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Abstract: Hydraulic models of rivers are essential for vulnerability assessment in disaster man-
agement. This study simulates the 2019 Typhoon Hagibis at the Nanakita River using a dynamic
roughness model. The model estimates the roughness of the river on a pixel level from the relation-
ship between the Manning roughness coefficient and the degree of submergence of vegetation. This
degree is defined as the ratio of water depth to plant height. After validating the model, the effect
of vegetation on the water level in different seasons from April 2020 to March 2021 was assessed.
The vegetation area and height were obtained on a pixel level using unmanned aerial vehicle pho-
togrammetry. The dynamic roughness model showed that the water level profile increased by 7.03%
on average. The seasonal effect of vegetation was observed, revealing a strong correlation between
variations in the vegetation conditions and water level profile. This approach may help mitigate flood
damage by indicating the factors that can increase the risk of flooding.

Keywords: flood vulnerability; hydraulic resistance; Manning roughness coefficient; Typhoon
Hagibis; unmanned aerial vehicles; structure from motion; vegetated flow

1. Introduction

Hydraulic models of rivers are essential for vulnerability assessment in disaster man-
agement, especially in areas prone to floods due to cyclones and typhoons. These models
are influenced by various parameters, with roughness as the most critical. Roughness has
several influencing factors [1], with vegetation as the dominant [2]. Several investigations
on the effect of vegetation on flow and roughness have been made [2–12]. Studies have
attributed the roughness variation to the degree of submergence of plants [2,5–8] and plant
density [2,9–11]. It is important to note that other factors such as the plant morphology and
flexibility play an important role in the roughness determination [12]. Physical parameters
are the primary determinants of roughness, and the ratio of the average canopy height
to the mean flow depth is the most accurate descriptor of roughness [5]; consequently,
with depth fluctuations in flood events, the roughness value is a dynamic variable. Hence,
constant roughness is not applicable for every type of flow condition [2]. Mohammadi
and Kashefipour [13] considered the flow depth and velocity as variables to calculate a
dynamic roughness value in the Kārūn River, Iran, without directly considering the vege-
tation. Yoshida et al. [14] used vegetation information acquired by LiDAR to calculate a
distributed roughness based on the vegetative drag force dynamically in a flood model.
Variations of vegetation characteristics due to seasonal change alter the flow dynamics of
rivers [15], making vegetation control at the riverbank a crucial task.

Vegetation characteristics are often excluded from hydraulic modeling due to high
time consumption and financial cost. Unmanned aerial vehicles (UAVs) are useful tools
for acquiring the data through river mapping [14,16–19]. Combining high-resolution UAV
imagery with artificial neural networks (ANN) is a good strategy to identify vegetation
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and other features in river environments [17]. In addition, UAV imagery has enabled the
creation of three-dimensional (3D) terrain models through structure from the motion (SfM)
approach [18], being used to monitor seasonal variations of riparian vegetation height [19].
UAVs with real-time kinematic (RTK) positioning have obviated the need for ground
control points to generate accurate digital surface models (DSMs) from 3D point clouds,
improving the photogrammetry process. This has further reduced the computational cost
and time required to generate 3D point clouds accurate to less than 10 cm [20]. Studies
that consider the vegetation-induced roughness in hydraulic modeling from remote-sensed
vegetation data, especially height and density, are needed [21]. Furthermore, the pixel-based
acquisition of vegetation information through UAV imagery has allowed the application
of dynamic vegetative roughness estimation for flood analysis. In addition, affordable
UAV imagery and photogrammetry with RTK positioning allow frequent observations and
acquisitions of seasonal vegetation information.

With many rivers, Japan is often affected by typhoons and suffers constant river
flooding. Yet, the country has not implemented sufficient vegetation management to
mitigate typhoon induced inundations. About 90% of Japan’s river length is administered
by prefectural governments, of which only a few rivers are overseen by management
strategies owing to budgetary constraints. On 12 October 2019, Typhoon Hagibis devastated
ten prefectures in Japan with record rainfall and wind speeds [22]. According to the Ministry
of Land, Infrastructure, Transport and Tourism [23], the event overtopped approximately
130 embankments along several rivers, causing 90 deaths and nine disappearances and
damaging approximately 80,000 houses. In Miyagi prefecture, the floods severely damaged
the town of Marumori and abutting areas [24]. To ensure the safety of the population, flood
vulnerability studies are very important for indicating factors that can increase the flood
risk at determined locations [25]. This is mostly important for small- and medium-sized
rivers because they tend to flood more severely than large rivers.

