revealed that an area with a curvature value from 1.0 to 2.0 is more
susceptible to flooding. The curvature map of the UKB was prepared using ArcGIS 10.1
(refer to Figure 4d). TWI represents the cumulative flow at any point within the watershed.
It also denotes the spatial distribution of wetness in the basin. TWI has significance in the
FSA and flood mapping [24,36,37,54]. TWI was computed using Equation (1) [23,65] and a
TWI map was prepared from the DEM in ArcGIS 10.1 (refer to Figure 4e).

TWI = ln
[

As

tan B

]
(1)

where As is the cumulative area to a specific pixel and B is the slope angle in degrees.
According to Jebur et al. [66], SPI refers to the rate of the erosive power of surface runoff
in a specified site in a river basin and can be given in Equation (2). SPI was reclassified
into 6 classes and the SPI map for the UKB was generated in ArcGIS 10.1 software (refer to
Figure 4f).

SPI = As × tan B (2)
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Rainfall is one of the FCFs that is widely used in flood prediction studies [35,36]. The
intensity of rainfall in a short period over an area can cause devastating floods [67]. The
long-term rainfall data for the UKB were collected from various sources (refer to Table 1).
Several scholars have used the Inverse Distance Weighting (IDW) method for spatial and
temporal analysis of rainfall [68,69]. Accordingly, the rainfall distribution map of the UKB
based on annual average rainfall (AAR) was prepared (refer to Figure 4g). Distance from
the rivers controls the magnitude and spread of floods. There is an inverse relation between
the distance from the streams and flood spread [61]. In order to measure distance from the
rivers, the Euclidean Distance tool in ArcGIS software was used, and the stream density
map of the UKB was generated using the DEM (refer to Figure 4h). According to Shekhar
and Pandey [70], the risk of flooding increases when drainage density is high. Accordingly,
a stream density map of the UKB was prepared using ArcGIS (refer to Figure 4i). Soil
types, texture, and organic matter content affect the rates of surface runoff infiltration in the
ground [71,72]. Therefore, the soils in the basin play a significant role in flood magnitude
and extent. In addition, the water-holding capacity of soils (soil moisture) depends on the
characteristics of soils. Soil type and characteristics were studied from the digital global soil
data in shapefile format prepared by the Food and Agriculture Organization (FAO) of the
United Nations (refer to Figure 4j). Hölting and Coldewey [73] pointed out that floods are
also determined by land cover types. The LC affects surface runoff, infiltration rates, time
of concentration of rainwater in the basin, and potential flood extent [74,75]. Nevertheless,
areas with dense vegetation cover the decrease in the rate of runoff and increase in the
percolation rate, whereas a built-up (urban) area obstructs water intrusion into the ground
and accelerates the runoff [76,77]. Therefore, LU data of the UKB were obtained from the
Landsat-8 images of the 2021 using random forest classification in the Google Earth Engine
platform. The LU data were classified into six classes of land use: agriculture, built-up area,
forest land, open land, shrub land, and water bodies (refer to Figure 4k). Lastly, distance
from the road was derived with the Euclidean Distance tool in ArcGIS and classified into
six categories to determine the distance of specific pixels to the nearest road line (refer to
Figure 4l).

3.3. Frequency Ratio (FR) Model

The FR is one of the widely used models in various natural hazard (flood, landslide,
and forest fire) analyses and mapping [78–81]. It was used to identify the probabilistic
relationship between flood occurrence and FCF. The FR of each conditioning factor class
can be expressed as the ratio of the class percentage and the total flood percentage. A
greater bivariate probability indicates a stronger correlation, whereas a low FR value means
a weak correlation. The FR value is expressed in Equation (3) as follows [34].

FR =
Nij

Pij

/
N
P

(3)

where FR is the frequency ratio of the sub-classes, Nij is the number of flood locations, Pij is
the total number of flood locations in the study area, N is the total number of pixels for each
class of the factor, and P is the total number of pixels in the study area. Then, to calculate
the flood susceptibility index (FSI), the FR values of each class were combined following
Equation (4).

FSIFR = ∑ FR (4)

where FSIFR is the flood susceptibility index of the FR method and ∑ FR is the total FR
values of all classes from each conditioning factor.

3.4. Statistical Index (SI) Model

The statistical index (SI) model was developed by van Westen [82] for landslide
susceptibility mapping. SI weight values are calculated using the natural logarithm of the
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flood existence in each class of the conditioning factor divided by the total flood density
in the study area. The higher positive SI value means a strong relationship between
flood occurrence and the class of conditioning factors. The negative value shows the low
possibility of flooding the class [83]. In this study, the SI weight values of each class of each
conditioning factor were obtained using the following Equation (5) [82].

