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Abstract: South Korea currently lacks a real-time monitoring and anomaly detection system for
detecting continuous tap water quality changes from the water source to faucet and pre-diagnosing
hazards that threaten tap water safety. In this study, we constructed an accurate water quality pre-
diction model that could comprehensively cover all water treatment facilities supplying tap water
nationwide and verified the model using an integrated approach. To address the uncertainty of
continuously changing water quality, we collected five years (2017–2021) of hourly water quality data
from 33 large water purification plants and applied various deep learning techniques to construct an
optimal prediction model. We repeated water quality prediction and evaluation over the following
24 h through a time series cross-validation of an untrained dataset of the previous five months. The
optimized deep learning model achieved average and maximum prediction accuracy of 98.78 and
99.98%, respectively, and showed excellent performance in terms of the root mean squared error
(0.0006), mean absolute error (0.0003), and Nash–Sutcliffe efficiency (0.9894). Thus, deep learning tech-
nology greatly improved the accuracy and efficiency of water quality prediction. The proposed model
could provide prompt and accurate water quality information for large-scale water supply facilities
nationwide and improve public health through the early diagnosis of water quality anomalies.

Keywords: anomaly detection; deep learning; real-time monitoring; tap water quality; time series
forecasting

1. Introduction

In 2020, more than 50 million people in South Korea were supplied with tap water,
accounting for 99.4% of the total population [1]. Following the treatment of raw water at
38 water treatment facilities, the Korea Water Resources Corporation (K-water) supplies
17.76 million tons of tap water per day to 113 major cities and industrial complexes nation-
wide through a vast water supply system, representing one of South Korea’s largest social
infrastructures. However, if multiple water quality problems simultaneously occur within
the system, damage can spread to several regions and impact public health and safety over
a wide area; thus, effective water quality management is crucial. Recently, South Korea
has suffered numerous water quality incidents related to tap water (reddish-brown water,
water cut-offs, contamination with midge larvae, etc.), which has increased social distrust
of the national water management system and further reduced tap water consumption [2,3].
To dispel this distrust, a real-time monitoring system is required that can promptly identify
the continuously changing water quality conditions from the water source to faucet to
pre-diagnose any hazards that may threaten tap water safety [3–5].

South Korea currently faces numerous challenges in terms of water resource man-
agement and water security. Currently, the foundations have been laid for integrated
water management tailored to the characteristics of each water system, with extensive
efforts made to resolve temporal and regional variability by establishing a multi-regional
water supply system [6]. Additionally, a real-time water quality monitoring system was
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introduced to swiftly respond to changes in the environmental conditions of the water
intake source, such as sudden changes in water quality indicated by pH, turbidity, and
residual chloride. However, under the current system, a sensor failure or water quality
problem can go unnoticed for several days or longer; this lack of a prompt response can
drastically increase the number of complaints from residents.

To address these limitations and shift to a more proactive response system, a water
quality prediction system that can prevent water quality accidents, manage the water
quality environment, and protect water resources is needed [7,8]. However, few studies
have conducted systematic analyses of water quality prediction systems for potable tap
water. Moreover, South Korea is still lacking an accurate water quality prediction model that
has been verified using an integrated approach and can comprehensively cover all water
treatment facilities supplying tap water. Although South Korea has had a well-established
water management infrastructure since the incident of prolonged reddish-brown water
damage in Incheon in 2019, which was caused by an inadequate response to incidents, as
well as similar incidents in several other regions, the country urgently requires a more
advanced system that can predict water quality in tap water supply pipelines in real time,
according to regional characteristics.

Accordingly, the goal of this study is to develop a deep learning-based real-time water
quality prediction model for tap water that can cover the entire country, rather than being
limited to a specific region. For this purpose, we used major water quality monitoring
indicators measured hourly at water treatment centers managed by K-water, considering
the water quality standards for drinking water prepared by the Ministry of Environment.
Specifically, we collected five-and-a-half years (1 January 2017 to 31 May 2022) of hourly
water quality data from 33 large water purification plants that produce and supply tap
water throughout South Korea. Then, we conducted an in-depth analysis of nationwide tap
water quality. The data included three water quality monitoring indicators: hydrogen ion
concentration (pH), turbidity, and residual chloride. To identify each water quality indicator
using the data collected from each water purification plant, we conducted pattern analysis,
correlation analysis, and anomaly processing. Next, to predict the three water quality
indicators in real time, we applied three deep learning techniques to construct an optimal
model for accurately predicting water quality, namely long short-term memory (LSTM) [9],
gated recurrent units (GRU) [10], and Sample Convolution and Interaction Networks
(SCINet) architecture [11]. The autoregressive integrated moving average (ARIMA) model,
which is widely used for time series prediction, was selected as the baseline model for
comparison with the deep learning models. To address the uncertainty of continuously
changing water quality, we combined actual tap water quality data sets from multiple
regions nationwide, then developed deep learning models based on approximately five
years of data from January 2017 to December 2021. We applied a time series cross-validation
method to five months of data from January to May 2022 that were not used for training,
then verified the generalization capacity of the developed model. The time series cross-
validation method is an iterative process involving training with three days of data and
then predicting water quality for the following 24 h. The prediction accuracy of the models
was compared using the mean average error (MAE), root mean squared error (RMSE), and
Nash–Sutcliffe efficiency (NSE).

According to the experimental results, the optimized deep learning-based neural
network model achieved an average prediction accuracy of 98.78% and maximum predic-
tion accuracy of 99.98%. In various real datasets of tap water quality, the model showed
excellent performance in terms of MAE and RMSE, with minimum values of 0.0003 and
0.0006, respectively. These results show that deep learning techniques can greatly improve
the accuracy and efficiency of predicting constantly changing water quality. The proposed
deep learning model would provide real-time accurate water quality prediction informa-
tion for 33 actual large water supply facilities throughout South Korea, enabling constant
monitoring of continuously changing water quality conditions, which could help minimize
the spread of damage through the early diagnosis of water quality anomalies.
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The rest of this paper is structured as follows: Section 2 describes the current status of
research on water quality prediction and potable tap water quality standards in South Korea.
Section 3 describes data collection and preprocessing methods. Section 4 describes the
exploratory data analysis. Section 5 describes the theory and construction of the proposed
deep learning model. Section 6 presents the model training and validation and evaluates
the predictive performance of the trained optimal model. Finally, Section 7 highlights the
research findings and scope for future work.