The objectives of this study are (1) to estimate the seasonal effect of the riparian
vegetation on flow dynamics using a dynamic roughness hydraulic model, (2) to obtain
the vegetation conditions throughout the year from 3D point cloud data, (3) to quantify
the effect of riparian vegetation on flood vulnerability through a case study of Typhoon
Hagibis, and (4) to assess the effect of the seasonal variation of vegetation conditions on the
changes in water level using the hydraulic event of Typhoon Hagibis.

2. Study Area

The rivers in Japan are classified into Class A and Class B depending on their dimen-
sion as well as their social importance [26]. Class A rivers are managed by the national
government, whereas Class B rivers are managed by the prefectural governments. Nanakita
River is a Class B river located in Miyagi prefecture; it courses through the cities of Sendai
and Tagajo. According to Viet et al. [27], the river has a length of 45 km and a catchment
area of 229 km2, the average annual discharge is 10 m3/s, and the flood discharge of a
100-year return period is 1650 m3/s. The bed slope of the Nanakita River is about 0.0016 in
the relatively upstream reach and about 0.0003 in the lower reach [28].

The effect of vegetation on the flow dynamics is more visible in Class B rivers owing
to their smaller size, and therefore, the Nanakita River is suitable for achieving the research
objectives of this study. The Nanakita Dam was constructed in the upstream part of the
river basin. According to the Japan Dam Foundation [29], the dam type is a rockfill dam; it
has a water surface area of 50 hectares and a capacity of 9,200,000 m3, with the purpose
of flood control, river flow maintenance, and water supply. According to the prefecture’s
administration, the dam was not assigned the control of the river discharge at the time of
Typhoon Hagibis.

The Nanakita River is the only Class B river in the prefecture with a flood forecast
system, which is effective in the downstream portion of the river. The upstream region
relies on a water level awareness system. The river catchment is a flood-prone area and the
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river has overflowed several times in the past due to heavy rains. The last flood occurred
in 2015 caused by typhoons 17 and 18 [30].

Figure 1a–c show a map of the Nanakita River basin location in Miyagi prefecture,
its topography and river system with the location of the dam and five water level gauge
stations, and the 2 km stretch of the river chosen for the two-dimensional (2D) hydraulic
simulation, respectively. This stretch has a dense population and is frequented by residents,
with many houses on the coast. It is densely vegetated, with a predominant population
of Pueraria montana var. Lobata (Kudzu), Miscanthus sinensis, Phragmites australis, and
Solidago canadensis, making it ideal for studying the effects of a typhoon. In addition,
although the water level reached a considerable height, no overtopping of the embankments
happened during the typhoon event.
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Figure 1. Study area: (a) Location of the Nanakita River basin in Miyagi prefecture; (b) basin map with
the topography used as calculation area for the rainfall-runoff inundation model; (c) the 2 km stretch
of the Nanakita River obtained from the UAV observation of September 2019 used as calculation area
for the 2D hydraulic model.

Thirteen UAV observations took place in the stretch shown in Figure 1c, once in
September 2019 and then monthly from April 2020 to March 2021. The prefecture removed
the vegetation in October 2019, right after the disaster, as a countermeasure but could not
continue the efforts owing to regrowth.

3. Methodology

The 2019 Typhoon Hagibis was simulated with a 2D hydraulic model in the UAV
observed area shown in Figure 1c; the model was altered to dynamically calculate the
Manning roughness coefficient considering the vegetation height (dynamic roughness
model). The discharge of the event in the upstream section of the stretch was first generated
by the rainfall–runoff–inundation (RRI) model.

The vegetation conditions in September 2019 and from April 2020 to March 2021 were
obtained from the 3D point cloud data files.