Wij = ln
(Dij

D

)
= ln

[ (
Nij

Sij
/

N
S

)]
(5)

where Wij is the statistical index value given to the i class of j factors; Dij is the density of
floods over the i class of j factor; D is the total density of floods over the entire area; Nij is
the number of floods in i class of j factor and is the total number of floods in the study area;
Sij is the number of pixels in i class of j factor. N is the total number of flood pixels of the
study area and S is the total number of pixels of the study area.

The Wij weights were given to conditioning factors using a reclassification method.
Finally, the reclassified factors were summed up to generate the flood susceptibility index
(FSI) using a raster calculator in the ArcGIS 10.1 software. The FSI calculation is shown by
the following Equation (6).

FSISI = ∑ Wij (6)

where FSISI is the flood susceptibility index of the SI method and ∑ Wij are the total Wij
values of all classes from each conditioning factor.

3.5. Models Validation

Validation is an essential component in natural hazard susceptibility mapping to check
the effectiveness and applicability of the model. This study applied the ROC to signify the
graphical association of FSI and the cumulative percentage of flood occurrence. Frequently,
ROC and area under ROC curves (AUC) are applied to evaluate the binary response model
such as a logistics model [84,85]. They were used for both training data (70%) and testing
data (30%). The AUC was also used to calculate the success and prediction rates for training
and testing data. The computed results were depicted in the percentage of the study area
categorized as FSI (x-axis) versus the cumulative percent of flood occurrence (y-axis). The
AUC was calculated using the following equation [86].

AUC =

n

∑
i=0

(xi − xi−1)yi − [
(xi − xi−1)(yi − yi−1)

2
] (7)

where xi is the percentage of the area and yi is the area of the flood. AUC values vary
between a maximum value of 1 or 100% and 0.5 or 50%. According to Silalahi et al. [87],
based on the AUC value, results can be classified as a very good model (0.9), a good model
(0.8–0.9), a medium or reasonable model (0.7–0.8), and a poor model (<0.6).

4. Results and Discussion
4.1. Flood Susceptibility Analysis by the Frequency Ratio Model

The result of the FR was obtained for each sub-class of all flood-controlling factors and
is summarized in Table 2. Table 2 shows that the maximum (2.31) FR value with a high flood
area (86.87%) for lower elevation class (425–587 m) proves the high probability of flooding
in the lower-elevation area of the UKB. Conversely, zero values of FR were observed for
the higher elevation classes (858–1031 m and 1031–1435 m) in the basin that signified that
these areas have less probability of flooding. Normally, as the elevation increases, the FR
value decreases, revealing a high positive relation between FR and flooding events [35].
The slope of the UKB basin has a relationship with flooding events. The steeper slopes
produce runoff more quickly toward the downslope. FR values above 1.00 were observed
for slopes between 3.05◦ and 6.65◦ (1.38) and slopes from 6.65◦ to 11.35◦ (1.23), which has
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the highest susceptibility to flooding. The maximum flood area (52.12%) was observed
for a slope varying between 3.05◦ and 6.65◦ in the UKB (refer to Table 2). An FR value
greater than one is significant for support of flooding [5]. Zero FR values were noted for
the higher slopes above 18.01◦, which have the lowest susceptibility to flooding in the UKB
(refer to Table 2). According to Jaiswal et al. [88], a high slope ultimately increases the flood
probability of the flood by increasing the swiftness of discharge, and a high-slope area has
less time to infiltrate water in the ground. The slope curvature parameter of floods has a
significant effect on flood susceptibility. The maximum FR values of the aspect parameter
of flood control were noted for aspects facing southwest (1.67), west (1.37), and northwest
(1.17). Therefore, these slope directions had the greatest control on flood occurrence in
the basin (refer to Table 2). The concave slopes had the highest FR value (1.17) followed
by flat areas with a value of 0.98. About 89% of flood areas were concave and flat in the
UKB (refer to Table 2). Khosravi et al. [35] observed maximum flood areas for concave and
flat slope areas in the Haraz watershed. In the case of TWI, the first two classes (2.36–6.23
and 6.23–7.83) had an FR of more than 1, which revealed a higher probability of flood
occurrences in these zones in the UKB (refer to Table 2). Sharif et al. [89] stated that TWI
signifies the influence of landscape on the location and extent of saturated source zones
in producing surface runoff in a basin. The maximum FR value (1.46) was observed for
the first class of SPI, which varied between −13.82 and −6.32. However, for the remaining
classes, the FR was less than one. According to Khosravi et al. [35] the smaller the SPI, the
greater the probability of flooding in the basin.