2. Related Literature
2.1. Deep Learning-Based Methods

Previous water quality prediction studies have applied machine learning techniques
such as random forest, eXtreme gradient boosting (XGBoost), support vector machine
(SVM), and artificial neural networks (ANN). To predict the water quality index, Ahmed
et al. [12] used a sequence of supervised machine learning algorithms based on four water
quality parameters: temperature, turbidity, pH, and total dissolved solids. Among the
applied algorithms, gradient boosting (learning rate of 0.1) and polynomial regression
(order of 2) predicted the water quality index most efficiently, with MAE values of 1.9642
and 2.7273, respectively. Chen et al. [13] compared the water quality prediction performance
of 10 learning models (seven traditional and three ensemble models) using big data of major
rivers and lakes in China. They identified and verified major water parameters (dissolved
oxygen (DO), chemical oxygen demand (COD), and NH3–N), which demonstrated the high
specificity of permanent water quality. El Bilali and Taleb [14] developed eight machine
learning models for predicting irrigation water quality in semi-arid regions using only
two water parameters (conductivity and pH) as inputs. The results indicated that machine
learning models could overcome several limitations of existing approaches when evaluating
the suitability of water for agricultural purposes. Loos et al. [15] proposed a method for
improving the accuracy of real-time water quality prediction, based on the parameters of
water temperature, nutrients, and algae along the Yeongsan River in South Korea. They
conducted experiments on three ensemble data assimilation methods, i.e., the existing
ensemble Kalman filter and two related algorithms that could improve nonlinear initial
conditions. Through model calibration, the performance of their water quality model was
improved by up to 30%.

In recent years, deep learning-based methods for time series prediction have also
garnered popularity and are being widely used in water quality environments. Deep learn-
ing models such as the recurrent neural network (RNN), LSTM, and GRU have selective
memory functionality, making them highly suitable for processing sequential data, such as
water quality information. Of the three factors that characterize a time series: trend, sea-
sonality, and irregularity, the first two enable reasonably accurate predictions [11]. Solanki
et al. [16] used a deep learning network model to analyze and predict the chemical values
of water, particularly DO and pH, which yielded more accurate results than supervised
learning-based techniques. Singha et al. [17] proposed a model to predict groundwater
quality based on deep learning and explicitly compared the proposed technique with
three machine learning models: random forest, XGBoost, and ANN. According to the
experiment, the proposed model achieved superior accuracy (mean squared error = 1.537
and MAE = 1.360) compared with the other models. Zhang et al. [18] constructed a hy-
brid model that combined an ANN and genetic algorithm with 11 parameters, including
turbidity, pH, and COD, to predict the overall performance of China’s National Drinking
Water Treatment Plants. The model showed greatly improved performance from 0.71 to
0.93 (R2), and is currently used by managers to plan for regulatory changes, fluctuations
in source water quality, and market demand. Liu et al. [19] proposed a water quality
prediction method using an LSTM network model, and then analyzed and preprocessed
water quality data collected from a water quality monitoring station in the Yangtze River
in Guazhou (pH, DO, COD, and NH3-N). According to their experimental results, the
LSTM model outperformed the autoregressive integrated moving average (ARIMA) and
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support vector regression models in terms of DO prediction accuracy for short-, medium-,
and long-term predictions. Vadiati et al. [20] used the support vector machine (SVM) to
predict the groundwater level of a single point. The SVM was shown to have an advantage
in groundwater level forecasting. Regarding the determination of the groundwater level, it
was shown by Samani et al. [21] that the predictability of the least-square support vector
machine (LSSVM) method was, by and large, most effective compared with other models.
Peng et al. [22] proposed transformer-based deep transfer learning to facilitate long-term
water quality prediction based on deep learning. Model effectiveness was verified by the
improvement in long-term prediction accuracy for water quality indicators (pH, DO, NH-N,
and COD) of major rivers and lakes in China by 24.84% (mean squared error) and 18.42%
(MAE) compared with the next best approach. With recent advances in deep learning, new
methods continue to emerge in time series analysis. For example, SCINet [11] is a deep
learning-based architecture for univariate time series prediction comprising three levels
that has achieved state-of-the-art performance in the time series prediction field. The time
series is downsampled for prediction and different convolution filters are used to extract
features and interact with the information.

However, despite several studies employing machine learning and deep learning
to predict water quality, very few have attempted to predict tap water quality. Existing
prediction models for water quality management have only been developed for water
intake sources in specific regions and predominantly for stages before tap water, such as
rivers and lakes. Similar to many other countries, South Korea lacks a nationwide water
quality prediction model and is hindered by insufficient analysis of various tap water
quality monitoring indicators. Accordingly, this study presents a novel contribution to
the literature by performing an in-depth water quality analysis of potable tap water and
developing a water quality prediction deep learning model that covers the entirety of
South Korea.

2.2. Statistical Methods

Existing statistical methods for time series prediction include autoregression (AR),
moving average (MA), and autoregressive moving average (ARMA). The AR integration
MA (ARIMA) model, which extends the ARMA model by incorporating the concept of
integration, is frequently used for actual predictions [23]. For optimization based on the
time series ARIMA model, Wang, Zhang, Zhang, and Wang [4] established a universal
water quality prediction model that incorporates the Holt–Winters seasonal model and
uses eutrophication indicators of total phosphorus and total nitrogen as parameters. Zhang
and Xin [24] used ARIMA to analyze and model the NH4 concentration in the Zhuyi
River. The results indicated that ARIMA yields high accuracy for short-term water quality
prediction. The vector autoregressive model, an extension of the AR model, captures linear
dependencies between different time series. These statistical methods are popular in the
field of univariate time series prediction because of their simplicity and interpretability
(mobility). However, these approaches are difficult to extend to long-term prediction and
multivariate time series prediction problems.

2.3. Comparison of Methods

We summarize a comparison of the different forecasting methods in Table 1 according
to criteria, such as methodology and proposed modeling capability. Table 1 helps the
reader to understand the advantages and disadvantages of each method. We compared the
scalability and computational burden of the analytical methods according to case study
dimensions. This comparison demonstrates that complex network methods better model
more parameters compared with other methods, owing to the lesser computational burden.
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Table 1. Advantage and disadvantage for forecasting methods.

Methods Advantages Disadvantages Ref.

ARIMA 1

• Suitable for non-stationary time series,
stable, high accuracy of the forecast

• Very fast and simple for calculation
of indicators

• Can only work with stationary data
• Less accurate with time series data
• Not reliable, cannot be used alone for

decision-making
• Highly sensitive to outliers

[4,23,25,26]

LSTM 2

• Able to store multiple layers of data or
information and better at finding and
exploiting long-range context

• Suitable for processing sequence signals
• Overcomes the vanishing gradient problem

occurring on the timeline

• The form of the LSTM neural network
model is more complicated, and there are
also problems such as long training and
prediction times and high
computational costs

• Excessive simplification can lead to
inaccurate results.

[9,19]

GRU 3

• Makes the structure simpler compared with
LSTM but maintains the effect of LSTM

• Computationally efficient
• Reduces the complexity of the network

• The performance of GRU is inferior to
that of LSTM in the case of large datasets [10]

SCINet 4

• Can be applied to real-time application
because of high computing efficiency

• Incorporates the predictive power of
different combinations of inputs

• Improved forecast accuracy

• Large number of required parameters for
modeling real systems

• Downsampling mechanism may also
have difficulty handling data collected at
irregular intervals.

[11]

1 ARIMA = Autoregressive integrated moving average. 2 LSTM = Long short-term memory. 3 GRU = Gated
recurrent units. 4 SCINet = Sample Convolution and Interaction Networks.

