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Abstract: Water treatment (WT) is currently among the major areas of research due to the depletion
of water resources and fearmongering regarding environmental pollution, which has compelled the
upgrading of conventional WT technology towards recycling and reuse. This review aims to provide
the current state of natural coagulants and their application in the purification of surface water as
sufficient clean water is required for household needs, health security, and environmental safety. A
thorough and systematic review of the existing literature was performed, and the information related
to water treatment using natural coagulants was compiled from 237 articles under various sections
using a computerized bibliographic search via PubMed, Scopus, Web of Science, Google Scholar, CAB
Abstracts, and several websites. The work provides explicit information related to natural coagulants
and their merits and limitations, outlines methods to increase their coagulation performance, and
highlights their coagulation mechanism, efficacy, valorization potential, and sustainability. From
the information obtained, it can be concluded that although chemical coagulants are efficient in
WT, they are usually expensive, toxic, associated with health issues, and thus non-sustainable. A
sustainable alternative is the use of natural coagulants, which are readily available, economical, easy
to use, biodegradable, non-toxic, eco-friendly, effective, and generate lower sludge volumes. They
work via an adsorption process that involves polymeric bridging or neutralization of the charge.
The WT efficiency of natural coagulants ranges from 50–500 nephelometric turbidity units (NTUs),
which is similar to chemicals. Thus, they can be deployed in WT regimes and can contribute to
the health security of rural populations in developing countries. It is unfortunate that, despite the
known benefits of natural coagulants, their acceptance, commercialization, and widespread industrial
application across the globe are still low. Therefore, there is a need for more exhaustive investigations
regarding the mode of action, adoption, and commercialization of natural coagulants as a sustainable
alternative to chemicals for a circular economy.

Keywords: biodegradable; sustainable; cost-effective; eco-friendly; natural coagulants

1. Introduction

Water is an indispensable and precious substance for living beings on earth, as it is
required for various domestic, agricultural, and industrial activities [1,2]. Approximately
1400 million cubic kilometers of water are available on earth, with 97.5% and 2.5% in marine
and freshwater bodies, respectively [1]. Thousands of pollutants that are hazardous to man
and ecosystems were identified in water bodies worldwide [3]. Water pollution is caused
by several non-anthropogenic mechanisms such as hydrogeologic processes, changes in
the climate, natural disasters like floods, droughts, earthquakes etc., as well as atmospheric
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deposition, which may be slow or fast. Such natural forces frequently result in high
amounts of dissolved organic material and unsustainable quantities of specific minerals or
metals [4]. Fluoride is found in a variety of rocks and minerals in the Earth’s crust, including
fluorospar, cyyolite, and fluorapatite [5–7], which seep out through weathering processes
and precipitation, contaminating surface water and groundwater, and consequently public
water systems [8,9]. Anthropogenic influences include industrialization (nitrates, nitrites,
lead, sulfur, mercury), R & D activities, urbanization, mining (metal wastes and sulphides),
tourism, agricultural practices (the use of fertilizers, manures, herbicides, insecticides,
fungicides, and crop residue), animal waste (from slaughterhouses, excreta), emerging
contaminants (industrial chemicals, pesticides, pharmaceuticals, personal care products),
radioactive wastes (uranium), marine dumping, accidental oil spills, microplastics, and
the improper disposal of sewage from various sources such as restaurants, hospitals,
households, and leakage from landfills and sewer lines. Additionally, various heavy metals
such as zinc, lead, copper, etc., have also been reported to pollute the water, thereby making
it unfit for human use [10–12]. The release of heavy metals into the atmosphere via fossil-
fuel burning and other industrial activities of humans, which eventually enter streams
through rainfall, as well as the release of industrial effluents and sewage water into streams
and surface water bodies, constitute the anthropogenic origin of water pollutants. The
most prominent heavy-metal pollutants of human sources include chemical element such
as arsenic, cadmium, chromium, copper, nickel, lead, as well as mercury. Contaminant
sources are described as either point (localized pollution) or nonpoint (pollution from
different origins). Nonpoint pollutants represent the second category of pollution source,
in which contaminants originate through widely scattered (and often difficult to detect)
origins. Spontaneous weathering of ores and tiny metal particles in the air, water, and
soils near coal-burning power plants via smokestacks is one example of localized metal
contamination. The mining industry is the most common cause of metal pollution in
waterways. Due to solubility, in acid solutions, they commonly utilize acid mine drainage
systems to extract heavy metals from ores. They disseminate the acid solution, which
contains high quantities of metals, into the groundwater after the drainage process [4,13,14].
In addition to heavy metals, water may be polluted by a range of contaminants due to
the use of land for agriculture [15]. Of these pollutants, dissolved organic carbon [16],
nutrients (nitrogen and phosphorus) [17], and pesticides [18,19] are the most important
issues for certain land-owning UK water utilities due to the need to remove them from raw
water to meet regulatory standards. Similarly, nutrient (nitrogen and phosphorus) loading
in waterways from point and nonpoint origins is an environmental issue that influences
surface water quality [20], as poorly managed agricultural activities can cause nutrient
and insecticide pollution of surface and groundwater. Although nutrients are required for
survival, excessive nutrient loading into water bodies can have an influence on the specified
uses of water [21,22]. Nitrates in runoff can be leached or transferred [23]. Nitrates are
tightly linked to agricultural land and grasslands [24], with concentrations peaking in the
spring and during significant run-off occurrences. Water flow and pesticide dissemination
are influenced by antecedent factors such as geography, soil type, agricultural method, and
crop type [4].

These pollutants are associated with several water-borne diseases such as cholera,
giardiasis, diarrhea, jaundice, typhoid, amoebic dysentery, Alzheimer’s disease, and de-
mentia [25,26]. Researchers have revealed that approximately 1.2 billion people are unable
to obtain clean usable water and more than 6 million people die annually due to polluted-
water-related issues [27–29], with 4 million people being affected by diarrhea-related issues,
of which 2 million were reported to be children. Furthermore, fluoride, which is widely
present in groundwater, leads to crippling skeletal fluorosis [26].

Currently, there is a scarcity of potable water in different parts of the globe due to
several reasons including deficiency in resources and financial constraints associated with
water treatment industries [30,31]. Moreover, the increasing human population and lack of
water-harvesting technologies have caused vulnerability in the situation and have hiked the
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cost of WT [32,33]. Therefore, it is crucial to provide clean and safe water for human use in
an effort to mitigate the spread of water-related diseases and also promote health security.

Due to complication of the waste water-treatment process and the enormous number of
parameters that must be established, it is important to establish the characteristic variables
relevant to quality of water as auxiliary variables. The four types of data listed below can
be used to evaluate the quality or effect of water quality in water treatment plants.

a. Physical data: Thes are water that need to be monitored during the treatment process,
which include total suspended particles, temperature, conductivity, clarity, total
dissolved solids, etc.

b. Chemical data: Chemical water-quality metrics of the national comprehensive dis-
charge standard for contaminants in water, such as pH, biochemical oxygen demand,
biochemical oxygen consumption, heavy metals, nitrates, etc.

c. Biological data: Waterborne microorganisms such as E. coli, mayflies, and other
microbes are examples of biomarkers.

d. Environmental data: Environmental data encompass the entire water supply process,
including weather, hydrology, soil, and ecological indices [34,35].

The aforementioned chemical, physical, or biological pollutants (from soil erosion,
runoff, or due to high microbial count) discharged in water may be deposited on the
waterbed or may remain suspended in water, causing turbidity, which is among the most
common characteristics of polluted water [36–40]. One NTU has been recommended by
the WHO as the highest point of water turbidity for human use [41].