Table 2. Result of the FR and SI model for different classes of the factors.

Factors Class No. Pixels Area (%) Floods
Pixels Flood (%) Frequency

Ratio (FR)
Stastical

Index (SI)

Elevation (m)

425–587 13685981 37.58 225 86.87 2.31 84
587–663 9331587 25.62 28 10.81 0.42 −86
663–747 6918565 19.00 5 1.93 0.10 −229
747–858 4221014 11.59 1 0.39 0.03 −340

858–1031 1703324 4.68 0 0.00 0.00 0
1031–1435 559906 1.54 0 0.00 0.00 0

Slope
(degree)

0–3.05 12859597 35.31 69 26.64 0.75 −28
3.05–6.65 13741170 37.73 135 52.12 1.38 32
6.65–11.35 5703779 15.66 50 19.31 1.23 21

11.35–18.01 2382527 6.54 5 1.93 0.30 −122
18.01–27.14 1226979 3.37 0 0.00 0.00 0
27.14–70.61 506325 1.39 0 0.00 0.00 0

Aspect

Flat 3989717 10.95 19 7.34 0.67 −40
North 7311702 20.08 26 10.04 0.50 −69

Northeast 3589296 9.86 25 9.65 0.98 −2
East 3794366 10.42 27 10.42 1.00 0

Southeast 4130598 11.34 36 13.90 1.23 20
South 3568439 9.80 25 9.65 0.99 −1

Southwest 3628161 9.96 43 16.60 1.67 51
West 3274717 8.99 32 12.36 1.37 32

Northwest 3133381 8.60 26 10.04 1.17 15

Curvature
Convex 3903486 10.72 16 6.18 0.58 −55

Flat 20857583 57.27 146 56.37 0.98 −2
Concave 11659308 32.01 97 37.45 1.17 16

Topographic
Wetness Index

(TWI)

2.36–6.23 11479372 31.52 117 45.17 1.43 36
6.23–7.83 13937655 38.27 106 40.93 1.07 7
7.83–9.81 6107429 16.77 25 9.65 0.58 −55
9.81–12.40 3013928 8.28 7 2.70 0.33 −112

12.40–15.98 1604271 4.40 4 1.54 0.35 −105
15.98–27.71 277722 0.76 0 0.00 0.00 0
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Table 2. Cont.

Factors Class No. Pixels Area (%) Floods
Pixels Flood (%) Frequency

Ratio (FR)
Stastical

Index (SI)

Stream Power
Index
(SPI)

−13.82–−6.32 15348035 42.14 159 61.39 1.46 38
−6.32–−1.92 5347891 14.68 34 13.13 0.89 −11
−1.92–−0.14 8268133 22.70 48 18.53 0.82 −20
−0.14–2.00 4989706 13.70 13 5.02 0.37 −100
2.00–5.21 2027553 5.57 5 1.93 0.35 −106
5.21–16.51 439059 1.21 0 0.00 0.00 0

Rainfall (mm)

470–826 16998500 46.67 155 59.85 1.28 25
826–1267 9985786 27.42 85 32.82 1.20 18
1267–1875 6621008 18.18 19 7.34 0.40 −91
1875–2736 1759703 4.83 0 0.00 0.00 0
2736–4037 777959 2.14 0 0.00 0.00 0
4037–5821 277421 0.76 0 0.00 0.00 0

Distance from
rivers (m)

0–2282 10494750 28.82 226 87.26 3.03 111
2282–4979 9609658 26.39 27 10.42 0.40 −93
4979–7884 7927304 21.77 3 1.16 0.05 −293

7884–11,411 4973052 13.65 2 0.77 0.06 −287
11,411–15,768 2584543 7.10 1 0.39 0.05 0
15,768–26,349 831070 2.28 0 0.00 0.00 0

Stream density
(km/sq.km)

0.05–0.39 5594652 15.36 2 0.77 0.05 −299
0.39–0.57 9414604 25.85 3 1.16 0.04 −311
0.57–0.73 7693109 21.12 13 5.02 0.24 −144
0.73–0.92 6566155 18.03 55 21.24 1.18 16
0.92–1.13 4719547 12.96 95 36.68 2.83 104
1.13–1.58 2432310 6.68 91 35.14 5.26 166