2.4. Drinking Water Quality Standards

The main purpose of water quality indicator prediction is to provide accurate infor-
mation for water resource management decisions and ensure in advance that drinking
water quality indicators are within a reasonable range [8]. Legally recognized standards
for drinking water quality in South Korea specify the acceptable values for various water
quality indicators considered safe for consumption by the Ministry of Environment. First,
pH indicates the acidity and basicity of water, which ranges from 0 to 14, where 7 is con-
sidered neutral. The Korean drinking water standard is a pH of 5.8–8.5, which includes
alkaline and weakly acidic water; water with a pH of 7.0 is supplied to most households.
Second, turbidity indicates the degree of water clarity, where lower figures indicate less
indirect contamination by different pollutants or microorganisms, i.e., cleaner water. Water
management in South Korea seeks to maintain turbidity at 0.5 or less, according to drink-
ing water quality standards. Third, compared with other disinfectants, chloride is highly
persistent and economical, and it is easy to examine the residual effects; therefore, residual
chloride is mainly used as an indicator for tap water disinfection [3]. This is performed
at the final stage of the water treatment process to prevent the growth of microorganisms
and sterilize the water. The drinking water standards set the threshold of residual chloride
concentration in tap water supplied to households to be 4.0 mg/L or less. Water quality is
generally considered abnormal when the results exceed the standard for various pollutant
and water quality indicators.

In this study, we conduct an in-depth analysis of tap water quality for several local
water purification plants of the K-water supply system used by most Koreans daily. Three
water quality monitoring indicators are considered (pH, turbidity, and residual chloride),
according to the drinking water quality standards for tap water presented by the Ministry
of Environment. Although there are more than 300 tap water quality inspection indicators,
these three variables provide the fastest indication of water quality anomalies and reflect
real-time performance, making them suitable for application in a water quality anomaly
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detection system. Moreover, the water quality monitoring system managed by K-water
only discloses real-time water quality for these three indicators. In contrast to previous
studies that often used a single indicator, we use multiple indicators for a more in-depth
analysis of water quality pollution across all regions of South Korea.

3. Methodology

This study aims to use different deep learning models to simulate and characterize
the spatial and temporal evolutions of hydrogen ion concentration (pH), turbidity, and
residual chloride. This enables the interpretation of the essential variables over different
seasons (time domain) and different subzones (space domain) and estimates the future
change of water quality in water purification plants. To this end, five key steps are outlined
in Figure 1. Figure 1 shows the acquisition, preprocessing, exploratory data analysis, model
construction, and evaluation processes that make up the proposed model.
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Figure 1. Proposed framework of the system.

3.1. Scope of Study

The water quality data used in this study was provided by K-water (https://www.data.
go.kr/data/15057290/openapi.do, accessed on 1 June 2022). According to their automatic
water quality monitoring reports, 2.46 million water quality data points were collected
from 33 large water purification plants from 2014 to 2022. The data include three water
quality monitoring indicators that can be collected in real time: hydrogen ion concentration
(pH), turbidity, and residual chloride. For the study area, we selected 33 large water
purification plants in South Korea that produce domestic water (treated water and drinking
water). For the study period, we selected 2017 as the base year and included approximately
five-and-a-half years up to 2022.

3.2. Spatial Range

As shown in Figure 2, water management in South Korea is largely divided into
four areas, and water supply facilities are operated based on the major basins in each
area. The water supply facilities for the Han River basin, Geum River basin, Seomjin
River and Yeongsan River basins, and Nakdong River basin are located in the Gyeonggi,
Chungcheong, Jeolla, and Gyeongsang provinces, respectively [6]. On this basis, we
analyzed the tap water quality characteristics of large water purification plants serving
the water systems of all five major rivers in South Korea. Figure 2 shows the basins of
these five major rivers and the status of major water purification plant facilities in each
basin. The Han River basin, located in the central region of the Korean Peninsula, is the
largest river basin in South Korea, with 11 water purification plants, including Goyang
and Deokso. The Nakdong River basin is in the southeastern region of South Korea and

https://www.data.go.kr/data/15057290/openapi.do
https://www.data.go.kr/data/15057290/openapi.do
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contains eight water purification plants, including Gucheon and Miryang. The Geum River
basin is in the southern midwest region of the Korean Peninsula. It is the third-largest river
after the Han River and Nakdong River and has ten water purification plants, including
Gosan and Gongju. The Seomjin River and Yeongsan River basins, located in the southern
midwest region of the Korean Peninsula, contain four water purification plants, including
Deokjeong and Donghwa.
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3.3. Temporal Range

The study period of five-and-a-half years from January 2017 to May 2022 was selected
to reveal the seasonal and long-term variation characteristics of the water quality environ-
ment. From this dataset, five years of data (1 January 2017 to 31 December 2021) were used
for the exploratory data analysis and model training, and data from the remaining five
months (1 January 2022 to 31 May 2022) was used for model validation (Table 2). First, we
performed exploratory data analysis on pH, turbidity, and residual chloride data to train
the model, then identified the characteristics of the water quality data to develop a water
quality prediction model. To prevent overfitting, we applied a time series cross-validation
method to five months of data (January to May 2022) to verify the performance of the
developed model.
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Table 2. Composition of the dataset.

Dataset Period Observed Data

Modeling (training) 1 January 2017–31 December 2021 4,338,576
Model validation
(out of sample) 1 January 2022–31 May 2022 358,776

3.4. Data Preprocessing

The datasets used in this study consisted of water quality data samples from 33 water
purification plants. Each dataset contained 47,448 h of data for three indicators of tap water
quality: pH, turbidity, and residual chloride. Generally, data preprocessing methods such
as linear interpolation, smoothing, filtering, and noise removal can be applied to correct for
missing data. Considering that the data were a time series, we linearly interpolated the
water quality data as an hourly record. Regarding missing values judged to be sensor errors
in the water quality data (0 or −999), we found 7989, 7352, and 7449 missing values for
pH, turbidity, and residual chloride in 11 water purification plants of the Han River basin;
8402, 8359, and 8174 missing values in 10 water purification plants of the Geum River basin;
1938, 1542, and 1513 missing values in eight water purification plants of the Nakdong River
basin; and 503, 586, and 489 missing values in four water purification plants of the Seomjin
River basin, respectively. These missing values are expected to cause sensor failure because
they frequently and continuously occur; as the longest period of delayed response was
305 h (approximately 12 days), the emergency response system of the management and
supervision agency was considered to be inadequate.

4. Exploratory Data Analysis

After preprocessing the water quality data according to Korean drinking water quality
standards, we conducted the exploratory data analysis [27]. We performed exploratory data
analysis on hourly observations of pH (PH), turbidity (TB), and residual chloride (RC) using
five years of data from 2017 to 2021. First, we identified the water quality characteristics
using various visualization methods based on the observational data, and then examined
correlations between the water quality indicators through correlation analysis. Next, we
investigated whether the tap water met the drinking water quality standards of the Ministry
of Environment. Figure 3 shows the change patterns of each variable.