The recreation of Typhoon Hagibis using the dynamic roughness model used the
vegetation conditions obtained from the September 2019 UAV observation, which contained
the pre-event conditions. The results of the simulation were compared with those of a
static roughness simulation (2D hydraulic model before the alteration). Both simulations
used the same topography and discharge, the only difference being the roughness setting;
whereas the dynamic model calculated the Manning roughness coefficient for the entire
simulation period, the static model considered it a constant value.
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After model validation, the seasonal effect of the vegetation on the water level of the
river was assessed. To this end, the same hydrologic event was simulated 12 more times,
wherein only the vegetation conditions obtained from the monthly UAV observations from
April 2020 to March 2021 were varied.

3.1. UAV Observations

The purpose of UAV photogrammetry was to obtain the vegetation information and
determine the seasonal changes of the riparian vegetation on the river floodplains. We
captured photographs once in September 2019 and then monthly from April 2020 to March
2021. Thus, we generated 13 orthophotographs and 3D point cloud data files. The UAV
(Phantom 4RTK (DJI)) has an RTK module that receives data from satellites and fixed bases
and accurately corrects the position of the image in flight in real time. The observations
were shot from an altitude of 50 m. The wrap rate was set at 80% overlap and 60% side
wrap. To improve the accuracy of the images in the vertical direction, a camera inclined at
70◦ was mounted for the SfM analysis.

The point cloud had a vertical accuracy of less than 10 cm at the top of the embankment
(approximately 8 cm).

Metashape (Agisoft) was used for the SfM analysis, and the point cloud density was
400 points m–2.

3.2. Hydrologic Model

The RRI model was used for the hydrologic simulation; it is a 2D model that can
simulate both rainfall–runoff and inundation [31–34]. The model used the following
input data: (1) the observed rainfall data collected from radar/rain gauge-analyzed (RA)
precipitation [35] with hourly observations spanning 48 h from October 12 to 14, 2019;
(2) the MERIT hydro digital elevation model (DEM) [36] with a resolution of 90 m used for
the topographic data; and (3) the land-cover map from the MLITT [23] with a resolution of
100 m. In this model, a Manning roughness coefficient value of 0.04 was adopted for the
river channel. In the slope area, the values were 0.5, 0.3, and 0.04 for vegetated areas, urban
areas, and water bodies, respectively. The soil depth of the vegetated area was assumed to
be 1.0 m, whereas that of the other two areas were assumed to be 0.1 m. Simulated and
observed water depth in the five water level gauge stations shown in Figure 1b were used
to validate the model.

3.3. Two-Dimensional Hydraulic Model

The 2D hydraulic model used for flood inundation was developed by Iwasa and
Inoue [37] and Inoue et al. [38], and further used in Hashimoto et al. [39]. The model
utilizes the continuity and momentum equations in the x- and y-directions as governing
equations, shown in Equations (1)–(3).

∂h
∂t

+
∂M
∂x

+
∂N
∂y

= 0, (1)

∂M
∂t

+
∂uM

∂x
+

∂vM
∂y

= −gh
∂H
∂x
− gn2u

√
u2 + v2

h
1
3

, (2)

∂N
∂t

+
∂uN
∂x

+
∂vN
∂y

= −gh
∂H
∂y
− gn2v

√
u2 + v2

h
1
3

, (3)

where h is the depth, x and y are the flux directions, and u and v are the flow velocities in
the x and y directions, respectively. M = u × h, N = v × h, n is the roughness factor, and H is
the water level.

The topographic data for the model was constructed by interpolating the 21 cross-
sections spaced 100 m apart provided by the Miyagi prefecture administration. Thus, a
DEM with 23,040 cells with 10 m resolution was generated. The 10 m grid cell was chosen
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because it accurately represents the vegetation in the UAV-observed area. The hydraulic
data used as input was the discharge obtained from RRI model.

3.4. Dynamic Roughness

The hydraulic model was patched with a pixel-based dynamic-roughness calculation
routine based on the degree of submergence of vegetation. The concept of the degree of
submergence is illustrated in Figure 2, as described in Nikora et al. [5], and is defined by
the ratio of the water depth to the vegetation height (Equation (4)).

Submergence degree =
hwater

hvegetation
, (4)

where hwater is the water depth of the section, and hvegetation is the vegetation height.
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Figure 2. Scheme showing the degree of submergence of the vegetation.