Soil Types

Ap 5527500 15.18 9 3.47 0.23 −147
Bv 1943925 5.34 1 0.39 0.07 −263
Hh 3172624 8.71 35 13.51 1.55 44

l 28852 0.08 0 0.00 0.00 0
Lc 2468282 6.78 1 0.39 0.06 −287
Nd 3963555 10.88 6 2.32 0.21 −155
Ne 120372 0.33 0 0.00 0.00 0
Vc 15251970 41.88 129 49.81 1.19 17
Vp 3943297 10.83 78 30.12 2.78 102

Land use

Agriculture 14170930 38.91 51 19.69 0.51 −68
Built-

up/Urban 1431623 3.93 136 52.51 13.36 259

Forest 2561431 7.03 0 0.00 0.00 0
Open Land 10295513 28.27 62 23.94 0.85 −17
Shrub Land 7096236 19.49 10 3.86 0.20 −162

Water Bodies 863184 2.37 0 0.00 0.00 0

Distance from
road (m)

0–1286 12581331 34.54 101 39.00 1.13 12
1286–2916 11188412 30.72 92 35.52 1.16 15
2916–4804 7174183 19.70 43 16.60 0.84 −17
4804–7291 3823147 10.50 20 7.72 0.74 −31

7291–11,238 1329214 3.65 3 1.16 0.32 −115
11,238–21,875 324090 0.89 0 0.00 0.00 0

Maximum FR values (above 1) were observed for low-AAR classes (from 470 to
1267 mm) and the FR was zero for the areas with AAR varying between 1875 mm and
5821 mm in the basin (refer to Table 2). This shows that areas with low AAR are more
susceptible to flooding as compared to high-AAR areas in the UKB. The distance from the
river flood condition factor denoted that the first class of this parameter had the highest
FR value (3.03), which suggests that areas from a stream to 2282 m distance are more
susceptible to flooding in the UKB (refer to Table 2). In the case of stream density, the
high FR values (greater than 1) were noted for areas with stream density varying between
0.73 km/sq.km and 1.58 km/sq.km. This specified that areas with high stream density
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are more susceptible to flooding than those with less stream density (refer to Table 2). In
the UKB, the maximum FR value (2.78) was identified for Pellic Vertisols (Vp) followed
by Chromic Vertisols (Vc), which was 1.19 (refer to Table 2). Vertisols soils have a high
moisture-holding capacity due to the maximum clay content, which varies between 40
and 80% [90,91]. Therefore, the areas of the UKB with Vertisols soils (Vc and Vp) are more
vulnerable to flooding than other types of soils. Land use is a very crucial aspect of the
FSA of the UKB. A high FR value (13.36) was noted for the built-up area with about 53%
of the flood area (refer to Table 2). The built-up area increases the surface runoff rate and
decreases the infiltration rate. This suggests that growth in the urban or built-up area
increases flood susceptibility in the UKB basin. The highest FR values for distance from
the road were identified for distance classes of 0–1286 m (FR = 1.13) and 1286–2986 m
(FR = 1.16), which denoted high flood susceptibility (refer to Table 2). The FSM of the UKB
(refer to Figure 5a) was created by categorizing the FSI obtained from the FSA using the FR
model. The FSI was classified into five susceptible zones, namely very low susceptibility,
low susceptibility, moderate susceptibility, high susceptibility, and very high susceptibility.
A proportion of 3% of the area of the UKB fell in the very-high-susceptibility class, while
12% of the area of the basin fell under the high-susceptibility class. Proportions of 25%,
35%, and 25% of the areas of the basin were identified in the moderate, low, and very low
classes of susceptibility, respectively (refer to Figure 5a). Overall, areas with low elevation,
low slopes, flat curvature, maximum stream density, maximum TWI, low SPI, near the
river, highly urbanized, and covered by Vertisols are more susceptible to flooding in
the UKB.
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4.2. Flood Susceptibility Analysis by the Statistical Index Model

SI model results are summarized in Table 2. Higher positive SI values specify the
maximum possibility of flood incidence, and negative values denote a low chance of flood
existence in the region. The highest (84) SI value was noted for heights ranging between 425
and 587, whereas with the elevation increase, the SI values either became negative or zero
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(refer to Table 2). A negative SI value (−28) was observed for a varying slope between 0◦

and 3.05◦. The maximum SI values of the slope class 3.05◦–6.65◦ (SI = 32) and 6.65◦–11.35◦