4.1. Correlation Analysis

For multivariate correlation analysis of water quality information, it was essential to
analyze and select correlations between various indicators [7]. In this study, we analyzed
the relationships between three water quality indicators of large water purification plants
in South Korea using Spearman correlation coefficients. The magnitude of the correlation
coefficient indicates the degree of correlation and the sign indicates the direction of the
correlation. Figures 4–7 show the water purification plants with the highest and lowest
correlations for each river basin.

The relationships between the three water quality indicators (variables) had a correla-
tion coefficient of 0.6 or less in all four basins, indicating a low correlation. Although the
correlation coefficients differed by basin, most water purification plants showed low correla-
tion coefficients. Thus, when using Korean tap water quality datasets to create a water qual-
ity prediction model, a univariate model was more appropriate than a multivariate model.
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sensor failure because they frequently and continuously occur; as the longest period of 
delayed response was 305 h (approximately 12 days), the emergency response system of 
the management and supervision agency was considered to be inadequate. 

4. Exploratory Data Analysis 
After preprocessing the water quality data according to Korean drinking water qual-

ity standards, we conducted the exploratory data analysis [27]. We performed exploratory 
data analysis on hourly observations of pH (PH), turbidity (TB), and residual chloride 
(RC) using five years of data from 2017 to 2021. First, we identified the water quality char-
acteristics using various visualization methods based on the observational data, and then 
examined correlations between the water quality indicators through correlation analysis. 
Next, we investigated whether the tap water met the drinking water quality standards of 
the Ministry of Environment. Figure 3 shows the change patterns of each variable. 
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4.2. Anomaly Analysis

To understand the characteristics of the drinking water quality data, we analyzed water
quality anomaly data that did not meet the drinking water quality standards according to
water quality indicators. The average water quality values of most tap water samples were
within the acceptable range of the Ministry of Environment’s drinking water guidelines.
However, some water quality measurements were outside the acceptable range, with
702 tap water quality anomalies occurring over the past five years. Therefore, we analyzed
the water quality anomalies for each water quality indicator. pH had the most anomalies
(460), followed by turbidity (236), whereas residual chloride had far fewer anomalies (6).



Water 2022, 14, 3766 11 of 24

Next, we searched for anomalies in the five years of drinking water quality data for
each basin (Figure 8). The Han River basin had 48 pH anomalies and 66 turbidity anomalies,
45 of which occurred at the Wabu water purification plant, where 43 exceeded the drinking
water standard over three days from 14 to 16 December 2019. Outside the Wabu water
purification plant, the Han River basin consistently had 15 or fewer pH and turbidity
anomalies per year, indicating relatively stable water quality. No measurements exceeded
the drinking water standards for residual chloride in the Han River basin. The Geum River
basin had 80 pH anomalies, 42 turbidity anomalies, and 4 residual chloride anomalies;
37 of the pH anomalies occurred at the Buan water purification plant, with 25 occurring
continuously over two days from 5 to 6 October 2020. The Nakdong River basin had 302 pH
anomalies, 108 turbidity anomalies, and no residual chloride anomalies. The proportion
of pH anomalies in the Nakdong River basin was higher than that in the other basins;
of the 302 anomalies, 252 occurred in the Yeoncho water purification plant, 197 of which
occurred over 12 days from 18 to 29 October 2020. Finally, the Seomjin River basin had
30 pH anomalies, 19 turbidity anomalies, and no residual chloride anomalies; 19 of the pH
anomalies occurred at the Dongwha water purification plant, 16 of which occurred over a
continuous period. All water quality anomalies occurred for at least two consecutive days
in each basin, indicating a lack of swift responses to anomalies in tap water quality.

Figure 8. Frequency of water quality anomalies in the Han, Geum, Nakdong, and Seomjin River basins.



Water 2022, 14, 3766 12 of 24

Figure 8 indicates frequency measurements of exceeding the drinking water standards;
however, less than 0.01% of all measurements exceeded the standards over all five years.
Based on our analysis of the water quality characteristics, we attribute the rather small
number of anomalies in the study period to the fact that tap water quality data in South
Korea are provided as hourly averages and one-time measurements; therefore, it is difficult
to provide information on water quality anomalies that prompted a response in less than an
hour. There are no standards for disclosing tap water quality information, which highlights
the need to construct a system to monitor water quality in real time.

5. Development of Tap Water Quality Prediction Models
5.1. Deep Learning-Based Methods
5.1.1. LSTM

The LSTM method [9], which was proposed to solve the problems of RNNs, replaces
the internal nodes with a device called a memory cell and uses a switchgear designed to
accumulate information over long periods of time or forget previous information. Figure 9
shows the basic structure of the LSTM cell. The inside of each LSTM block comprises
a memory cell, input gate, forget gate, and output gate, which can control information
transfer in the hidden layer cell state [28]. The input gate returns information to the storage
cell, the forget gate allows cell information to be forgotten or removed in the input storage
cell, and the output gate outputs information from the input storage cell [29].
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5.1.2. GRU

Due to its complex structure, the training process required to develop an LSTM neural
network is typically very time-consuming. To speed up this process, a GRU network
that is similar to the LSTM network but modified to have a simpler structure has been
proposed [10]. Figure 10 shows the general structure of the GRU cell, which consists of two
gates: update gate (zt) and reset gate (rt). Similar to LSTM cells, the hidden state output
at time t is computed using the hidden state at time t-1 and the input time series value at
time t. The update gate zt is used to control the degree to which the previous hidden state
enters the current input state. The reset gate rt is used to determine the amount of previous
information that is discarded. zt is the output of the update gate at time t, rt is the value of
the reset gate at time t, σ is the sigmoid activation function, and ht−1 is the hidden state
at t− 1. xt is the input vector of the current time. Wrx, Wrh, and br are the corresponding
weight matrix and bias vectors. The reset gate output at the current time rt is bit multiplied
by the hidden state at the previous time ht−1. The candidate hidden state is calculated
using the result of the operation and the input of the current time. A related operation is
performed through the update gate to obtain the hidden state ht−1 of the last moment and
the current candidate hidden state ht. The GRU neural network is a time-recursive neural
network; therefore, the gate-loop unit can hold relevant information and pass it on to the
next unit that fully reflects the long-term historical course of the time series and is thus
suitable for the long-term prediction of time series.
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5.1.3. SCINet

SCINet, proposed by [11], is a binary tree-based deep learning model comprising
three levels: SCI-block, SCINet, and stacked SCINet, which captures time dependencies at
multiple temporal resolutions to increase the predictability of the original time series. The
basic block, SCI-block, decomposes the input data into even and odd sequences. It then
processes using different convolution filters to extract homogeneous and heterogeneous
information from each part. SCINet arranges the SCI-blocks in a binary tree structure
then rearranges the child series. It concatenates all low-resolution elements into a new
sequence representation, then adds them to the original time series for prediction. A
stacked SCINet is composed of several SCINets with intermediate supervision. SCI-block
uses different convolution kernels to extract information from two sequences. It is then
used to compensate for information loss, which comprises two steps of interactive learning.
The stacked SCINet architecture is shown in Figure 11a. SCINet comprises several SCI-
blocks hierarchically arranged using the presented SCI-blocks to obtain the tree structure
framework shown in Figure 11b. If the training sample is sufficient, then K SCINet layers
can be stacked to achieve better prediction accuracy at the expense of a more complex
model architecture, as shown in Figure 11c.
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5.2. Classical Statistical Methods