Many scientific researches have been carried out on the treatment of polluted water
using various strategies such as chemical precipitation, lime coagulation, ion exchange,
reverse osmosis, and solvent extraction [42]. Although the chemical method is the most
effective and commonly used technique, a transition from chemical to natural coagulants
has been observed due to various limitations posed by chemical-based coagulants [40,43].

The natural coagulants deployed in WT are of plant, animal, or microbial origin [44,45].
These include starch, cellulose derivatives, gelatin, galactomannans, chitosan, alginate,
glues, and microbial polysaccharides, which are all non-toxic. Molecule bridging, adsorp-
tion, and charge neutralization constitute the stages of the treatment process using natural
coagulants. The major benefits of natural coagulants in waste water purification are that
they are renewable, non-toxic, biodegradable, and cost-effective, and can efficiently remove
turbidity [46,47]. The benefits of natural coagulants are presented in Figure 1. Therefore,
natural coagulants (especially of plant origin) have drawn the attention of scientists in
recent years [48].
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This review encompasses reports on the use of natural coagulants as a sustainable
alternative to chemical coagulants, in which the potential/success rate of plant-based and
non-plant-based products have been discussed in relation to WT. The benefits, limitations,
future prospects, and economic aspects of natural coagulants have also been included in
this review.

1.1. The Concept of Water Treatment

Water treatment (WT) is the act of removing contaminants from polluted water. Such
pollutants may include colloidal/dust particles, pathogens, suspended molecules, and
various other toxic materials that are noxious and harmful to human health. Water purifica-
tion/treatment can be achieved using primary and secondary stages. In the primary stage,
sedimentation and filtration processes are deployed to remove solid particles from the water
using a mechanical method, whereas, in the secondary stage, biological agents (anaerobic or
aerobic microorganisms) are used for the breakdown and removal of the remaining waste,
as well as other minute particles from the water. Presently, there are no suitable low-cost
sustainable water treatment procedures available, especially for the rural population. Water
treatment is achieved using chemical, physical, and biological techniques.

Chemical techniques include coagulation, ion exchange, disinfection, catalytic reduc-
tion, oxidation, and softening processes [49,50]. Adsorption, UV processes, settling, and
media and membrane filtration are some of the processes that constitute physical methods
of WT [51,52]. Biological methods include phytoremediation, bioreactor processes, micro-
bial biodegradation, and the use of wetlands [53]. In some cases, two or more processes are
used in a hybrid manner to improve efficiency [48,54,55].

Synthetic coagulants are highly effective in small concentrations and are capable of
removing 99% of turbidity, heavy metals, and organic and inorganic substances [56,57].
Despite their effectiveness, their use is associated with several drawbacks as they are
costly and are associated with a number of environmental effects [57,58]. To overcome
the problem associated with the use of chemical coagulants, it is necessary to promote
the utilization of natural coagulants for the treatment of turbid water and wastewater.
To treat polluted waters, several parameters are taken into consideration for an efficient
purification process. Such parameters include the pH, initial turbidity, temperature of
the water, rapid mixing and coagulant dosage, biological oxygen demand, total dissolved
solids, total suspended solids, total hardness, conductivity, acidity, alkalinity, etc., of the
polluted water. Table 1 summarizes these parameters and their significance in the water
purification process.

1.2. Factors Affecting WT

Understanding the most suitable conditions in the process of coagulation (the interac-
tion between the coagulant and the pollutant) is vital because it facilitates understanding
the highest efficiency of the coagulant in addition to a reduction in the operational cost
and sludge volume. The factors associated with coagulation procedures in WT are the
form/type of coagulant, dosage, mixing procedure of the coagulant, and the nature of the
water to be purified [59]. The three vital conditions used to assess the impact of coagulant
dosage in eliminating the water contaminants are under dosage, optimum dosage, and
over dosage. Under dosage is the situation in which the coagulant dosage is insufficient
to remove the dirt in contaminated water. Thus, an additional quantity will be needed
to achieve the required level of purity [50]. However, using more coagulant, beyond
the required quantity, will increase the impurity of the water and the excess will lead to
saturation of the colloid surface. This will cause destabilization of the particles, which
ultimately forms a repulsion force between the contaminants and, as a result, hinders the
floc formation.
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Table 1. Parameters to be considered while treating water.

Parameter Instrument Used Units of Measurement Importance

Turbidity Turbidimeter NTU Measure of relative clarity of water.
pH pH meter H+ conc. Indicator of water quality& measure of acidity/basicity.

Temperature Thermometer ◦C Impacts both biological & chemical characteristics
of water.

Conductivity Conductivity meter Sm−1 Measure of water capability to pass electrical flow.
Alkalinity Potentiometer V m−1 Measure of capacity of water to neutralize acids.
Acidity pH meter H+ conc. Indicator of industrial pollution.

Total dissolved solids Conductivity meter Sm−1 Measure of combined organic & inorganic substances
dissolved in water.

Total suspended solids Suspended solids density meter mgL−1 Includes all particles suspended in water which won’t
pass through a filter.

Total hardness Potentiometer mgL−1 Measure of amount of dissolved Ca & Mg.
Ca hardness Potentiometer mgL−1 Measure of amount of dissolved Ca.
Mg hardness Potentiometer mgL−1 Measure of amount of dissolved Mg.
Chlorides Potentiometer mgL−1 Indicator of pollution in water.
Sulphate Spectrophotometer mgL−1 Indicator of algal growth in water.
Ammonia Spectrophotometer mgL−1 Indicator of fecal pollution.
Nitrate Spectrophotometer mgL−1 Indicator of sewage pollution.
Nitrite Spectrophotometer mgL−1 Indicator of contamination from fertilizer run off.
Calcium Spectrophotometer mgL−1 Measure of water hardness.
Magnesium Spectrophotometer mgL−1 Measure of water hardness.
Iron Spectrophotometer mgL−1 Excess level indicates presence of contaminants.
Manganese Spectrophotometer mgL−1 Excess level results in undesirable taste.
Fluoride Spectrophotometer mgL−1 Reduces tooth decay.
Sodium Spectrophotometer mgL−1 Maintains blood pressure & osmotic pressure.
Potassium Spectrophotometer mgL−1 Maintains osmotic pressure.
Dissolved oxygen Colorimeter mgL−1 Indicator of water quality.

Biological oxygen demand (BOD) BOD meter mgL−1 Measure of water quality. Higher BOD signifies lower
water quality.

Chemical oxygen demand (COD) COD meter mgL−1 Measure of water & waste water quality.
Pesticides Spectrophotometer mgL−1 Indicator of water toxicity.
E. coli Paper strip method per 100 mL Indicator of fecal contamination.
Fecal coliform Paper strip method per 100 mL Indicator of fecal contamination.
Velocity Current meter ms−1 The speed at which water flows.

Detergent pH meter H+ conc. Results in algal blooms &depletes oxygen in water
leading to water pollution.

2. Strategies of Water Treatments

The most popular and conventional method for WT is the use of chemical-based coag-
ulants including ferric chloride (FeCl3), alum (AlCl3), synthetic polymers (polyacrylamide),
and poly aluminum [47,60]. However, the use of this approach is not sustainable as it leads
to the production of a large volume of non-biodegradable sludge [61]. Natural coagulants,
on the other hand, serve as an alternative sustainable strategy for the removal of turbidity
and WT, as they are cheap, safe, and biodegradable. Natural coagulants are derived from
three major sources, which include plants, animals, and microorganisms. A brief discussion
on chemical coagulants and explicit information on natural coagulants are presented below.

