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Abstract: Population growth has reduced the available freshwater resources and increased water
pollution, leading to a severe global freshwater crisis. The decontamination and reuse of wastewater
is often proposed as a solution for water scarcity worldwide. Membrane technology is a promising
solution to the problems currently facing the water and wastewater treatment industry. However,
another problem is the high energy costs required to operate systems which use membranes for
water treatment. In addition, membranes need to be replaced frequently due to fouling and bio-
fouling, which negatively affect water flow through the membranes. To address these problems,
the researchers proposed membrane modification as a solution. One of the exciting applications of
plasmonic nanoparticles (NPs) is that they can be used to modify the surface of membranes to yield
various properties. Positive feedback was reported on plasmonic-modified membranes as means of
wastewater treatment. However, a fundamental gap exists in studies of plasmonic membranes’ per-
formance and applications. Given the importance of membrane technology for water and wastewater
treatment, this paper reviews recent advances in the development of plasmonic chemically modified
bioactive membranes and provides a perspective for future researchers interested in investigating
modified membranes.

Keywords: plasmonic NPs; wastewater treatment; bioactive membranes; membrane

1. Introduction

Population growth has reduced available freshwater resources and increased water
pollution, resulting in a severe global freshwater crisis [1]. Therefore, there is a need to
develop alternative freshwater supply methods beyond the hydrologic cycle’s capabilities
to meet the world’s growing freshwater needs [2]. The uncontrolled discharge of various
waste materials and drugs such as ibuprofen, acetaminophen, and antibiotics has created
unfavorable and dangerous environmental conditions. Pharmaceuticals such as diclofenac
and ibuprofen are poorly and slowly mineralized through photocatalysis. Thus, such
materials accumulate in the environment and circulate through water resources in the
ecosystem [3–5]. Detoxifying and reusing wastewater has been widely proposed to solve
water scarcity worldwide. As the global population grows, sustainable water treatment
technologies need to be developed to meet the increasing demand for clean water [6].
Nowadays, membrane technology is a key focus of interest among researchers.

A membrane is a solid or liquid between two systems which allows the selective trans-
port of matter and energy. Modern nanostructured membranes are highly efficient and
easy to use, exhibit high permeability and selectivity for transporting specific molecules,
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and require low energy inputs. They are also modular, stable under various operating
conditions, and easy to control and scale up. The use of membrane technology in sepa-
ration processes can provide an alternative to energy-intensive methods for the selective
and effective separation of specific components [7]. However, membrane technology still
faces critical challenges. Solving the problems of membrane technology requires a mul-
tidisciplinary approach and collaboration with disciplines such as solid-state physics. In
particular, the use of thermoplasmonics is an exciting option in the development of mem-
brane technology [8,9]. Thermoplasmonics is the thermal heating of metal nanoparticles
(NPs) by optically resonant plasmonic excitations and is based on the control of nanoscale
thermal hotspots by light irradiation [8,10–17]. Plasmonic NPs can act as ideal confined
nano-heat sources within polymer membranes and convert absorbed light radiation into
heat [8,18,19]. The energy of plasmons can be converted into heat, increasing the tempera-
ture of the surrounding medium [8,20–22]. The evaporation of water using solar energy is
a promising and environmentally friendly method for water and wastewater treatment.

The enhancement of steam generation in solar steam generators by a plasmonic heat-
ing effect has been shown to be practical. In such systems, redundant heating of the liquid
is a limiting factor for efficiency, and the commonly used noble metal nucleotides are not
cheap or readily available and require extensive preparation. Studies have shown that sim-
ple thermal evaporation is possible using a paper-like plasmonic microporous membrane
with fabricated indium NPs. Indium NPs are lightweight, absorb light very well, and are
excellent for plasmonic heating. Therefore, indium-based plasmonic membranes can be
used for wastewater treatment in places with limited or no electricity access [23,24]. A wide
range of desired membrane properties for various applications can be achieved by modify-
ing the surface of textile membranes. Plasma treatment is proposed as a clean alternative
to harmful chemical methods of membrane surface modification. Unlike chemical surface
modification methods, plasma treatment does not produce hazardous waste products. The
electrospinning process can achieve a different level of adhesion between nanofiber layers
and the pad. This way, several unique membrane properties can be achieved, such as
higher numbers of active sites, ionic capacities, and wear resistance [25–27].