The code adaptation comprehends the creation of a new input file with the location
of the grid cells with vegetation and the vegetation height in each cell. The model then
calculates the pixel-based roughness at every vegetated grid cell for each loop of the
simulation, based on the degree of submergence of vegetation using the formula presented
in Equation (5), obtained from the analysis of the relationship between the two parameters
by the Japan Institute of Country-ology and Engineering [40]. The data present in [40]
was obtained by field experiment, and the equation was obtained from regression analysis
using MATLAB. The analysis produced a coefficient of determination (R2) of 0.88 and
a root mean square error (RMSE) of 0.007. Unlike the dynamic roughness calculation
method of Mohammadi and Kashefipour [13], which used only water depth and velocity
threshold to define roughness, this model directly correlated the hydraulic resistance with
the vegetation height.

n = 0.084 ∗
(

hwater

hvegetation

)−0.98

+ 0.023, (5)

Figure 3 shows a representation of the relationship between the Manning roughness
coefficient and the degree of submergence of various types of vegetation obtained from the
Japan Institute of Country-ology and Engineering [40] and the regression equation. The
equation from this relationship was derived from all the points shown in Figure 3, unifying
all types of grass vegetation hardness into a single curve.
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In the code adaptation, the estimation of the Manning roughness coefficient is only
applicable for fully submerged vegetation, when the degree of submergence is higher than
1; therefore, when the vegetation is emerging (degree of submergence less than or equal to
1), the model assumes a no-flow condition, where the water enters the cell and is trapped
until it submerges the vegetation. For non-vegetated grid cells, the Manning roughness
coefficient was set to a constant value of 0.022, a value recommended by Arcement and
Verne [41], considering the surface material to be a smooth, firm soil.

The results from the dynamic roughness model were compared with those from the
static model. The latter used constant Manning roughness coefficient values of 0.022 for
the channel area and 0.038 for the floodplains; the values were fixed by river management.
The value for the channel was set according to the bed material, composed mainly of
firm soil and sand, whereas the value for the floodplains was chosen considering the
range between 0.025 and 0.050 that represents a large amount of vegetation, according to
Arcement and Verne [41]. To identify channel and floodplain, a simulation in the same
area was performed with the average yearly discharge of 10 m3/s. Both simulations were
validated by comparing the water level profile in the peak with the floodmark points at
specific locations.

3.5. Vegetation Characteristics

A Fortran 90 program was written to obtain digital surface models (DSMs) and RGB
orthoimages from each of the UAV 3D point cloud data files. The RGB images were used
to obtain the vegetation location with a multi-layer perceptron (MLP) algorithm trained
based on the RGB values, and the DSMs were used to obtain the vegetation height for
each month.

Because of the change of the vegetation color with the passing of seasons, two MLP
models were trained, one for the spring and summer seasons (group 1) and another for the
autumn and winter (group 2). Figure 4 depicts a flowchart with the steps for the acquisition
of the vegetation location for the spring and summer seasons.
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The method of identification of the vegetated pixel was similar to the method applied
by Casado et al. [17]: rather than identifying all the features in the river environment,
this study focused only in the identification of the vegetation. First, two samples of the
RGB images of September 2019 and January 2021 with resolution of 1 m were cropped
and submitted to a k-means cluster algorithm. Different from Casado et al. [17], who
used the CIELAB color spectrum to cluster the pixels, in this methodology, the RGB color
spectrum was used. Each cluster was isolated, and visual supervision was used to obtain
the vegetated pixels for the two samples. Once the vegetation was located, the MLP models
were trained for each group. Subsequently, the trained models were used to predict the
vegetation location in the entire RGB images. The images were re-sampled to a 10 m
grid size with ArcMAP 10.5, using the Majority algorithm to match the cell size chosen
for the hydraulic simulations. The Majority algorithm determined the new value of the
larger cell based on the most popular values between the smaller grid cells in the location.
This method produced smoother results than the nearest neighbor method, avoiding the
overestimation of the vegetation conditions.

With the vegetated grid cells located, the vegetation height could be calculated. As
discussed in Weidner and Förstner [42], the DSM differs from the DEM because it compre-
hends not only the ground level but the level of the objects above; therefore, by normalizing
the DSM with the DEM, the height of the aboveground objects can be determined. Thus, the
vegetation height was obtained by this method only at the vegetated grid cells. Differing
from the methodology used by van Iersel et al. [19], the normalization was performed
with the DEM obtained from the interpolated cross-sections rather than from a digital
terrain model (DTM), which is calculated from the DSM by removing the objects above
ground level. The accuracy of the DTM depends on the time when the UAV observation is
performed, varying with the seasons.