2.1. Water Treatment Using Chemical Coagulants

The application of chemicals in removing colloidal impurities in water is referred
to as chemical coagulation, whereas flocculation is the formation of flocs as a result of
neutralizing the charge [62]. The most popular and generally used chemical coagulant
in WT is ‘alum’, of which the chemical formula is KAl (SO4)2·12H2O and the chemical
name is potassium aluminum sulphate. At a pH of 8.0 and a concentration of 450 mgL−1,
alum eliminates 99% of the color from the turbid and water [63]. When combined with
other coagulants, alum’s potency increases. For instance, when aluminum sulphate was
combined with poly ferric sulphate (PFS) and polyacrylamide (PAA), the chemical oxygen
demand (COD) removal efficiency increased from 68% to 82% [64,65]. In a previous study,
ferric chloride/iron (III) chloride at a pH of 6.0 was used as a coagulant to reduce the COD
levels of water from the cosmetic industry by 63.9% [66]. Ferric chloride was also used
to treat water from molasses and was reported to reduce the color and COD by 96% and
86%, respectively [67]. Chemical coagulants are effective at minimizing the chemical and
biochemical oxygen demand, as well as oil and grease [68,69]. In another study, for the
treatment of black liquor water, several chemical coagulants including aluminum chloride,
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poly-aluminum chloride, and anionic PAA (polyacrylamide) were used. The composite
could eliminate 95% of total dissolved solids (TDS), 88% of the color, and 80% of COD [70].
These methods utilize additives (chemicals) to segregate small-sized particles in large
flocs prior to their removal via sedimentation [71,72]. Poly-aluminum chloride and poly-
titanium chloride can reduce the water turbidity from 7.0 NTU to 1.2 NTU [36,38,73,74].
Poly-aluminum ferric chloride at a 5mg/L concentration and pH of 7.5 can eliminate the
color and turbidity from water by 86 and 100%, respectively, at pH of 7.5. Similarly, water
turbidity can be reduced from 9 NTU to less than 1.0 NTU in a short span of 15 min using
polymeric zinc-iron-phosphate [75,76].

Thus, chemical coagulants have a number of benefits as they are easily obtainable and
can operate over a broad pH spectrum. They can be used alongside additives for long-term
storage and increased efficiency. Other benefits include higher efficiency at low concentra-
tions, easy water dissolvability, and the removal of turbidity and microorganisms such as
E. coli by 99%. However, it is also true that the use of chemical coagulants jeopardizes the
environment and human health. They are known to persist in water until the coagulation
process is over, are not biodegradable, and, as a result, treated water contains traces of these
chemicals [77,78], which leads to various neurological disorders including Alzheimer’s
disease [79–81], dementia, encephalopathy, and Hippocampal neuron staining. Aluminum
traces may cause diseases such as Down’s syndrome and Parkinson’s disease, convulsions,
and even death [82,83]. Moreover, high operational costs, the large quantity of sludge, and
the cost of disposal are some of the limitations of chemical coagulants [84].

2.2. Emerging Use of Natural Coagulants

Considering the global issues related to chemical WT (being expensive, toxicity to humans
and the environment, corrosive and carcinogenic nature, altering the pH of treated water,
producing hazardous and non-biodegradable sludge, high disposal costs, etc.) [57,58,85], there
is a need to explore other possible measures so as to reduce the ill effects of such coagulants
on the ecosystem [86–88]. Thus, there has been a recent paradigm shift in water and WT,
which encouraged industries to improve the culture of water operators in adopting and
implementing sustainable development in their activities. Among functional practices is
the replacement of chemicals with natural substances in WT processes, which has led to
decreased environmental effects in terms of production, consumption, and secondary waste
management. Natural coagulants are polyelectrolytes, which can be anionic, cationic, or
neutral polymers [46]. They are safe and cost-effective with a great capacity to maintain
the pH of the water being treated. Unlike chemical coagulants, natural coagulants do not
increase the metal load during treatment and are characterized by the generation of a low
volume of sludge, thereby making the cost of disposal very low [89,90], due to which they
are a sustainable alternative to chemicals. Earlier research proved the effectiveness of natural
coagulants in WT applications [46,91–94].

2.2.1. Sustainability of Natural Coagulants

Sustainability is the mode of development that fulfills the needs of current and future
generations [95]. Although the crucial factor in the treatment of water is performance
efficiency, the reliability of technology is also essential as per the concept of sustainability
asserted by the United Nations. Thus, the concept of sustainability involves a combination
of social, environmental, and financial aspects [96].

The social aspect of the sustainability of natural coagulants involves industrial accep-
tance and public health improvement. Industrial acceptance encompasses the ability of
natural coagulants to provide results similar to chemical coagulants and be used as an
alternative. However, due to the lack of real or pilot-scale use of plant-based coagulants and
the lack of approval and regulatory guidelines in the treatment of potable water, industries
hesitate to adopt natural coagulants. WT using natural coagulants, especially in rural
areas, may facilitate health and hygiene and improve the living standards of all individuals
(Figure 2). The technical aspect of sustainability involves treatment efficiency, product
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stability, availability of materials, and compatibility with other techniques. Several natural
coagulants have been time-tested and proven to be very efficient in the treatment of water
and wastewater. Due to their natural origin, natural coagulants are considered safe and
non-toxic. However, the toxicity of organic coagulants in humans and the environment still
remains unclear, and there is a need to confirm their environmental safety. Thus, meticulous
selection and dose optimization of efficient natural coagulants could provide promising
results in WT and may act as a substitute for chemical coagulants. As discussed previously,
natural coagulants offer reliability and robustness, are easily available, and can be obtained
from a wide range of sources such as plants, microorganisms, or animals [93,97,98]. How-
ever, their susceptibility to biodegradation by microbial or other environmental factors
adversely affects their long-term storage (shelf-life) and commercialization [99,100]. Envi-
ronmental sustainability criteria involve the utilization of biodegradable and plant-based
coagulants that are eco-friendly and capable of generating biodegradable sludge [101],
which can be used for several other purposes such as agricultural practices, landfills, and
in civil engineering industries [102,103].
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The economic aspect of sustainability involves the use of cost-effective coagulants for
WT. However, this claim is dissatisfactory as it does not address several other factors such
as the cost of processing and maintenance or the variation due to geographical regions.
Hence, the cost advantage of natural coagulants over chemical coagulants has not been
well addressed. Therefore, one efficient strategy to increase the economic sustainability
of natural coagulants is to use a combination of coagulants in order to compensate for
the procurement cost and consumption demand along with the synergistic increase in
clean-up efficiency [53]. Hybridizing natural coagulants with other coagulants to lower
their utilization cost is an additional method to enhance the economics of WT. In contrast,
the use of versatile natural coagulants may also result in a reduction in overall costs because
many treatment functions can be carried out with a single substance in a single treatment
unit. Moreover, as the majority of stated claims were based on lab-scale experimentation,
it is challenging to translate the advantages of employing natural coagulants, such as
the ‘creation of fewer sludge’ and ‘no need for pH adjustment’ into economic benefits.
The ‘cost-effectiveness’ that is tangentially related to the advantages of employing natural
coagulants must be more thoroughly evaluated in pilot studies. Because there has not been
a thorough analysis of the total expenses of the coagulation process from extraction to the
effects on other treatment units, we cannot draw conclusions on the economic aspect of
natural coagulants [53].
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2.2.2. Plant-Based Coagulants

Coagulants derived from plants are more readily available than those from either
animals or microorganisms [92]. There are sufficient reports on the deployment of various
plant-based products such as bagasse [104], banana peels [105,106], Jatropha curcas L. [107],
and Moringa oleifera [105] for the treatment of polluted water. Macromolecules including
proteins, polysaccharides, and some functional groups are known to promote the process of
adsorption, polymer bridging, and charge neutralization [108]. They are usually effective
in the treatment of water, with medium turbidity in the range of 50–500 NTU. However, the
efficacy of natural coagulants can be enhanced through the optimization of the extraction
and purification processes of coagulants [109]. Therefore, the proper extraction process
using plant-based materials can exhibit better performance in the coagulation process,
leading to greater/higher waste removal efficiency.