(SI = 21) revealed that areas between these slopes are more susceptible to flooding (refer
to Table 2). A positive SI (16) was obtained for the concave curvature, while negative SI
values were identified for the convex (−55) and flat (−2) curvatures. This specified that
concave surfaces were more vulnerable to flooding in the UKB (refer to Table 2). The
highest value of SI (36) was obtained for the TWI flood factor class between 2.36 and 6.23,
and negative and zero SI values were found for TWIs above 7.83 (refer to Table 2). For
the SPI, the highest SI (38) was obtained for the class of −13.82 to −6.32, and the negative
or zero SI values were noted for the rest of the SPI classes (refer to Table 2). In this study,
the highest SI (25) value was observed in the lowest rainfall class (470–826 mm), which
was the lowland areas in the east of the UKB. The distance from the river of 0–2282 m
displayed the highest SI value (111), while other classes were obtained as negative and
zero SI values (refer to Table 2). It is obvious that with the increase in distance from the
river, the flood possibility decreases [35]. The area with low stream density gained negative
SI values (−299, −311, and −144), while the highest SI value (166) was obtained for the
stream density class varying between 1.13 and 1.58 km/sq.km (refer to Table 2). According
to the soil type factor, the Vertisols soil showed its influence on flood occurrence with high
SI values for Vp (SI = 102) and Vc (SI = 17). With the high content of clay and moisture
storage, the area with these soil types is more at risk for flooding. In contrast, negative
SI values were observed for the Plinthic Acrisols (Ap), Vertic Cambisols (Bv), Chromic
Luvisols (Lc), and Dystric Nitosols (Nd) soils (refer to Table 2). In the case of the land
use factor, the highest SI (259) was derived for the built-up area (urban), which occupied
13.36% of the flood area, while negative SI values were observed for agricultural land and
open land (refer to Table 2). The maximum SI (15) values observed for the second class
(1286 m–2916 m) of the distance from the road showed a highly susceptible area for flooding
in the basin. Inclusive, all the flood-controlling factors with high SI increased the probability
of flood occurrence in the UKB. Likewise, for the FR model, the FSI was classified into five
classes, namely very high, high, moderate, low, and very low (refer to Figure 5b). The FSM
generated with the SI model revealed that 16% of the area of the basin was very highly
susceptible to floods, whereas 22% of the area of the basin was under a highly susceptible
flood zone. The moderate- and low-flood susceptibility classes occupied the same area
(25%) of the basin and 13% of the area fell into very low-flood-susceptibility classes (refer
to Figure 5b).

4.3. Flood Susceptibility Model Validation and Comparison

Validation of flood susceptibility mapping is essential for flood hazard research. In
this research, the FSIs obtained from FR and SI models were validated to compare their
performance. ROC-AUC was applied by comparing FSI results with training data (70%)
and testing data (30%) to generate success and prediction rates (refer to Figure 6). This
method is simple and represents a reliable result, frequently used by many flood hazard
studies [34,48]. The success and prediction rate curves are portrayed in Figure 6. The
AUC calculation revealed the 66.89% and 82.85% success rates for FR and SI models,
respectively. The result of ROC-AUC showed 68% and 83.23% prediction rates for the FR
and SI models, respectively. The results validated by the AUC showed an accuracy of
the success rate of 82.85% and an accuracy of the prediction rate curve of 83.23%, which
specifies a good-quality susceptibility map obtained from the SI model [87]. Therefore, the
flood susceptibility map of the UKB obtained by the SI model can be utilized for managing
and preventing future flood damages to the people and infrastructure of the UKB.
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4.4. Application of the Research