Based on the ARMA model, the ARIMA model includes an additional process of
normalizing nonstationary data that satisfies the assumption of stationarity. A normalized
time series looks the same at any time point regardless of when it is observed. The three
parameters that describe the three main components of the ARIMA model are p, d, and
q. Several methods exist for converting a nonstationary time series into a stationary
time series; one method involves generating d through differencing. Through the AR
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model order p, which indicates how many past values must be considered for prediction,
and the MA model order q, which considers past prediction errors, the ARIMA model
can be generalized to the ARIMA(p,d,q) model. Time series analysis consists of model
identification, model estimation, and model testing steps, and it is important to configure a
model suitable for each time series data.

In the AR model (Equation (1)), the variable of interest is predicted using the variable’s
past values and the AR model is used only for data that shows stationarity. The MA model
(Equation (2)) uses past prediction errors in a model similar to a regression model to express
the weighted moving average of past prediction errors.

yt = c +∅1yt−1 +∅2yt−2 + . . . +∅pyt−p + εt (1)

yt = c + εt +∅1εt−1 +∅2εt−2 + . . . +∅qεt−q (2)

ARIMA model identification determines the difference order d, AR order p, and MA
order q, which are judged through an auto correlation function (ACF) and partial auto
correlation function (PACF). After identifying the specific models of ARIMA(p,d,q), it is
necessary to estimate the selected models and test which model is most suitable. Akaike’s
information criterion (AIC), which estimates the quality of a statistical model, was used
as the test method in this study (Equation (3)). The AIC is advantageous for comparing
different estimated models, where models with a smaller value have higher quality. The
established time series model can accurately predict and detect anomalies according to
how well the temporal characteristics of specific data are included; thus, it is necessary to
identify and test the most suitable prediction model.

AIC = −2 log(L) + 2(p + q + k + 1) (3)

5.3. Tap Water Quality Prediction Models

In this section, we introduce the statistical and deep learning models used, and
describe how their parameters were tuned and selected. All methods described below
were implemented in Python using the NumPy, Pandas, and Matplotlib libraries, as well
as the Statsmodels, Scikit-learn, Keras, and PyTorch packages for the time series and deep
learning methods. All the modelling, data analysis, and visualization were conducted in
the environment of Python 3.8.

5.3.1. Architecture of LSTM, GRU, and SCINet Models

The LSTM and GRU model were built using Tensorflow, which is an end-to-end
machine learning platform in Python. The TensorFlow framework was selected because
of its wide applications in industrial deployment and was used in the study along with
Keras. It is helpful for various applications but is notably well-suited for the training
and inference of deep neural networks. The LSTM and GRU were actualized with the
Keras 2.9.0, TensorFlow version 2.9.1, CUDA version 11.2, and NumPy 1.18.1 libraries.
The other libraries used in this study included Numpy version 1.23.1, Matplotlib version
3.5.3, Pandas version 1.4.3, and Scikit-learn version 1.1.1. The SCINet was implemented
with PyTorch (https://github.com/cure-lab/SCINet, accessed on 22 August 2022). Deep
learning models were trained using Python 3.8 in the following environment: Ubuntu
18.04.6 LTS OS, Intel(R) Xeon(R) Silver 4214R 2.40 GHz CPU, NVIDIA GeForce RTX 3090
(24 GB RAM) GPU, 512 GB RAM.

For a fair comparison of the three deep learning models, we maintained all input
lengths and used multiple output strategies for multi-step prediction. First, because of
the network similarity of LSTM and GRU, the same network architecture was designed
for both models (Figure 12), with several network architectures tested using Bayesian
optimization. According to the results, water quality predictions in the study area using
LSTM and GRU networks containing only one layer were superior to those obtained using
multi-layer networks. The proposed LSTM and GRU networks comprised one LSTM and

https://github.com/cure-lab/SCINet
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GRU layer and one dense layer. Each LSTM and GRU layer consisted of 128 nodes and a
linear function was used for the activation function of the dense layer. For the loss function,
the mean squared error was used and the SCINet architecture proposed in Liu, Zeng, Xu,
Lai, and Xu [11] was employed. The parameters used for univariate prediction were set as
hidden size = 8, stacks = 1, levels = 3, and learning rate = 0.007. Table 3 presents the best
hyperparameters values of three models.
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Model Configuration
Han River Geum River Nakdong River Seomjin River

PH TB RC PH TB RC PH TB RC PH TB RC

LSTM
Other parameter Input node: 128; activation: ReLU; dropout rate: 0.2; loss: mean squared error;

optimizer: Adam; learning rate: 0.001; epoch: 200

Batch size 34 24 39 58 47 32 34 47 39 34 36 39

GRU
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optimizer: Adam; learning rate: 0.001; epoch: 200

Batch size 21 56 37 21 56 55 21 39 37 21 39 53

SCINet Other parameter Hidden size: 8; stacks: 1; levels: 3; learning rate: 0.007; batch size: 64; dropout: 0.25

5.3.2. Performance Comparison with the ARIMA Model

Time series analysis techniques are largely divided into univariate and multivariate
techniques. The univariate technique assumes that time-dependent variables can be ex-
plained only with past data. In the previous correlation analysis, we confirmed that there
was no correlation between pH, turbidity, and residual chloride, suggesting that the tap
water quality data considered only time variables in the time series analysis. Given that the
goal of this study was the temporal prediction of time series data, the univariate technique
was considered preferable to the multivariate technique. Thus, we adopted the ARIMA
model, which is a widely used univariate technique. Pandas version 1.3.4 and statsmodels
version 0.13.2 from the Python 3.8 software package were adopted. Pandas was used to
clean data and statsmodels was used to test, determine order, and fit and predict ARIMA.
The other libraries for visualization used in this study included matplotlib version 3.5.1
and seaborn version 0.11.2.

We conducted a time series analysis on the hourly data of Korean water purification
plants and estimated the time series model using the statistical packages SAS and R. First,
by analyzing water quality data over five years from 2017 to 2021 and calculating the
ACF and PACF, we estimated the most suitable models. As the water quality data of the
33 large-area water purification plants was nonstationary time series data, we performed
first differencing to satisfy the stationarity assumption in the time series analysis before
estimating the models. The ARIMA(p,d,q) models were constructed by measuring the
correlations between data, where p in AR and q in MA were determined using ACF
and PACF.