Some of the most widely used plant-based coagulants include Moringa oleifera Lam.
(seeds), Cicer arietinum L. (seeds), Azadiracta indica A. Juss. (leaves), Cactus latifolia L.(leaves),
Pisum sativum L. (seeds), Vigna mungo L. (Hepper) (seeds), Arachis hypogea L.(seeds), Zea mays L.
(seeds), Dolichos lablab Linn. (fruits), Phaseolus vulgaris L. (seeds), etc. [110–112]. In addition to
these, seeds of nirmali are also the source of anionic polyelectrolytes, and their carboxylic acid
(–COOH) and hydroxyl (–OH) groups boost the effectiveness of coagulation. Galactomannan
and galactan, polysaccharides from the seeds of Strychno spotatorum L.fil., are potent enough
to decrease water turbidity by 80%. Moreover, plants such as Acacia, Catenae, and Schinopsis
can also be used to remove contaminants from water as they possess naturally occurring
tannins [113]. Species of cactus such as Opuntia latifaria L. are also used as natural coagulants
as they contain certain compounds, such as d-galactose, d-rhamanosei, d-xylose, l-arabinose,
and galacturonic acid, which are responsible for the bridging action with contaminants in
water during the coagulation process [114]. The fruit of Prunus armeniaca L. has also been
reported for its use as a purifying agent in ancient periods in countries such as Egypt and
China, historically dating back to the 1100s [115]. The form of natural coagulants used in
the coagulation process can also influence turbidity removal efficiency. For example, when
the seeds of Tamarindus indica L. were blended in water [116], it was more effective than the
water extract derived from ground seeds [117]. In addition to turbidity removal, the common
bacteria present in surface water (e.g., Escherichia coli) can also be eliminated [47]. The wastes
of many fruits possess coagulation properties, whereas some exhibit antimicrobial activity
due to the presence of saponins, phenols, and flavonoids [47,118,119]. It was reported by [120]
and [121] that the colloids present in the leaves of H. undatus Haw. resemble those present in
the seeds of M. oleifera Lam. and are cationic in nature. The processes of colloid adsorption
and neutralization of the charge are considered feasible means of coagulation, which results
in the formation of flocs. Table 2 summarizes the reports on the use of natural coagulants in
WT and their relative pollutant removal efficiency.

The most commonly utilized natural coagulants derived from plants are explained below.

2.2.3. Tannins

Tannin is a polyphenol compound used in the leather industry and is obtained from
the wood and bark of trees such as Castanea, Acacia, and Schinopsis [151,152]. The use of
tannin extracted from valonia/Asia minor oak has been investigated by several researchers
as an effective coagulant in WT [95,96,153–155]. They concluded that tannin is a superior
alternative to chemical coagulants. Tannin can be used in the removal of dyes such as
indigo, azo, triphenylmethanones, and anthraquinonic [156]. The chemical structure of
tannins derived from plants and the degree of tannin modification affect their efficiency
in water treatment. Tannin contains phenolic groups and is a strong anionic hydrogen
donor. The phenolic groups form phenoxide due to rapid deprotonation and are balanced
by resonance. It is also considered an amphoteric compound, which not only reduces the
turbidity and heavy metals but also the color of water and thus functions as an alternative
to chemical coagulants. Thus, it can be concluded that the higher the number of phenolics,
the greater the capacity to coagulate will be.
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Table 2. Plant-based natural coagulants used in the treatment of polluted water.

Coagulant Part Used State of Coagulant Opt. Dosage Removal Efficiency (%) References

M.oleifera Lam. (Drumstick) Seeds Powder 0.2 gL−1 Turbidity removal (61.60%); COD
removal (65.00%) [122]

M.oleifera Lam. (Drumstick) Seeds Deoiled powder 6000 mgL−1 TSS removal (95%) [123]
M.oleifera Lam. (Drumstick) Seeds Powder 500 mgL−1 Turbidity removal (96.80%) [124]

M.oleifera Lam. (Drumstick) Seeds Powder 0.6 gL−1 Turbidity removal (82%), COD
removal (83%) [125]

M. oleifera Lam. (Drumstick) Seeds Stock solution 0.3 mgL−1 Cu and Cd removal (98%); Pb
removal (78%) [126]

M.oleifera Lam.
(Drumstick) and alum Seeds Solution 70 and 80 mgL−1 COD removal (50.41%); Turbidity

removal (86.14%); TSS removal (81.52%) [127]

M.oleifera Lam.
(Drumstick) and alum Seeds Stock solution 50 mgL−1 each BOD removal (80.67%); COD

removal (66.73%) [128]

M.oleifera Lam.
(Drumstick)
Cicer arietinum L. (Chickpea)

Seeds Powder 50 mgL−1
Turbidity removal M. oleifera (82.2%);
Chickpea (81.2%);
Cactus (78.54%)

[129]

M. oleifera Lam. (Drumstick)
and Musa acuminate L. (Banana peel) Seeds Powder 200 and 400 mgL−1 Pb removal (81%); Ni removal (74%); Cd

removal (97%) [12]

Malus sylvestris L.
(European crab apple) and
aluminum sulphate

Seeds Stock solution 62.5 mgL−1 Turbidity removal (66%) [130]

Cyamopsis tetragonoloba L. (Taub.) (Guar) Gum Powder 300 mgL−1 Turbidity removal (67.82%) [130]

P.ovata (Psyllium) and PAC Husk Powder 0.4 and 7.2 gL−1 Color removal (90%); COD
removal (96%) [131]

Parkia biglobosa Jacq. (Locust bean) Gum Powder 300 mgL−1 Turbidity removal (67.82%) [130]

Ocimum basilicum L. (Basil plant) Seeds Stock solution 1.6 mgL−1 Color removal (68.50%); COD
removal (61.60%) [132]

Opuntia ficus Linn. (Miller) (Cactus) Mucilage Powder 150 mgL−1 Turbidity removal (49.56%) [130]
Plantago major Linn. (Carls)
(Broadleaf plantain) Mucilage Powder 297.6 mgL−1 Color removal (92.4%); COD

removal (81.60%) [133]

Hibiscus rosasinensis Linn.(Carls) (China
rose) and alum Seeds Powder 500 and 400 mgL−1

Turbidity removal;
Hibiscus (60%);
Alum (100%)

[134]

Trigonella foenum L. (Fenugreek) Seeds Powder 0.1 gL−1 Turbidity removal (58%); COD
removal (63%) [122]

Abelmoschus esculentus L. (Okra) Mucilage Powder 3.2 mgL−1 Turbidity removal (97.24%); COD
removal (85.69%) [135]

Abelmoschus esculentus L. (Okra) and
Iron (III) chloride hexa hydrate Mucilage Stock solution 2.5 mgL−1 Turbidity removal (74%) [130]