The UKB was severely affected by the disastrous flood in August 2019. Many parts of
the Satara, Sangli, and Kolhapur districts in (Maharashtra), and the Belagavi, Bagalkote,
and Vijaypura districts (Karnataka) were affected by the flood. The UKB received heavy
rainfall from 27 July 2019 to 13 August 2019. Some of the stations located in the UKB
recorded nearly 600% (Koyna, Mahabaleshwar) to 1500% (Sangli and Kolhapur) excess
rainfall against average normal rain between 27 July and 13 August 2019 (18 days) [52].
Consequently, during a short period, an enormous discharge was produced by the major
rivers (Krishna, Warna, and Panchganga) in the Satara, Sangli, and Kolhapur districts in
Maharashtra (refer to Figure 7). The Krishna River, Warna River, and Panchganga River in
the Sangli and Kolhapur districts became severely flooded on 5–6 August 2019. Extensive
inundation in many parts of the Sangli and Kolhapur districts during the August 2019
flood was observed (refer to Figure 8). In the Sangli district, 58 villages covering about
15.17% of the area were affected. In Kolhapur district, 215 villages covering 21.20% of
the area were affected [52]. In Sangli and Kolhapur districts, more than one lakh people
from 20,000 families were moved to safety by the local people and the National Disaster
Response Force (NDRF). About 29 boats in Kolhapur, 43 in Sangli, and 17 boats in Satara
were busy evacuating people. In the Kolhapur district, 89 roads were underwater [91].
According to the Vadnere committee report [52], about 1.66 lakh hectares of seasonal and
perennial crops were affected in 28 tehsils of Satara, Sangli, and Kolhapur districts. The
estimated losses were Rs 3475 crores in these districts [52]. Figure 7 shows that most of the
settlements are in the very-high-flood-susceptibility area of the UKB. Therefore, the present
study is more beneficial to minimize the losses of infrastructures and settlements, animal
and agriculture, and loss of human and animal lives.
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Figure 8. Clips of 2019 flood in the UKB: (a) A view of flooded areas due to overflowing Panchganga
River in Kolhapur city (Maharashtra) on 7 August 2019 (PTI). Source: Shivam Bodhe/HT photo.
Accessed from: http://www.hindustantimes.com on 27 October 2022; (b) a view of flooded areas
due to overflowing Krishna River in Sangli on 6–7 August 2019 (PTI). Accessed from: http://
indianexpress.com/article on 27 October 2022.

5. Conclusions

The FSM is an essential aspect to understand the scenario of the flood hazard, vul-
nerability, and risk in hazard management. Therefore, it is indispensable to create the
most accurate and trustworthy FSM of the UKB for flood prevention, management, and
mitigation. There are several models for flood susceptibility analysis, but FR and SI models
have been most frequently used in flood modeling [37]. Accordingly, FR and SI models
were used for flood modeling in the UKB, and the FSM was produced by coalescing all of
the weight conditioning factors. The model validation outcomes from ROC-AUC denoted
that the FSM generated from the SI model is more reliable as compared to the FR model.
The prediction rate of the SI model (83.23%) was greater than the FR model (68%). There-
fore, the flood prediction accuracy and superior performance of the SI model are higher
than the FR model. The FSM maps obtained for the UKB can be significantly supportive

http://www.hindustantimes.com
http://indianexpress.com/article
http://indianexpress.com/article
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in understanding flood risks, flood possibilities, and flood preparedness to minimize the
disastrous effects of floods in the UKB.

Author Contributions: Conceptualization, U.P. and U.R.; methodology, U.P. and W.S.; software, U.P.
and W.S.; validation, U.P. and W.S.; formal analysis, U.P. and W.S.; investigation, U.P. and W.S.; re-
sources, U.P.; data curation, U.P.; writing—original draft preparation, U.P. and W.S.; writing—review
and editing, U.R. and N.M.; visualization, U.P. and W.S.; supervision, U.R.; project administration,
U.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data used in this analysis can be requested from the corresponding
author for noncommercial and research purposes.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Youssef, A.M.; Pradhan, B.; Hassan, A.M. Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using

GIS based morphometry and satellite imagery. Environ. Earth Sci. 2011, 62, 611–623. [CrossRef]
2. Du, J.; Fang, J.; Xu, W.; Shi, P. Analysis of dry/wet conditions using the standardized precipitation index and its potential

usefulness for drought/flood monitoring in Hunan Province China. Stoch. Environ. Res. Risk Assess. 2013, 27, 377–387. [CrossRef]
3. Yu, J.; Qin, X.; Larsen, O. Joint Monte Carlo and possibilistic simulation for flood damage assessment. Stoch. Environ. Res. Risk

Assess. 2013, 27, 725–735. [CrossRef]
4. Zou, Q.; Zhou, J.; Zhou, C.; Song, L.; Guo, J. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets

model and fuzzy AHP. Stoch. Environ. Res. Risk Assess. 2013, 27, 525–546. [CrossRef]
5. Tehrany, M.S.; Shabani, F.; Jebur, M.N.; Hong, H.; Chen, W.; Xie, X. GIS-based spatial prediction of flood prone areas using

standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomatics. Nat. Hazards Risk
2017, 8, 1538–1561. [CrossRef]

6. Pawar, U.V. An Analytical Study of Geomorphological, Hydrological, and Meteorological Characteristics of Floods in the Mahi
River Basin: Western India. Ph.D. Thesis, Tilak Maharashtra Vidyapeeth, Pune, India, 2019.