4. Results and Discussion
4.1. Vegetation Conditions

Both MLP models obtained good accuracy and made good predictions of the vege-
tation location, like the results obtained in [17]. The model accuracy for group 1 was
0.99. Group 2 obtained an accuracy of 0.96, as shown in Table 1, along with other
evaluation parameters.
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Table 1. Evaluation parameters of the MLP model of both groups.

Parameter Group 1 Group 2

Accuracy 0.99 0.96
Precision 0.93 0.84

Misclassification 0.01 0.04
Recall 0.98 0.74

The precision and accuracy achieved for group 2 was considerably lower than the
accuracy of group 1. The same can be observed for the precision; thus, the MLP trained
for group 1 was able to classify the pixels with more correction than group 2. In addition,
misclassification of group 2 was higher, meaning that more non-vegetated pixels were
wrongfully classified as vegetated pixels in group 2 than in group 1, although, with the
misclassification value of 4%, the wrongfully classified pixels were not great in number;
therefore, it was considered an acceptable value for this research.

The lower values of accuracy and precision, along with the higher misclassification
achieved by the group 2 MLP, occurred because the training sample represented the
vegetation in the winter season, when there is a lack of greenness in the plants due to the
loss of foliage; this promotes confusion with sand banks and the flood control structures.

The recall shows the percentage of corrected classification of the vegetated pixels. The
value of 98% for the MLP trained for group 1 demonstrates that most of the vegetated
pixels were correctly identified. For group 2 on the other hand, the recall of 74% shows that
a considerable part of the vegetated pixels was not identified by the MLP. These results
show that the vegetated area of spring and summer seasons were in closer accordance with
the reality, but for autumn and winter seasons, the MLP produced an underestimation of
the vegetated area.

Figure 5 illustrates the DSM, DEM, and vegetation height as per the UAV observations
from September 2019. From this image, the clear difference between the DSM and the DEM
in the vegetated pixels is shown, expressing the vegetation height.
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Figure 5. Image of the DEM (left), DSM (center), and vegetation height (right); vegetation height is
the result of DSM–DEM for the vegetated grid cells.

The vegetation area and height varied significantly with the passing of seasons. The
vegetation area has been shown to follow a clear pattern of variation according to the
seasons. The highest area coverage was observed in the summer, when precipitation and
temperature are high. In contrast, with low temperature and precipitation, the winter
showed the lowest amount of vegetation coverage area. The average height also showed a
similar pattern of variation, although less accentuated than the area. Figure 6 shows the
values of area and average height for each month from April 2020 to March 2021.



Water 2022, 14, 3649 9 of 18

Water 2022, 14, 3649 9 of 19 
 

 

a similar pattern of variation, although less accentuated than the area. Figure 6 shows 
the values of area and average height for each month from April 2020 to March 2021. 

 
Figure 6. Vegetated area and vegetation average height in the UAV-observed stretch shown in 
Figure 1c from April 2020 to March 2021. 

4.2. Hydrologic Simulation 
The results of the RRI model simulation conformed to the observed data. The simu-

lated hydrograph in the outlet revealed a peak discharge of approximately 1250 m3 s–1, 
lower than the 100-year return period of 1650 m3 s–1 affirmed by Tanaka et al. [26]. Fig-
ure 7 shows the discharge in each station, in the upstream section of the UAV-observed 
area and the outlet. The comparison between the observed and simulated water level in 
each station is shown in Figure 8. Nash–Sutcliffe efficiency and RMSE were calculated 
for each station to validate the model. Except for the Kawazaki station, all stations 
showed Nash–Sutcliffe values ranging from 0.62 to 0.88. Because the Nash–Sutcliffe effi-
ciency of most of the gauge stations was close to 1, the model could be considered suffi-
ciently accurate. 