Cicer arietinum L. (Chickpea) Seeds Powder 2 gL−1 TDS removal (82%); COD removal
(84%); BOD removal (83%) [136]

Cicer arietinum L. (Chickpea) Seeds Powder 0.1 gL−1 Turbidity removal (78.33%); COD
removal (83%) [122]

Dolichos lablab Linn (Hyacinth bean) Fruits Powder 0.2 gL−1 Turbidity removal (71.74%); COD
removal (75%) [122]

Tamarindus indica L. (Tamarind) Seed Powder 400 mgL−1 Turbidity removal (97,72%) [137]
Hibiscus sabdariffa L. (Roselle) Seed Powder 60 mgL−1 Turbidity removal (87.18%) [138]

Opuntia indica L. (Mill.) (Cactus) Mucilage Powder 0.4 gL−1 Turbidity removal (78.54%); COD
removal (75%) [128]

Momordica charantia L. (Bitter gourd) Seed Solution 400 ppm Turbidity removal (61.03%) [139]
Gossypium barbadense L. (Cotton) Seed Oil 30 mLL−1 TSS removal (66.27%) [140]
Ricinus communis L. (Castor) Seed Oil 40 mLL−1 TSS removal (66.67%) [136]

S.potatorum L. f.(Nirmali) Seed Stock solution 60 mLL−1 BOD removal (65.23%), COD removal
(72.71%), Turbidity removal (75.20%) [140]

Musa acuminate L. (Banana) Peel Juice 90 mLL−1 Turbidity removal (98.50%) [60]

Zea mays L. (Maize) Seed Powder 30 gL−1 COD removal (68.82%);
Color removal (47.03%) [141]

Plantago ovata Forssk(Isabgol) Seed Powder 1.5 mgL−1 COD removal (89.30%) [142]
P.vulgaris Gustav Hauser (French bean) Seed Powder 1.5 mgL−1 Color removal (73%) [143]
Cassia fistula L. (Golden shower) Seed Powder 0.5 gL−1 Color removal (71.3%) [144]
Vitis vinifera L. (Grape vine) Seed Powder 1.5 mgL−1 Color removal (80%) [145]
Citrus sinensis L. (Osbeck) (Orange) Peel Powder 0.2 gL−1 Turbidity removal (97%) [146]
Artocarpus heterophyllus Lam. (Jackfruit) Seed Powder 60 mgL−1 Turbidity removal (43%) [147]
Jatropha curcas L. Britton and
Mills.(Barbados nut) Seed Powder 14 mgL−1 Turbidity removal (93%) [148]

Strychnos potatorum L. f. (Nirmali) Seed Powder 1.5 mgL−1 Turbidity removal (90%) [149]
Carica papaya Linn. (Papaw) Seed Powder 0.4 g per 200 mL Turbidity removal (90%) [150]
Julifora Prosopis var. juliflora (Sw.) DC
(Mesquite bean) Seed Powder 1.5 mgL−1 Turbidity removal (96%) [151]

Acacia mearnsii De Wild. (Black wattle) Bark Powder 14 mgL−1 Turbidity removal (75%) [151]
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2.2.4. Nirmali Seeds

Nirmali is a medium-sized tree mainly used as a traditional medicinal plant native to
Sri Lanka, southern and central India, and Burma [157]. The seeds of this plant have been
reported to have been used over 4000 years ago as a natural coagulant in the treatment of
water [158,159]. The majority of research on its usage as a natural coagulant is confined
to the Indian sub-continent [117,158,160,161]. Extracts of nirmali seeds are anionic poly-
electrolytes that use coagulation (charge neutralization and bridging) for the removal of
contaminants in water [162]. It has been observed that the coagulation efficiency can be
increased due to the presence of alkaloids, lipids, and carbohydrates containing–COOH and
free –OH groups present on the surface. In a previous study, galactomannan and galactan
obtained from nirmali seeds reduced the turbidity of a kaolin solution by approximately
80% [163]. The presence of –OH groups, along with galactan and galactomannan chains, is
mainly responsible for the water-cleaning property.

2.2.5. Moringa Seeds

Moringa oleifera Lam. (horseradish or drumstick tree) is a versatile, medium-sized tree
that usually grows in semi-arid, tropical, or sub-tropical areas and in various parts of Africa,
Asia, Northwest India, and South America [164] belonging to the Moringaceae family. M.
oleifera Lam. is non-toxic and is the most frequently identified natural coagulant utilized
for WT [165]. In addition to its use as a source of food, fodder, and medicine, each part of
the Moringa plant, including the leaves, seeds, flowers, roots, and bark, can be used as a
coagulant for WT [166–168]. The seeds of Moringa, in addition to containing edible oil, also
contain substances that are soluble in water [169]. Muller et al. [170] and Jahn et al. [171]
were among the pioneer researchers who reported the use of M. oleifera Lam. seeds for the
coagulation process in WT. Muyibi et al. [172] also reported it to be a minimal or low-cost
natural coagulant that can be feasibly deployed in WT, at least in rural or semi-urban
areas. The work of Ndabigengesere et al. [169], which reported the coagulation property of
Moringa seeds in the treatment of water, ignited interest among environmental scientists.
The active coagulating agents present in Moringa seeds are reported to be cationic proteins,
which are dimeric in nature, possess an isoelectric point between 10 and 11 and a molecular
weight of 12–14 kDa, and function via charge neutralization and adsorption mechanisms.

Gassenschmidt et al. [173] also reported that protein is the active ingredient of coagu-
lation in Moringa seeds, possessing a mass of 6.5 kDa and an isoelectric point higher than
10. In a similar report, other researchers [174] stated that the protein has an isoelectric point
greater than 9.6 and a mass of 6.5 kDa. In contrast to the aforementioned reports, [175] re-
ported that the coagulating agent is an organic polyelectrolyte rather than a polysaccharide,
protein, or lipid, with a molecular mass of 3.0 kDa.

As per the aforementioned reports, the most active coagulating agent is cationic
proteins; however, Moringa may contain several other coagulating agents, which need to
be studied further. Cationic proteins in the seeds of Moringa work via various electrostatic
mechanisms such as neutralization, charge reversal, and adsorption [176]. These bind with
impurity particles, which are usually negatively charged. Okuda et al. reported that the
coagulation performance of Moringa extracts can be improved by using bivalent cations
(Mg2+ and Ca2+) [175]. Sulaiman et al. [177] used the seeds of Moringa in WT and observed
excellent results. Dotto et al. [178] used the same method in the treatment of textile mill
water and a significant COD reduction was reported. For the treatment of water from the
dairy industry, seed powder was able to remove ~100% of the turbidity and 99.50–100% of
the fecal coliform count. In a similar report, the seed powder could remove ~ 83.63% of
the turbidity from laundry water [179]. Hence, M. oleifera is among the most versatile and
reliable natural coagulants and has been proven to be a promising sustainable alternative
to chemical coagulants.
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2.2.6. Chickpea Seeds

Cicer arietinum L. (Fabaceae), commonly known as chickpea, is an important pulse crop
that is grown in arid and semi-arid zones with good soil moisture and adequate rainfall.
Hiremath et al. [180] and Jaseela et al. [181] used chickpea seeds to treat water released
from the dairy industry and reported the removal of turbidity of 86.29%. Another group
reported a more than 95% reduction of preliminary turbidity, which was similar to that of
alum [182]. Choy et al. (2015) reported that the presence of high sugar and protein contents
in chickpea were mainly responsible for the removal/coagulation of particles [92].