7. Toduse, N.C.; Ungurean, C.; Davidescu, S.; Clinciu, I.; Marin, M.; Nita, M.D.; Davidescu, A. Torrential flood risk assessment and
environmentally friendly solutions for small catchments located in the Romania Natura 2000 sites Ciucas, Postavaru and Mare.
Sci. Total Environ. 2020, 698, 134271. [CrossRef]

8. Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of flood hazard areas at a regional scale using an index-based approach and
Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece. Sci. Total Environ. 2015, 538, 555–563. [CrossRef]

9. Wang, Y.; Hong, H.; Chen, W.; Li, S.; Panahi, M.; Khosravi, K.; Shirzadi, A.; Shahabi, H.; Panahi, S.; Costache, R. Flood
susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based
optimization and imperialistic competitive algorithm. J. Environ. Manag. 2019, 247, 712–729. [CrossRef]

10. Charlton, R.; Fealy, R.; Moore, S.; Sweeney, J.; Murphy, C. Assessing the impact of climate change on water supply and flood
hazard in Ireland using statistical downscaling and hydrological modeling techniques. Clim. Chang. 2006, 74, 475–491. [CrossRef]

11. Pawar, U.V.; Hire, P.S.; Gunjal, R.P.; Patil, A.D. Modeling of magnitude and frequency of floods on the Narmada River: India.
Modeling Earth Syst. Environ. 2020, 6, 2505–2516. [CrossRef]

12. Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood
risk in a warmer world. Earth’s Future 2017, 5, 171–182. [CrossRef]

13. Pradhan, B. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J. Spat. Hydrol.
2010, 9, 1–18.

14. Diakakis, M.; Mavroulis, S.; Deligiannakis, G. Floods in Greece: A statistical and spatial approach. Nat. Hazards 2012, 62, 485–500.
[CrossRef]

15. Huang, X.; Tan, H.; Zhou, J.; Yang, T.; Benjamin, A.; Wen, S.W.; Li, S.; Liu, A.; Li, X.; Fen, S.; et al. Flood hazard in Hunan province
of China: An economic loss analysis. Nat. Hazards 2008, 47, 65–73. [CrossRef]

16. Dawson, C.W.; Abrahart, R.J.; Shamseldin, A.Y.; Wilby, R.L. Flood estimation at ungauged sites using artificial neural networks.
J. Hydrol. 2006, 319, 391–409. [CrossRef]

17. Bubeck, P.; Botzen, W.; Aerts, J. A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Anal.
2012, 32, 1481–1495. [CrossRef]

18. Mandal, S.P.; Chakrabarty, A. Flash flood risk assessment for upper Teesta river basin: Using the hydrological modeling system
(HEC-HMS) software. Model. Earth Syst. Environ. 2016, 2, 59. [CrossRef]

19. Bui, D.T.; Ngo, P.T.T.; Pham, T.D.; Jaafari, A.; Minh, N.Q.; Hoa, P.V.; Samui, P. A novel hybrid approach based on a swarm
intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena 2019, 179, 184–196. [CrossRef]

20. Bates, P.D. Remote sensing and flood inundation modeling. Hydrol. Process. 2004, 18, 2593–2597. [CrossRef]

http://doi.org/10.1007/s12665-010-0551-1
http://doi.org/10.1007/s00477-012-0589-6
http://doi.org/10.1007/s00477-012-0635-4
http://doi.org/10.1007/s00477-012-0598-5
http://doi.org/10.1080/19475705.2017.1362038
http://doi.org/10.1016/j.scitotenv.2019.134271
http://doi.org/10.1016/j.scitotenv.2015.08.055
http://doi.org/10.1016/j.jenvman.2019.06.102
http://doi.org/10.1007/s10584-006-0472-x
http://doi.org/10.1007/s40808-020-00839-1
http://doi.org/10.1002/2016EF000485
http://doi.org/10.1007/s11069-012-0090-z
http://doi.org/10.1007/s11069-007-9197-z
http://doi.org/10.1016/j.jhydrol.2005.07.032
http://doi.org/10.1111/j.1539-6924.2011.01783.x
http://doi.org/10.1007/s40808-016-0110-1
http://doi.org/10.1016/j.catena.2019.04.009
http://doi.org/10.1002/hyp.5649


Water 2022, 14, 3771 16 of 18

21. Liu, J.F.; Li, J.; Liu, J.; Cao, R.Y. Integrated GIS/AHP-based flood risk assessment: A case study of Huaihe River Basin in China.
J. Nat. Disasters 2008, 17, 110–114.