Both ACF and PACF of the pH water quality indicator in the Goyang water purification
plant (Han River basin) were cut off after, at lag 2; thus, ARIMA(2,1,2) was estimated as a
tentative model. The PACF value of pH in the Yeoncho water purification plant (Nakdong
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River basin) approached 0 at a slow rate and was unstable; however, ACF sharply declined
at lag 2 after the differencing, indicating the MA(1) process. As such, the ARIMA(0,1,2)
model was introduced through the model identification step. In the Byeolryang water
purification plant of the Seomjin River basin, ACF and PACF were cut off at lag 2 and lag 1,
respectively; therefore, the ARIMA(1,1,2) model was assigned for this plant. Then, using
the AIC evaluation criteria, we established a water quality prediction model for the 33 large
water purification plants in South Korea according to the time series model identification
step based on ACF and PACF values.

In the model diagnosis step, we conducted a residual analysis to examine the correla-
tion among the residuals. First, the model of the water purification plant with the lowest
AIC was selected and applied to the water purification plants for each basin. Then, to
investigate whether the residuals of the model applied to each basin were white noise
processes, we performed a Ljung–Box test [30]. For the Han River basin, the ARIMA(2,1,2)
model of the Goyang water purification plant, which had the lowest AIC, was applied to
all water purification plants in the basin and the model was diagnosed. The p-values of the
chi-squared statistic for pH, turbidity, and residual chloride all had a significance level of
0.05 or above. Hence, the ACF of the residuals showed no significant correlation and the
estimated basin model was considered suitable. Accordingly, by testing the suitability of
models for each basin, we selected the final tap water quality prediction models for each
basin, as shown in Table 4.

Table 4. Optimal ARIMA model for each basin.

Location pH Turbidity Residual Chloride

Han River ARIMA(2,1,2) ARIMA(1,1,2) ARIMA(2,1,1)

Geum River ARIMA(1,1,3) ARIMA(1,1,1) ARIMA(1,1,3)

Nakdong River ARIMA(0,1,2) ARIMA(2,1,4) ARIMA(1,1,2)

Seomjin River ARIMA(0,1,2) ARIMA(2,1,1) ARIMA(1,1,2)

6. Model Performance Evaluation
6.1. Evaluation Method

In this study, we developed four prediction models (LSTM, GRU, SCINet, and ARIMA)
and compared their prediction performance. To prevent overfitting, the last five months of
data (1 January 2022, to 31 May 2022), which were not used for model training, were used to
evaluate the prediction performance. Specifically, we simulated the behavior of the models
for new data and applied several indicators and datasets to evaluate model performance in
relation to pH, turbidity, and residual chloride prediction. To address the uncertainty of
continuously changing water quality predictions, we combined actual tap water quality
data sets from multiple regions nationwide, then trained the deep learning models based
on approximately five years of data from January 2017 to December 2021. The prediction
accuracy of the trained models was verified by repeating the water quality predictions over
the next 24 h through the rolling forecasting method, which was performed on the last five
months of the dataset.

6.2. Evaluation Metrics

The overall accuracy, MAE, RMSE, and NSE were used as evaluation metrics to assess
the effectiveness of the proposed prediction models. MAE and RMSE are advantageous
for comparing different estimating models, where smaller values indicate a more suitable
model. A model is supposed to be ideal with optimized results if the NSE criterion on
the estimated values is very close to 1 or the value of NSE is more than 0.8 [31]. In the
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following equations, ŷi indicates the predicted value, yi indicates the actual value, y is the
mean value taken over n, and n is the number of predicted sample series.

Overall Accuracy (%) =
1
n

n

∑
i=1

(
1− |

yi − ŷi|
yi

)
(4)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (5)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(6)

NSE = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (7)

6.3. Cross-Validation

Regarding the experimental method, the first five years of data (January 2017 to
December 2021) were used for the training set, and the remaining five months (1 January
2022, to 31 May 2022) were used for model validation. Time series cross-validation generally
uses the rolling forecasting method to reconstruct time series data that has correlations
between previous and subsequent data. Given a set of time series data, the previous time
step is used as the input variable and the next time step is used as the output variable. To
avoid overfitting, the rolling window method was used to cross-validate the performance
of the model [32]. As shown in Figure 13, we used the fixed rolling window forecasting
method, where the amount of data in each cross-validation was equally divided. This
method fixed the size of the training and validation data sets in all cross-validation iterations
to split the training and test data while preserving the chronologically arranged data.
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Figure 13. Visual representation of the cross-validation methods used for model evaluation based on
a fixed window rolling forecast.

Figure 14 shows the MAE values for the simulation results of the deep learning models
with different time steps and prediction lead times. Each model was run three times for
a given combination of time steps and prediction lead times. Through cross-validation,
the optimal learning interval of the training set and test set was explored using the most
recent 3624 water quality data points from January to May 2022. Considering that the
water quality prediction period was one day, the training set size was reduced from 168 h
(seven days) to increments of 24 h (one day) to verify the prediction performance. The
results indicated that suitability was highest when the training set size was 72 h (three
days). Accordingly, we selected 72 and 24 h for the training and test sets, respectively, and
set each iteration to roll for 1 h.
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6.4. Model Construction and Running Time

In the proposed models, we set the batch size (related to efficient resource usage in
the deep learning models) to 20–64 and the epochs (related to the number of times the
training data passes through the neural network) to 200. The Adam optimizer was used
for optimization, which involves updating the actual parameters in the training process.
Mean squared error (MSE), the most commonly used metric, was applied to measure the
prediction error rate of the proposed models. Then, for each water quality indicator, we
constructed the LSTM, GRU, and SCINet models and trained them to minimize errors by
efficiently adjusting the hyperparameters using Bayesian optimization. The parameters
used to train the networks are shown in Table 5, which also reveals that the LSTM and
GRU models predicted water quality with nearly identical accuracy. Owing to the complex
structure of LSTM neurons without the aid of a GPU, a training cycle with 100 iterations
took approximately 30 min. In contrast, GRU had a simple structure and few parameters
and took less time to train the model, thus may be the preferred method for short-term
water quality predictions. SCINet had the shortest average training cycle at less than
10 min.

Table 5. Simulation of hyperparameters using Bayesian optimizer.

Parameters LSTM GRU SCINet

Epochs 100 100 -
200 200

Batch size = 64, optimizer = Adam, learning rate = 0.001

Accuracy (%)
Time (min)

98.75 98.75 99.58
98.71 98.73 99.55

35 27 05
27 25 05

Batch size = 128, optimizer = Adam, learning rate = 0.001

Accuracy (%)
Time (min)

98.73 98.79 98.77
98.72 98.76 98.89

33 23 08
24 20 07

6.5. Overall Prediction Accuracy in Major River Basins

In this paper, the water quality prediction was conducted at the 33 large water pu-
rification plants of Korea, and the ARIMA model was selected as the baseline model for
comparison with the deep learning models. The deep learning model parameters were
determined based on trial and error. A comprehensive evaluation of the ARIMA, LSTM,
GRU, and SCINet models and the best input scenarios to develop these models for 24 h
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prediction of water quality were considered for comparison. Table 6 shows the overall
accuracy of the rolling prediction results using the five-month test set of water purification
plant data from the five major basins of South Korea. SCINet yielded superior prediction
performance compared with the other models for all water quality variables. It was found
that the prediction accuracy of the LSTM and GRU models was similar in predicting the
three water quality indicators. The ARIMA model showed good prediction results for pH.
This was likely because the pH water quality data were more stable than the other water
quality variables; therefore, the trends could be more accurately predicted.