2.2.7. Peanut Seeds

The seeds of Arachis hypogea L. (peanut) are an important source of protein and are
well known for their high lipid content. Traditionally, the seeds have been used against
inflammation while the seed oil has been used as an ointment [183]. The lipid part of the
peanut constitutes approximately half of its dry weight, but the lipid does not contribute
to its purification properties. As a result, the relative percentage of the active agent is
markedly decreased, leading to lower efficiency in the removal of raw surface-water
turbidity. Mataka et al. [184] reported that peanut seeds exhibit a similar effect as that of
moringa seeds, and delipidated cakes were found to be more effective (in the removal of
heavy metals from wastewater) than the crude seed extract. Therefore, the effectiveness of
peanut coagulation activity can be increased by removing the lipidic portion from the seeds.

2.2.8. Soybean Seeds

The seed extracts of Glycine max L. (soybean) can be used as the main coagulant
or a coagulant aid to alum for cleaning contaminated raw surface water [185,186]. The
coagulation efficiency of soybean seeds was excellent in the clarification of surface water
beyond 450 NTU, whereas, as a coagulant aid to alum, ~96% turbidity removal was
reported [186]. Although soybean seeds have a large lipid fraction that is considered
second to groundnut, the lipid part does not contribute to coagulation activities. Therefore,
seed delipidation (the removal of lipids) improves the coagulation potential. Moreover,
deoiled seeds of soybeans have been reported to be less expensive bioadsorbents for the
treatment of water contaminated by different dyes [93,187,188]. Soybean seeds possess
palmitic acid, whereas stearic acid found in Hibiscus esculentus has been associated with
bactericidal activities. Thus, their extracts have potential anti-bacterial properties and can
treat raw surface water [183,189].

2.2.9. Cacti Mucilage

Opuntia ficus indica (OFI) (L.) P. Mill is the most common species of cactus, which
has been used mainly for its medicinal properties and as a dietary source, as well as for
treating water. Cactus latifaria has also been used as an organic coagulant [150]. Opuntia
possesses a high coagulation capacity due to the presence of mucilage, which is a complex
carbohydrate, and, hence, it is used as a potential coagulant for treating water [190,191].
Thus, it is eco-friendly and can be used as an alternative to aluminum and iron salts
due to its abundance, renewability, adaptability, and biodegradability [66]. Rebah et al.
also reported the potential of Opuntia in the treatment of wastewater [192]. Opuntia’s
mucilage has different sugar molecules including d-galactose, d-xylose, l-rhamnose, l-
arabinose, and galacturonic acid [190]. However, the most active coagulating agent is
galacturonic acid [193], which contributes to the removal of 50% turbidity. Galacturonic
acid may also exist in a polymeric form as polygalacturonic acid. It is anionic due to
the presence of carboxylic functional groups, which undergo partial deprotonation in an
aqueous solution [194]. The mucilage in Opuntia species functions mainly via adsorption
and the bridging coagulation process in which dirt particles bind to the mucilage and
facilitates the removal of turbidity.
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2.2.10. Okra Seed Extract

The coagulation potential of okra (Abelmoschus esculentus (L.) Moench) seed extracts
has been examined by [195] who asserted that seeds extracted using distilled water and a
sodium chloride solution can be used as organic coagulants for the removal of turbidity
from water with an efficiency of 54.5% and 92% for distilled water and a NaCl (1.0 N)
solution, respectively. Raji et al. [196] discovered that okra seed extracts were very effec-
tive in the removal of turbidity from 580 to 5 NTU at a dose of 300 mg/L and pH 7.0,
which is within the standard limit recommended by WHO. Similar work conducted by
Thakur et al. [197] and Mishra et al. [198] revealed that okra seed extracts can effectively
remove dirt from the water even at a dose of 200 mg/L. The work of [174] also shows the
effectiveness of okra seed extracts in WT with more than 69% and 95% removal efficiencies
for dissolved and suspended solids (from the effluents), respectively.

2.3. Animal-Based Coagulants

Animals may also act as a crucial source of coagulating agents. They are usually
extracted from shellfish exoskeletons, the shells of lobsters, shrimps, insects, crabs, diatoms,
and molluscs, and freshwater and marine sponges. Chitosan is a high-molecular-weight
biopolymer developed via the deacetylation of chitin. It occurs naturally as a complex sugar
(polysaccharide) and is water-loving (hydrophilic), biodegradable, environmentally safe,
and capable of absorbing several metal ions efficiently as it contains amino groups in its
polymeric chain [199]. The deployment of chitosan as a natural coagulant in the treatment
of polluted water in different sectors, including agriculture, textile, detergent, and food
industries, as well as paper mills, has been well reported [200,201]. The characteristic
feature of chitosan regarding cleaning water is its ability to react and generate a positive
charge that destabilizes the negative charge of the colloidal particles [202]. Actinobacteria
are also effective in the treatment of contaminated water [203]. Efficient flocculating activity
was observed when Cellulomonas and Stretptomyces spp. were deployed as flocculants in
the treatment of kaolin-contaminated water. The substantial effects of these species were
shown to be due to the presence of several molecules including proteins, natural sugar,
polysaccharides, and uric acid, as indicated by chemical analysis [199]. Chitin is a naturally
occurring and the second-most abundant polysaccharide (after cellulose). Every year, at
least 10 gigatons of chitin are synthesized and destroyed throughout the biosphere. Chitin
is a renewable resource found mainly in complexes with other polysaccharides and proteins.
Chitin and its metabolites are utilized as chelating agents in the purification of water by
segregating organic substances and heavy metals, as well as in the treatment of sewage via
the precipitation of certain anionic wastes and the collection of contaminants such as PCBs
(polychlorobenzene). The utilization of 10 mg per liter of chitosan in water has already
received approval from the Environmental Protection Agency (EPA) [204].

3. Extraction of Natural Coagulants

The process of extraction of plant-based natural coagulants involves three steps:
Primary, secondary, and tertiary extraction. In primary extraction, seeds are first collected
and then dried conventionally. This is then followed by manual/mechanical pulverization
and seed grinding (into a fine powder). During this process, settling tank is used to keep
water temporarily where heavier solids sink to the bottom and lighter ones float to the
surface. These materials are then held back once settled, while the rest of the liquid is
discharged to the more rigorous secondary phase of water treatment process. The tanks are
sometimes equipped with mechanical scrapers that drive the continually collected sludge
at the base of the tank to a hopper, which pushes it to sludge-treatment facilities. This is
most commonly used by local communities in rural areas. However, it is associated with a
major disadvantage in that the coagulating agent constitutes a small portion of the seed
powder, hence leading to an organic load in treated water. This drawback is overcome by
secondary and tertiary stages. This is accomplished by removing their active components
and purifying them to remove unwanted organic matter. In the secondary stage, active
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coagulants are extracted via the solvent method, which includes salt solution extraction,
water extraction, or alcohol/organic solvent extraction methods. Out of these, the water
extraction method is the most popular as it is abundant and cost effective [174,175]. The
tertiary stage is a rather uncommon method because it involves high costs and is mostly
limited to academic research [174,175]. The major objective of of tertiary water treatment
is to improve the water quality to attain the standard domestically, industrially, and the
specific needs regarding the safe discharge of water. Tertiary treatment of water also deals
with the removal of microbes/pathogens, which ensures that water is safe for drinking
purposes in the case of water treated by municipalities [174,175]. The natural coagulant
extraction process is shown in Figure 3.
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4. Mechanism of Action of Natural Coagulants

Coagulation is a method of destabilizing unsettled/slow-settling tiny particles with
a size of 0.001 to 1.0 µm and above by adding a coagulating agent, which increases the
floc size and the settling velocity [59]. This approach is crucial for water pretreatment as
it removes dispersed/suspended contaminants and grants purified water the requisite
quality for further processing. The global market for coagulants is expected to exceed USD
6.01 billion by the end of 2022, representing a 5.9% compound annual increase from 2017 to
2022 (4.35 billion in 2016) [59].