Figure 6. Vegetated area and vegetation average height in the UAV-observed stretch shown in
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4.2. Hydrologic Simulation

The results of the RRI model simulation conformed to the observed data. The simu-
lated hydrograph in the outlet revealed a peak discharge of approximately 1250 m3 s–1,
lower than the 100-year return period of 1650 m3 s–1 affirmed by Tanaka et al. [26]. Figure 7
shows the discharge in each station, in the upstream section of the UAV-observed area and
the outlet. The comparison between the observed and simulated water level in each station
is shown in Figure 8. Nash–Sutcliffe efficiency and RMSE were calculated for each station
to validate the model. Except for the Kawazaki station, all stations showed Nash–Sutcliffe
values ranging from 0.62 to 0.88. Because the Nash–Sutcliffe efficiency of most of the gauge
stations was close to 1, the model could be considered sufficiently accurate.
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Figure 8. Comparisons between the RRI simulated and observed water levels in the 5 gauge stations.

The results of the simulation were like those of Bhagabati and Kawasaki [32], produc-
ing a reasonable discharge while overestimating the flooded area on a flat region of the
river basin. The peak inundation (Figure 9) showed a virtual inundation in the residential
area west of the Nanakita River between the Iwakiri and Fukuda Ohashi stations. This
overestimation occurred because the model did not consider the city’s drainage system. In
the same stretch, a small flood was also observed because the model did not consider the
flood control structures. Thus, a minor reduction in the discharge occurred from the Iwakiri
to the following station, Fukuda Ohashi. This result contradicts those of Nastiti et al. [31],
which produced a realistic inundated area but unrealistic discharge.
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4.3. Hydraulic Simulation

Considering the vegetation conditions of September 2019, the dynamic roughness
model simulated a higher water level profile than that of the static roughness model.
Both results were compared with the observed peak water level at specific locations. The
dynamic roughness model obtained a more precise result, obtaining an RMSE of 0.17 m
compared with that of 0.67 m produced by the static roughness simulations. As proposed
by Ebrahimi et al. [2], the adoption of a non-constant Manning roughness coefficient routine
improved the quality of the results, which are also in agreement with the results obtained
by Mohammadi and Kashefipour [13]. The increased higher accuracy obtained from the
dynamic roughness model demonstrates that, as in Yoshida et al. [14], the distributed
vegetation in the reach can be considered a good parameter to calculate the roughness in
the reach scale.

As shown in Figure 10, the water level in the dynamic roughness simulation increased
by 7.03% on average compared with that in the static roughness simulation. The absolute
water levels increased by 57 cm at 500 m and 39 cm at 2000 m from the downstream end.
The water level increased by a maximum height of 61 cm at 700 m from the downstream
boundary. These differences in the actual flood levels evidenced using the dynamic rough-
ness calculation routine confirmed the statement of Wu et al. [8] regarding the consequences
of using a constant roughness coefficient, demonstrating that the set Manning roughness
coefficient value of 0.038 for the floodplain areas in the static roughness simulation was not
enough to represent the vegetation effect in this river stretch.
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Figure 10. Simulated water level profiles of the simple Manning roughness coefficient setting
simulation and the dynamic Manning roughness coefficient calculation simulation.

Measuring the increase in the water level is important for the prediction of areas with
greater likelihood of overtopping, aiding in flood vulnerability assessment. The results of
the dynamic roughness adaptation in the 2D model prove its usefulness in urban flood
control and inundation prediction. The proposed model is better suited for preparedness
once it has predicted a worsened and more realistic scenario.

Sensitivity analysis of the Manning value in the floodplain areas was performed in
the static roughness model aiming to achieve a roughness value that better represents the
roughness caused by the vegetation and other surfaces. The comparison between observed
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and simulated water levels in each case is presented in Figure 11. As expected, increasing
the Manning value in the floodplains brought the water level profile closer to the observed
values, and validated the previous statement that Manning of 0.038 was not enough to
represent the roughness in the location. RMSE was calculated for each simulation and the
values are demonstrated in Table 2.
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Table 2. RMSE values achieved by the different floodplain Manning values of each simulation.

Manning RMSE

0.022 0.931
0.038 0.671
0.040 0.641
0.050 0.522
0.060 0.421
0.068 0.354
0.070 0.340

As shown in Table 2 and Figure 11, the Manning of 0.070 was the value that most
approached the observed water level, better representing the effect of the floodplain rough-
ness, with the RMSE of 0.340, although, this error is still larger than RMSE obtained from
the dynamic roughness model.