22. Haq, M.; Akhtar, M.; Muhammad, S.; Paras, S.; Rahmatullah, J. Techniques of Remote Sensing and GIS for flood monitoring and
damage assessment: A case study of Sindh Province, Pakistan. Egypt. J. Remote Sens. Space Sci. 2012, 15, 135–141. [CrossRef]

23. Jaafari, A.; Najafi, A.; Pourghasemi, H.; Rezaeian, J.; Sattarian, A. GIS-based frequency ratio and index of entropy models for
landslide susceptibility assessment in the Caspian forest, Northern Iran. Int. J. Environ. Sci. Technol. 2014, 11, 909–926. [CrossRef]

24. Rahmati, O.; Zeinivand, H.; Besharat, M. Flood hazard zoning in Yasooj region, Iran, using GIS and multi criteria decision
analysis. Geomat. Nat. Hazards Risk 2016, 7, 1000–1017. [CrossRef]

25. Paul, G.C.; Saha, S.; Hembram, T.K. Application of the GIS-based probabilistic models for mapping the flood susceptibility in
Bansloi sub-basin of Ganga-Bhagirathi river and their comparison. Remote Sens. Earth Syst. Sci. 2019, 2, 120–146. [CrossRef]

26. Msabi, M.M.; Makonyo, M. Flood susceptibility mapping using GIS and multi-criteria decision analysis: A case of Dodoma
region, central Tanzania. Remote Sens. Appl. Soc. Environ. 2021, 21, 100445. [CrossRef]

27. Suppawimut, W. GIS-Based Flood Susceptibility Mapping Using Statistical Index and Weighting Factor Models. Environ. Nat.
Resour. 2021, 19, 481–493. [CrossRef]

28. Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geograph. Inform. Sci. 2006, 20, 703–726.
[CrossRef]

29. Hwang, C.L.; Lin, M.J. Group Decision Making under Multiple Criteria: Methods and Applications; Springer: Berlin/Heidelberg,
Germany, 2012.

30. Sarker, S.; Veremyev, A.; Boginski, V.; Singh, A. Critical nodes in river networks. Sci. Rep. 2019, 9, 11178. [CrossRef]
31. Gao, Y.; Sarker, S.; Sarker, T.; Leta, O.T. Analyzing the critical locations in response of constructed and planned dams on the

Mekong River Basin for environmental integrity. Environ. Res. Commun. 2022, 4, 101001. [CrossRef]
32. Talei, A.; Chua, L.H.C.; Quek, C. A novel application of a neurofuzzy computational technique in event-based rainfall–runoff

modeling. Expert Syst. Appl. 2010, 37, 7456–7468. [CrossRef]
33. Kia, M.B.; Pirasteh, S.; Pradhan, B.; Mahmud, A.R.; Sulaiman, W.N.A.; Moradi, A. An artificial neural network model for flood

simulation using GIS: Johor River Basin Malaysia. Environ. Earth Sci. 2012, 67, 251–264. [CrossRef]
34. Cao, C.; Xu, P.; Wang, Y.; Chen, J.; Zheng, L.; Niu, C. Flash flood hazard susceptibility mapping using frequency ratio and

statistical index methods in coalmine subsidence areas. Sustainability 2016, 8, 948. [CrossRef]
35. Khosravi, K.; Pourghasemi, H.R.; Chapi, K.; Bahri, M. Flash flood susceptibility analysis and its mapping using different bivariate

models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environ. Monit. Assess.
2016, 188, 656. [CrossRef]

36. Samanta, S.; Pal, D.K.; Palsamanta, B. Flood susceptibility analysis through remote sensing, GIS and frequency ratio model. Appl.
Water Sci. 2018, 8, 66. [CrossRef]

37. Tehrany, M.S.; Kumar, L.; Jebur, M.N.; Shabani, F. Evaluating the application of the statistical index method in flood susceptibility
mapping and its comparison with frequency ratio and logistic regression methods. Geomat. Nat. Hazards Risk 2019, 10, 79–101.
[CrossRef]

38. Hoang, D.V.; Tran, H.T.; Nguyen, T.T. A GIS-based spatial multi-criteria approach for flash flood risk assessment in the Ngan
Sau-Ngan Pho mountainous river basin, North Central of Vietnam. Environ. Nat. Resour. J. 2020, 18, 110–123. [CrossRef]

39. Khaing, T.W.; Tantanee, S.; Pratoomchai, W.; Mahavik, N. Coupling flood hazard with vulnerability map for flood risk assessment:
A case study of Nyaung-U Township in Myanmar. GMSARN Int. J. 2021, 15, 127–138.
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