The mechanism of action of natural coagulants is similar to that of polyelectrolytes and
contains a variety of functional groups such as –OH, –COOH, and –NH2. The schematic
representation of coagulation mechanisms as revealed through FT-IR and SEM is shown
in Figure 4. The green circles represent the positively charged coagulants and the red
colored circles represent the negatively charged colloidal particles. The mode of action of
natural coagulants can be grouped into sweep flocculation, charge neutralization, double-
layer compression, and antiparticle bridging. Sweep flocculation/coagulation is seen as a
technique that eliminates colloids via entrapment/enmeshment using a net-like structure
containing amorphous metal hydroxide precipitates that are formed by the hydrolysis
process [205]. Several analyses including initial floc-aggregation, the relative settling factor,
and the flocculation index revealed that the flocs developed through this method are
relatively smaller in size with good settling capacity but are characterized by a slow rate of
floc formation [205]. The floc produced via sweep flocculation has a high fractal dimension,
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which shows that flocs are complex [206]. Stronger flocs that are tolerant of breakage are
theoretical features of the high fractal dimension. However, the flocs of sweep flocculation
are large with greater floc production but are easily broken. Charge neutralization occurs via
the adsorption process between the coagulants and the colloid surface, which are oppositely
charged [193]. Before reacting with the colloids, chemical coagulants undergo a hydrolysis
process to form several cationic species. A patch-wise medium referred to as the electrostatic
patch mechanism is deployed for the charge neutralization process. Various cationic species
will patch on the surface of the colloids resulting in particle surfaces with positive and
negative charges. Colloids’ surfaces with a mixed charge will reduce the repulsive forces
and increase van der Waals forces between particles [207]. Flocs produced via the charge
neutralization method are stronger than those developed by sweep flocculation but weaker
than those formed through inter particle bridging, despite their globular-shaped smaller
particles [205], and also have a greater fractal dimension [193]. Double-layer compression
is an approach that employs ions with the opposite charge of the colloidal particles to
infiltrate the double layer that surrounds the colloids. Counter ions will make the double
layer thinner and smaller in volume [208]. Continuous electrolyte compression reduces
the electrostatic repulsion and increases van der Waals forces, facilitating the joining of
the two destabilized colloids [205]. The flocs produced via this mechanism are larger in
size because the rate of aggregation of the particles is high. However, they have a low
level of sedimentation due to certain friction forces unnecessarily forming between the
larger flocs. Moreover, the floc strength of the coagulants depends on the ionic charge of
the coagulant. Monovalent ions that are weakly charged will produce large but loose flocs
that require a longer time to settle. Nevertheless, the double layer is significantly charged
with a high repulsive force towards weakly charged ions, which lessens the likelihood of
agglomeration. The inter particle bridging relies on polymers that exist as a long chain with
a highly reactive group dangling in the water. A particular region of the polymeric chain
will attach itself to colloids, while the unattached portions of the polymeric chain attach to
other colloidal particles to form a complex colloid–polymer–colloid structure in which the
polymer serves as a bridge. The flocs that form are flaky with irregular void space between
the network structures. Furthermore, the fractal dimension of the formed floc is low, which
indicates it is not as complex as flocs formed by other mechanisms [48]. Theoretically, a
low fractal dimension leads to the formation of weak flocs that are prone to breakage, but
they are very strong and not easily broken into smaller clusters due to polymers that serve
as bridges [52]. A study shows that the use of natural coagulants with the inter-particle
bridging mechanism enhances the growth of the floc by at least thrice compared to the use
of synthetic chemicals due to the ability of polymeric chains to stretch and get attached to
as several colloids as possible [59].

This mechanism has been observed in the case of cactus mucilage and Cassia obtusifolia
seed gum via adsorption and bridging wherein the long chains of polymers destabilize
the charged impurities, forming bridges between them and culminating in macro flocs,
which tend to settle faster (sedimentation). The adsorption process involves hydrogen
bonds or dipole interactions. Proteins, lipids, and carbohydrates are the most common
components of natural/bio-coagulants. Contaminant particles are anionic, whereas coagu-
lating particles are cationic, which results in an electrostatic attraction between them and
causes adsorption, charge reversal, and the neutralization of contaminant particles. Later
on, flocs are generated and start settling (sedimentation) and are easily removed from the
water, thus treating the water [176]. Polyelectrolytes possessing a high charge density show
maximum flocculation ability.
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5. Natural Coagulants—Constraints in Commercialization

Several extracts from natural sources have proven their coagulation potential in re-
moving total dissolved solids (TDSs), total suspended solids (TSSs), chemical oxygen
demand (COD), biological oxygen demand (BOD), turbidity, hardness, algae, and total
coliforms. However, many such coagulants are yet to be accepted and commercialized.
The major barriers that hinder their commercialization include monetary requirements,
market awareness, research and development, and regulatory approvals [47]. Furthermore,
Saleem et al. [93] demonstrated the ionic nature (cationic, anionic, and non-ionic) of coagu-
lants and explored the barriers to their application and commercialization. The outcomes
of the current studies are mostly restricted to the laboratory scale, having less relevance
in real industrial applications. For natural coagulants to be successfully commercialized,
there is a need for economically feasible extraction procedures and in-depth knowledge
regarding their mode of action. Moreover, for any new products to be commercialized,
approval from the relevant authority and other regulatory authorities must be granted,
which is somewhat difficult as it requires ensuring product compliance with the respective
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standards. Strong motivation for green chemistry and cleaner production are crucial for the
development of natural coagulants and their applications. Figure 5 outlines the constraints
hindering the successful industrialization of natural coagulants. Among the major issues,
the raw materials required to generate natural coagulants must be available at a large scale
for successful and realistic applications. Furthermore, the technical support of experts
and new equipment are required to sustainably implement the deployment of natural
coagulants [108].
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6. Future Prospects of Natural Coagulants

Over the past few decades, the implementation of pollution-prevention strategies
and environmental impact assessment (EIA) has become increasingly important and have
resulted in changes in water, waste, and energy management systems through the reduc-
tion, reuse, and recycling approaches of the circular economy, with the aim of achieving
sustainability [209,210]. Natural coagulants derived from plants have the ability to replace
synthetic coagulants for the treatment of wastewater from the textile industry [92]. There is
a plethora of reports that highlight the performance of natural coagulants based on their
flocculation or coagulation potential in WT but all have their own limitations that need to
be investigated, improved, or overcome for fine-tuning and process improvement.