The behavior of the Manning roughness coefficient in the vegetated grid cells in the
dynamic roughness model can be seen in Figure 12a,b, where the comparison between
the variation in the Manning roughness coefficient of two different grid cells is shown. In
Figure 12c,d, the Manning values of the static model in same cells is demonstrated. The
results confirmed what could be observed in Wu et al. [8], that the Manning roughness
coefficient value is inversely proportional to the water depth. Figure 12a shows a channel
grid cell. In that case, because the water rapidly submerges the vegetation, the calculation
routine is activated from the start of the simulation. It shows that while the water depth
increases, the Manning roughness coefficient value decreases until the peak water depth. In
contrast, when the water level starts to decrease, the Manning roughness coefficient value
starts to increase. Figure 12b at the right shows the Manning roughness coefficient behavior
in a floodplain grid cell. It can be noticed that until the 22nd hour of the simulation, the
water did not fully submerge the vegetation, and therefore the water was trapped in the
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cell and the value was not calculated. Once the degree of submergence was higher than 1,
the values were calculated, ranging from 0.05 to 0.1, confirming once more that the value
of 0.038 considered in the static roughness simulation was not high enough to represent
the vegetation. While the variation of Manning values can be observed in Figure 12a,b, the
values are constant in Figure 12c,d, which represent the static roughness model.
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Figure 12. Pixel-level behavior of the Manning roughness coefficient estimation along the simulation
time for: (a) the dynamic roughness model in September 2019 at point 1 from Figure 1c, (b) the
dynamic roughness model in September 2019 at point 2 from Figure 1c, (c) the static roughness model
at point 1 in Figure 1c, and (d) the static roughness model at point 2 in Figure 1c.

The use of the dynamic roughness calculation routine based on the degree of sub-
mergence of the vegetation provoked considerable fluctuations in the Manning roughness
coefficient. The rapid and intense increase in the discharge caused a fast rise of the water
level, drastically altering the Manning roughness coefficient in the grid cells. During the
beginning of the event, before the water level reached its peak, the degree of submergence
of the vegetation increased, reducing the Manning roughness coefficient, to the point where
it reached its lowest values. Toward the end of the typhoon event, the discharge decreased,
reducing the water level and the degree of submergence of the plants, causing an increase
in the Manning roughness coefficient.

The main advantage of the dynamic roughness model is that it does not require
the same calibration process as the static roughness model since the Manning values
are calculated from the vegetation itself. In addition, by using dynamic Manning in
the vegetated grid cells, the effect of the vegetation can be assessed in the model, in
contrast to the static roughness model. As discussed in Ebrahimi et al. [2], the use of a
constant Manning cannot fully express the effect of the vegetation on the flow dynamics.
Nevertheless, there are factors that limit the application of the dynamic roughness model.
Firstly, Equation (5) unified different types of shrubs and tall grass vegetation under a
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single curve, not considering the effect of trees and neglecting that different patches of
vegetation types would have local effects on the roughness. The vegetation height in each
grid cell is constant, not considering the plant flexibility, which also provokes variations
on the Manning value, as seen in [12]. Furthermore, the blockage of water in vegetated
grid cells restrain the model applicability in scenarios where the vegetation is emergent for
long periods. Therefore, the applicability of the dynamic roughness model is restrained to
scenarios where the flow depth is predominantly higher than the vegetation and in which
there are large fluctuations of water level and a considerable amount of vegetation. The
model is especially useful when the degree of submergence remains low for long periods,
when the roughness value is larger and has more influence on the flow dynamics. For flood
scenarios in which the discharge remains very high for longer periods, the high degree
of submergence tends to provide a lower Manning roughness coefficient, causing little
influence in the flow dynamics. In addition, regarding the types of vegetation, the model
should be considered only in river stretches where the vegetation is mostly comprised of
shrubs and tall grass.

4.4. Seasonal Effect of Vegetation on the Water Profile

In Song et al. [15], the estimation of the year-round seasonal Manning roughness
coefficient variation was performed by calibrating the Manning roughness coefficient value
through trial and error for a month as a single value along the entire river stretch to
match the flow condition for that month. The proposed model determined the Manning
roughness coefficient from the vegetation characteristics of the floodplains rather than by
trial and error, simulating the effect of the vegetation on the water level from April 2020 to
March 2021.