Table 6. Overall accuracy evaluation of four model architectures.

Dataset
Indicator pH Turbidity Residual Chloride

Method ARIMA LSTM GRU SCINet ARIMA LSTM GRU SCINet ARIMA LSTM GRU SCINet

Han River

Goyang 0.99715 0.99281 0.99677 0.99719 0.98477 0.98042 0.98434 0.98719 0.98175 0.98174 0.98398 0.98592
Deokso 0.99735 0.99408 0.99487 0.99728 0.96943 0.96656 0.96879 0.97133 0.97699 0.98065 0.98131 0.98096
Banwol 0.98855 0.98508 0.98725 0.99021 0.97448 0.96857 0.97648 0.97183 0.88134 0.89947 0.91617 0.91870

Seongnam 0.99795 0.98195 0.99649 0.99795 0.90435 0.89575 0.90255 0.91811 0.97942 0.97722 0.98173 0.98351
Songjeon 0.99630 0.99501 0.99621 0.99658 0.93905 0.94128 0.92918 0.95416 0.95604 0.95201 0.84342 0.95865

Suji 0.99739 0.97795 0.97802 0.99748 0.90199 0.90542 0.90691 0.92447 0.94664 0.96040 0.96033 0.96149
Siheung 0.99712 0.98176 0.98499 0.99727 0.95739 0.90197 0.91485 0.96032 0.97480 0.95683 0.97566 0.98025

Wabu 0.99421 0.99378 0.99430 0.99501 0.94281 0.92375 0.93642 0.94623 0.97491 0.98067 0.97963 0.98131
Ilsan 0.99732 0.99161 0.99609 0.99717 0.97388 0.96456 0.97542 0.98011 0.97823 0.97697 0.97912 0.98051

Chungju 0.99231 0.98184 0.99282 0.99364 0.94169 0.93293 0.92548 0.95039 0.94928 0.95354 0.95295 0.95361
Hwangji 0.99660 0.99095 0.99424 0.99702 0.99336 0.96186 0.96387 0.98478 0.98226 0.96071 0.97667 0.98412

Geum River

Gosan 0.99752 0.98970 0.99637 0.99771 0.98707 0.96847 0.97202 0.98703 0.97598 0.98069 0.98072 0.98108
Gongju 0.99886 0.98308 0.99877 0.99894 0.97053 0.96019 0.96550 0.97792 0.97619 0.97714 0.97672 0.98282

Geumsan 0.99811 0.99553 0.99622 0.99809 0.98579 0.98648 0.98689 0.99071 0.96873 0.97041 0.97156 0.97236
Boryeong 0.99211 0.99040 0.99352 0.99591 0.96668 0.97149 0.97171 0.97644 0.97996 0.98066 0.98293 0.98338

Buan 0.99720 0.99646 0.99663 0.99693 0.91718 0.87630 0.86198 0.93233 0.96897 0.98066 0.97166 0.97172
Sanseong 0.99481 0.99389 0.99558 0.99581 0.94637 0.94994 0.95021 0.95995 0.95793 0.95959 0.95926 0.96423
Seokseong 0.98705 0.98603 0.98459 0.99352 0.95065 0.95701 0.95791 0.97192 0.94903 0.95834 0.95849 0.96211

Asan 0.99718 0.98874 0.99658 0.99838 0.96649 0.96965 0.97130 0.97317 0.97105 0.97485 0.97517 0.97603
Cheonan 0.99743 0.99676 0.99740 0.99851 0.98124 0.98108 0.98116 0.98317 0.98004 0.97380 0.97796 0.98036
Cheongju 0.99855 0.98836 0.99090 0.99797 0.90400 0.93815 0.93884 0.93990 0.91801 0.94180 0.94242 0.95701

Nakdong River

Gucheon 0.99538 0.99373 0.99362 0.99479 0.96746 0.97397 0.95964 0.98098 0.93704 0.94804 0.94934 0.95019
Miryang 0.99810 0.99443 0.99571 0.99810 0.96307 0.96014 0.96695 0.97329 0.97659 0.97299 0.97553 0.97674
Bansong 0.99788 0.99710 0.99469 0.99815 0.95958 0.95697 0.94961 0.95831 0.95668 0.95346 0.96087 0.95867
Sacheon 0.99497 0.99483 0.98901 0.99638 0.94955 0.94778 0.93498 0.96190 0.96047 0.96836 0.96693 0.97061
Yangsan 0.99707 0.99387 0.99123 0.99697 0.97905 0.95178 0.96784 0.98221 0.97156 0.97288 0.97249 0.97368
Yeoncho 0.99884 0.99774 0.99667 0.99876 0.89065 0.66796 0.66542 0.91065 0.97453 0.97500 0.97446 0.97658
Unmun 0.99754 0.99688 0.99441 0.99780 0.97116 0.97312 0.97816 0.98062 0.95991 0.96270 0.96112 0.96670
Hakya 0.99805 0.97437 0.99602 0.99769 0.95385 0.96060 0.95747 0.96079 0.95745 0.95546 0.96005 0.96117

Seomjin River

Deokjeong 0.99812 0.99071 0.99716 0.99792 0.97053 0.96247 0.97088 0.97457 0.96917 0.97497 0.97555 0.97590
Donghwa 0.99604 0.98659 0.99198 0.99614 0.99537 0.98720 0.99090 0.99476 0.98204 0.98277 0.98280 0.98437

Byeollyang 0.99886 0.99211 0.99878 0.99868 0.96725 0.97020 0.97592 0.97834 0.98765 0.98611 0.98749 0.98752
Pyeongnim 0.99720 0.99581 0.99261 0.99710 0.96929 0.97500 0.97294 0.98278 0.95703 0.95713 0.96111 0.96322

Note: Overall accuracy is reported as a percentage (%). The best results are shown in bold.