As aforementioned, the use of crude extracts of natural agents has been associated
with mixing certain organic matter (dissolved organic carbon (DOC) and total organic
carbon (TOC)) into clean water [203]. The significant increase in the organic residues
of treated water is unacceptable and can lead to an increase in microbial activity, which
further results in changes in color appearance, bad odors, and bad tastes [203]. Moreover,
crude plant-based products have several inorganic and organic molecules such as fats
and oils that do not contribute to the process of active coagulation [174]. Therefore, the
meticulous optimization of physico-chemical parameters prior to its implementation on a
large scale is crucial. Unfortunately, this requires more time and effort because the physical-
chemical characteristics of water change over time. The major obstacle in introducing
plant-based natural coagulants in industries is their lack of year-round availability in
order to meet industrial requirements. Moreover, the processing technology required
and the cost of processing/production are also limitations. In addition to this, there are
several other issues including the choice/possibility and source/availability of the plants
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to be used. For instance, the use of Jatropha curcas seeds in WT has been associated with
safety issues [148]. Among the issues related to the use of plant products (e.g., cereal
crops) is the escalation in market prices of unprocessed grain due to increases in the
human population and decreases in agricultural production [211]. Direct comparisons of
coagulant forms, production stages, and costs involved in different geographical regions
are extremely difficult due to differences in exchange rates, inflation factors, and cost value
accuracies [46]. The needs and responses of markets will also influence the demand for
natural coagulants as an alternative to chemicals. Although natural coagulants will not
be commercialized immediately, these small initiatives will help to bridge the gaps and
overcome the limitations (Figure 4). An appraisal of the social, economic, and ecological
aspects can be maintained as a sustainability metric with the use of a pilot plant analysis.
The approval of local authorities should be simple for the effective marketing of any new
product [212]. As a remedy to the problem, policy framers should implement tax rebates,
subsidy programs, tax reductions, incentives, and environmental laws and regulations so
as to encourage reliance on plant-based natural coagulants.

Understanding the essence of water is important for developing a suitable water
treatment process, implementing a protocol, determining appropriate residue requirements,
determining the level of assessment necessary to verify the procedure, and deciding which
residues to evaluate on the basis of toxicity [213]. Research on the active chemicals dis-
covered in plant-based natural coagulants is another factor to consider when employing
natural coagulants to improve coagulation–flocculation (CF) performance. The processes
for identifying and isolating active coagulating compounds are too challenging due to the
probability of interdependent effects among the components present [47,203]. Moreover,
the coagulant type and dosage, total dissolved solids in the contaminated water, the dis-
tribution and size of colloidal particles of the water, the temperature of the water, ionic
strength of the coagulants, pH of the water, and the configuration and percentage of organic
matter in water are some of the factors that influence the coagulation CF effectiveness of
the polluted water [214,215].

Active ingredients must be extracted, purified, isolated, and characterized in order
to identify the chemicals that cause CF. The extraction of these compounds may directly
increase the gross CF efficiency due to an increase in the relative amount of the agents [47].
Plant-based coagulants must thus be chosen for large-scale application based on the avail-
ability of annual species. Thus, meticulous research, tests, and trials are needed to find the
most efficient natural coagulant or a hybrid of natural and chemical coagulants or natural
coagulants alone, for the treatment of water [216].

Another important recently recognized cleaning agent for contaminated water is
‘biochar’. It is a carbonaceous porous substance generated through the thermochemical de-
composition of feedstock biomass with or without oxygen (pyrolysis). Any natural/organic
waste material could be used as feedstock biomass for the production of biochar. Examples
of such organic wastes are plant residues, litter, algae, manures, wood chips, municipal
solid wastes, and sewage sludge [217–219]. Biochar technology is considered a novel, cost-
effective, and environmentally friendly resource that can be used as reliable technology
in water treatment [220–222]. Biochar has been widely utilized as an adsorptive agent to
eliminate metal contaminants, biological pollutants, and nutrients from the water. Thus, it
can play a key role in environmental cleaning and reflects the concept of “treating wastes
with wastes”, for a sustainable, circular economy. There are two substantial benefits behind
the application of biochar for WT viz; (i) its production prevents the release of greenhouse
gasses into the atmosphere, thus decreasing the impact of global warming in our envi-
ronment [223], and (ii) biochar has a large surface area with numerous surface functional
groups. These features have made it an effective, cheap, and ecologically safer adsor-
bent for WT [224–226]. ‘Engineered biochar’ has also been developed, which possesses a
larger surface area, higher adsorption ability, and more widely available surface functional
groups (SFG) than the normal biochar/activated carbon, indicating that it is a new type
of carbon-based material with promising potential in treating water contaminated with
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agro-chemicals, pharmaceuticals, and metalloids/metals generated from agro-industrial
activities and municipal waste [219,222,227,228]. It may also be used for the improvement
of soil fertility, crop growth, and production [218], and for the production of clean energy,
so as to partially replace fossil fuels [229]. It is also applied as an adsorbent and catalyst
to different contaminants and reduces the emissions of greenhouse gases [218,230,231].
Rajapaksha et al. [232] mentioned that sulfamethazine can be removed effectively from
the contaminated water using steam-activated biochar but the rate of such contaminant
removal is pH dependent. Heavy metals from agricultural wastewater such as As, Cu, and
Pb constitute another pervasive issue. The potential of biochar to remove these pollutants
was reported to be 69.4 mg/g and 34.1 mg/g for Cu2+ and As5+, respectively, while the
quantities for Cd2+ and Pb2+ were found to be 0.4 mg/g to 12.3 mg/g and 36 mg/g to
35 mg/g, respectively [233–235]. Biochar is also important for the treatment of polluted
stormwater. Thus, the use of organic coagulants from plants and animal sources, including
the application of biochar technology, represents a new, cost-effective, and environmentally
friendly solution for WT. A recent study by Liu et al. [236] demonstrates that biochar
impregnated with aluminum can significantly eliminate contaminants such as Zn2+, Cu2+,
As5+, and other runoff contaminants in urban runoff water. Removal rates greater than
85% and 95% were determined when a biochar-based filtration medium was deployed to
remove copper and zinc in polluted runoff stormwater. However, there is a need for careful
testing and designing of the filtration media to achieve success in stormwater treatment
systems [237].

7. Conclusions

Due to the growing population, long-lasting periods of drought, soil and water pollu-
tion, and other factors, safe drinking water has now become a challenging resource in many
regions across the globe. In the current age of scarcity of water, efficient water treatment is
a basic requirement for survival, health development, and economic growth, and has been
one of the most important sustainable development goals (SDG) proposed by the UN that
is to be achieved by the year 2030. It is vital to establish and incorporate improved water
treatment techniques with increased performance and reduced financial inputs. The present
review has unraveled the potential of natural coagulants in the purification of waters and
has proven effective, as evidenced by various research reports published in the past two
decades. They are biodegradable and thus eco-friendly in nature and their performance
is similar to that of chemicals. However, a number of factors need to be considered when
utilizing natural coagulants. This is because the process of extraction and purification
is complex, there is a limited supply of raw materials, and the water is variable in its
composition (contaminants). Additionally, some of these products can work against surface
water microbes such as Escherichia coli while some can serve to remove heavy metals too. In
order to achieve commercialization, natural coagulants must have such qualities/attributes
(biodegradability, eco-friendliness, low costs, easily available, reduce–reuse–recycle, etc.)
so as to make space in the well-established markets where chemical coagulants occupy
the stage. Even though organic coagulants are less effective compared to chemicals, a
strategic blending of certain coagulants can synergistically enhance the efficacy of the water
treatment regime. A high dosage, a lengthy contact period, and the maintenance of pH
below 7 of plant-based coagulants can also reduce turbidity to a certain extent. Considering
human health and environmental issues associated with the use of chemicals, there is an
urgent need for meticulous and in-depth studies to analyze the mechanism of action of
natural coagulants and develop strategies for the year-round availability of coagulants
so as to deploy them for large-scale treatment of water and increase the sustainability of
WT regimes.
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