The results of the simulations demonstrated that water level significantly varies due
to changes in the vegetation area and height. The variation of roughness observed by the
water level change occurred in conformity to the Manning roughness coefficient variation
observed in Song et al. [15], showing the peak water level in the summer period and the
lowest in the winter. Figure 13a,b depict the peak water level simulated for each month in
the central section of the stretch compared with the variation in the vegetation height and
area, respectively.
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Figure 13. Water level profiles simulated by the 2D hydraulic model using the dynamic roughness
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The seasonal variation of the vegetated area generally agrees with the water level
variation and this agreement is also observed regarding the variation of the average height
of the vegetation. In agreement with de Doncker et al. [43], the results demonstrate that the
increase in vegetation further roughens the channel, triggering an increase in the water level.
Furthermore, the large seasonal variation in the vegetation area and height substantially
alters the roughness.
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A linear relationship between the water level and the vegetation area and height can
be seen in Figure 14a,b, respectively. The correlation coefficient (R) and the coefficient of
determination (R2) of vegetation average height versus water level were 0.91 and 0.83,
respectively, confirming a stronger relationship than that of the vegetation area versus
water level, with R of 0.79 and R2 of 0.63. The parameters are dependent on each other,
influencing the overall Manning roughness coefficient of the floodplains.
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5. Conclusions

The riparian vegetation in the UAV-observed 2 km stretch of the Nanakita River greatly
varies in coverage area and height throughout the passing of the seasons. Identifying the
vegetation using the MLP algorithm has achieved an accuracy of 99% for summer and
spring and 96% for autumn and winter, which represents a useful aid for riparian vegetation
classification. As in Casado et al. [17], the results show that artificial intelligence algorithms
are powerful tools for river mapping and management. The lower recall of 74% obtained
for autumn and winter demonstrates that classifying vegetation during the period of foliage
loss is a challenging task. This happens because of the confusion of the vegetation color
with that of other features present in the orthoimages.
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The dynamic and static roughness models obtained RMSEs of 0.17 m and 0.67 m,
respectively, leading to the conclusion that the dynamic roughness model achieved a
more realistic simulation of Typhoon Hagibis than the static roughness model did. This
demonstrates that the consideration of a fluctuating Manning roughness coefficient based
on the degree of submergence of the plants improved the simulation results, as suggested
by previous studies [2,5,8]. As predicted by Wu et al. [8], the use of varied Manning
roughness coefficient values provoked considerable discrepancies in the simulated water
levels. The largest difference of the simulated water level between the static model and the
dynamic model was 61 cm, with the higher water level being predicted by the dynamic
roughness model. The dynamic roughness model was shown to improve the safety for
flood vulnerability studies in the Nanakita River.

Seasonal variations in vegetation area and height have a clear effect on the flow
dynamics of the river. From the results of the simulations, it could be concluded that the
water level is proportional to the amount of vegetation in the riparian zones. The highest
water level was obtained in the summer, when the vegetation volume is at its peak, and the
lowest value during the winter, when there is less vegetation. A low water level was also
simulated in the early spring season, in April 2020, owing to the removal of the plants by
Miyagi prefecture in October 2019, after the typhoon event.

The vegetation area and average height were demonstrated to have a good correlation
with the simulated water levels, with average height achieving the strongest relationship,
with an R of 0.91 and R2 of 0.83. Therefore, considering only the vegetation area to estimate
the water level, as does the static roughness model, would be less efficient. Considering
the distributed vegetation height together with the vegetation area provides a stronger
relationship between the riparian vegetation and the water level.

The method to obtain the vegetation location and its distributed height, with the
consideration of the parameters in the dynamic roughness model proposed in this study
was proven to be applicable for the purpose of river management in Nanakita River.

In the future, the limitations of the dynamic roughness model will be addressed. The
identification of the different types of vegetation in the floodplains will be performed;
thus, vegetation flexibility and the flow in emergent conditions will be considered in the
model. Therefore, the applicability of the model will be broader, and it can be tested in
other locations.
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