6.6. Long-Term Forecasting Results

When generating a prediction model, the data selected for input fields play a critical
role in the model’s performance. In this study, we considered several best practices when
selecting prediction variables and data types for the prediction performance analysis, before
we measured the corresponding performance. We selected the top three best practices
based on the three water quality variables in Table 6, as follows: for pH prediction, the
datasets of the Yeoncho, Cheonan, and Byeolryang water purification plants; for turbidity
prediction, those of the Donghwa, Geumsan, and Goyang water purification plants; and
for residual chloride, those of the Byeolryang, Goyang, and Dongwha water purification
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plants. Finally, we compared the results of the various models using MAE, RMSE, and NSE
based on the selected best practices (Yeoncho, Donghwa, and Byeolryang water purification
plants for pH, turbidity, and residual chloride, respectively). Table 7 shows the MAE,
RMSE, and NSE values for the three water quality variables. All four models generally
showed low values of MAE and RMSE. It can be said that all the developed ARIAM, LSTM,
GRU, and SCINet models provided good water quality predictions. However, the SCINet
model improved the baseline model for almost every water quality measure, and clearly
outperformed the other two models. Compared with the baseline model, the SCINet model
consistently improved the predictions for all water quality measures. On average, SCINet
reduced the MAE by approximately 0.8% compared with LSTM and 0.4% compared with
GRU. GRU showed slightly better performance than LSTM. In 84% of all time series, GRU
outperformed LSTM. This shows that the GRU model was better than the LSTM model in
capturing nonlinear information. A model is supposed to be ideal with optimized results if
the NSE criterion of the estimated values is very close to 1 or the value of NSE is more than
0.8 [31]. For the prediction of pH, the NSE of ARIMA slightly outperformed the SCINet
model, but both models showed very similar performance. In the case of the prediction of
turbidity and residual chloride, the ARIMA model achieved the second best performance.
Overall, the prediction accuracy of the model with a 6-h lead time was higher than that
of the model with a 24-h lead time. Therefore, the SCINet model had higher prediction
accuracy than the other models, indicating that the model could contribute to improving
the short-term prediction accuracy of water quality in Korea, as well as more suitable for
long-term water quality predictions in Korea.

Table 7. Baseline comparisons under multi-step setting for best practices of time series forecasting tasks.

Methods Metrics

pH Turbidity Residual Chloride

Horizon Horizon Horizon

6 12 24 6 12 24 6 12 24

ARIMA
MAE 0.0079 0.0095 0.0113 0.0004 0.0005 0.0008 0.0130 0.0137 0.0146
RMSE 0.0060 0.0073 0.0086 0.0001 0.0002 0.0003 0.0095 0.0099 0.0104
NSE 0.9957 0.9937 0.9909 0.9783 0.9612 0.9124 0.6236 0.5801 0.5276

LSTM
MAE 0.0490 0.0424 0.0469 0.0008 0.0008 0.0009 0.0113 0.0113 0.0117
RMSE 0.0505 0.0445 0.0493 0.0009 0.0010 0.0011 0.0151 0.0152 0.0158
NSE 0.6895 0.6203 0.6255 0.9549 0.9371 0.9076 0.6015 0.5731 0.5343

GRU
MAE 0.0272 0.0271 0.0329 0.0007 0.0007 0.0009 0.0099 0.0102 0.0107
RMSE 0.0285 0.0288 0.0348 0.0008 0.0009 0.0011 0.0134 0.0139 0.0146
NSE 0.8758 0.8731 0.8657 0.9443 0.9450 0.8808 0.5099 0.4604 0.4069

SCINet
MAE 0.0068 0.0077 0.0094 0.0002 0.0002 0.0003 0.0095 0.0099 0.0104
RMSE 0.0087 0.0099 0.0122 0.0004 0.0005 0.0006 0.0130 0.0136 0.0144
NSE 0.9948 0.9932 0.9894 0.9801 0.9679 0.9485 0.6254 0.5884 0.5394

Based on the above results, the prediction results of pH, turbidity, and residual chlo-
ride using the best-practice models for each water quality variable are shown in Figure 15.
The SCINet model performed better than the other alternatives in water quality prediction.
Though this latest deep learning model showed consistently high accuracy in predicting
pH, turbidity, and residual chloride values, it also provided significantly higher accuracy in
predicting low and peak values. The SCINet model also showed robustness and reliable per-
formance in predicting pH concentrations in different locations. However, the performance
of the LSTM and GRU still had considerable variations at different locations (Figure 15a).
ARIMA was suitable for analyzing time series data or predicting future data points on a
time scale. However, ARIMA did not provide valid results when an increase or decrease
trend was predicted (Figure 16). This is because ARIMA only considers time as a predictor
variable, making it less effective for complex time series, such as predicting anomalies
or pattern changes in water quality data containing abnormalities. The deep learning
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models showed better performance than the ARIMA in general, as well as in predicting a
peak value. As such, it is difficult to apply the ARIMA model to the real-time monitoring
environment as it cannot constantly predict changing water quality data. Creating real
water quality simulation models is complex because they must consider the influence of
physical, chemical, and biological factors and other external environments on water quality.
Therefore, deep learning techniques, which can model complex environments and capture
nonlinear regularities in water quality data, are more suitable than the ARIMA model for
water quality anomaly detection systems.
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7. Conclusions

In this study, we proposed a deep learning approach based on five-and-a-half years of
actual water quality data collected from multiple water purification plants managed by
K-water to enable real-time predictions of tap water quality on a national scale. Due to
continuous anomalies in tap water quality, which is directly related to public health and
safety, there is a high public distrust of tap water in South Korea. Therefore, a real-time
monitoring system is important for promptly identifying continuously changing water
quality conditions and pre-diagnosing hazards that could threaten tap water safety. To
construct a real-time monitoring system, we divided the water systems in South Korea
according to large basins, applied models, and predicted water quality. First, we conducted
an in-depth data analysis of pH, turbidity, and residual chloride based on the water quality
data of 33 large water purification plants. The results indicated that domestic tap water
quality was generally stable, but that South Korea was lacking a clear response system in
the event of sensor failure or water quality problems. Accordingly, we developed various
deep learning models to predict the three monitoring indicators of drinking tap water
quality based on the analysis data. Furthermore, to improve the prediction accuracy of the
deep learning models, we used an optimization model that reduced training errors and
enhanced model precision. We then verified the accuracy of the proposed method through
a time series cross-validation using a five-month-long test set. According to MAE, RMSE,
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and NSE indicators, the SCINet model yielded the best performance. On average, SCINet
reduced MAE by approximately 0.8% compared with LSTM and 0.4% compared with GRU.
In summary, the optimal deep learning-based neural network model yielded excellent
performance for water quality datasets from various sources. This model architecture
can be used to successfully predict constantly changing water quality conditions, which
is beneficial for monitoring and managing tap water quality. Moreover, our proposed
deep learning-based architecture was highly efficient, effectively capturing time series
patterns in the water quality prediction domain and demonstrating huge potential for long
input sequences.

The potential of deep learning-based neural network models is fully revealed when
trained on large datasets in which complex patterns can be detected. Unlike ARIMA,
this approach does not depend on specific assumptions about the data, such as time
series stationarity or the existence of data fields. However, these models are difficult to
interpret and their behavior is difficult to intuit. Moreover, careful hyperparameter tuning is
required to achieve effective results, as well as vast quantities of historical monitoring data
to train LSTM- and GRU-based prediction models. Future research should consider deep
learning models based on multivariate time series and seek to improve their prediction
accuracy through optimization. For the LSTM and GRU models, as the temporal unit
of the datasets was 1 h in this study, better performance would be expected when using
high-quality data with a higher resolution. The proposed water quality prediction model
could effectively contribute to the implementation of a safe tap water quality management
plan in South Korea.
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