In addition to using modified membranes for wastewater removal, various other
water and wastewater treatment methods exist. Some of the most significant water and
wastewater treatment methods are osmosis, oxidation, chemical precipitation, solvent
extraction, micellar ultrafiltration, organic and inorganic ion exchange, and adsorption.
An exciting option for removing contaminants from water is the adsorption method. The
simplicity of the processes involved in the adsorption method and the availability of cheap
adsorbent materials have attracted the attention of researchers to this method. Gładysz-
Płaska et al. [28] investigated the usage of red clay as an adsorbent of uranium(VI) and
phosphate ions. Uranium metal is a toxic heavy metal and a potent source of radioactivity.
Uranium and its compounds naturally exist in the environment and water resources;
however, in recent years, civil and military nuclear activities have increased uranium
concentrations in the environment beyond safe levels [29,30]. Gładysz-Płaska et al. [25]
demonstrated that the adsorption method is promising for the inexpensive and effective
removal of many toxic materials, such as heavy metal ions, from the environment and water
resources. In another study by Gładysz-Płaska et al. [31], the usage of an inorganic/organic
hybrid uranium(VI) adsorbent consisting of halloysite functionalized with isothiouronium
salts was investigated. It was shown that the adsorption capacity could be increased by
modifying the halloysite with the isothiouronium salts, especially those with four nitrogen
atoms in their structure.

The adsorption of lanthanides by adsorbent materials can be investigated as a model
to obtain information about interactions between the adsorbent materials and radioactive
materials and the performance of the adsorption method in the removal of such materi-
als, which is due to similar chemical properties of lanthanides and radioactive actinides.
Gładysz-Płaska et al. [31] investigated the usage of raw and unmodified red clay as an
adsorbent for lanthanides. Based on the studies, thermally modified clay (T-clay) is the
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most active lanthanide sorbent among the different forms of red clay. The adsorption
of lanthanide on red clay was also modeled by Gładysz-Płaska et al. [31] based on the
molar fractions of individual lanthanide complexes as a function of pH. However, further
experiments are required to refine the provided model. Barakat et al. [32] investigated the
usage of bentonite/sawdust interfaces loaded with NPs of magnetite (Fe3O4) as adsorbents
for the removal of methylene blue (MB). It was found that the composites prepared using
NPs of Fe3O4 were successful at effectively removing MB through adsorption.

Energy can be harnessed from renewable resources and used for water treatment. Solar
desalination and water treatment is an environmentally friendly method for water purifica-
tion, which various researchers in recent years have studied extensively. Elsheikh et al. [33]
reviewed the usage of heat exchangers in solar desalination. Based on studies by various
researchers, it was concluded that using heat exchangers as means of waste heat recovery
in solar desalination systems improves their performance. Based on another study by
Elsheikh et al. [34], it was concluded that using nanofluids in systems which utilize the
sun as an energy source increases the heat capacity and the absorption of solar energy.
The major problem with solar desalination systems is that they are costly and complex.
Increasing the amount of bulk water is a significant challenge in conventional solar desali-
nation systems due to the reductions in their efficiency in such conditions. The efficiency
reduction is because the bulk water dissipates a considerable amount of heat. To address
these issues, using a thin film of water is suggested in solar steam generation systems
instead of vast amounts of water. Elsheikh et al. [35] reviewed the thin film technology for
solar steam generation. Investigations have showed that using thin films of water in solar
steam generation units can make achieving high efficiencies possible.

Microorganisms can be used in membranes to achieve the bioremediation of wastew-
ater. Bioremediation offers the possibility of destroying or rendering various harmless
pollutants through natural biological activity. Relatively inexpensive techniques with low
technical complexity are used, which generally have high acceptance among the population
and can often be carried out on-site. Due to the importance of membrane technology
for water and wastewater treatment, this paper reviews recent advances in developing
plasmonic chemically modified bioactive membranes.

2. Overview of Plasmonic Membrane Technology

Textile filters are an essential component of many industrial processes. Their main
task is the separation of solids from liquids or gases. In this way, they contribute to the
purity of final products, energy consumption, the efficiency of the processes in which they
are involved, the recovery of valuable materials, and the controlled release of pollutants
into the environment. The methods used to classify membrane materials depend on many
factors. Some of these factors include flexibility or hardness, the effect of gravity on the
filtration process, the intended use, the regeneration method, the manufacturing method of
the membrane itself, and the geometry of elements inside the filter [8,25].

Regarding flexibility, membrane materials and filter media can be divided into solid,
bulk, and composite. Solid filters are composed of solid particles such as metals, ceramics,
or activated carbon. The solid particles of filter media are bonded together by a specific type
of fastener. Bulk filters, such as solid filters, comprise solid particles, but their manufacture
does not use binders, pliable metals, non-metallic fabrics, knitted and non-woven surface
textile products, or perforated polymer films. Composite filters consist of several elements.
Woven fabrics, non-woven fabrics, and solid particles with and without binders can be used
to develop composite filters. Composite filters are fascinating because of their versatility and
the possibility of using them simultaneously as reinforcing and geotextile materials [8,36].

Filter barriers can also be used for purification [25,37–39]. In the remediation of indus-
trial wastewater, it is necessary to use appropriate water treatment methods which lower
the concentration of toxic intermediates [40–43]. Membranes used in water treatment can
remove various contaminants, from large colloids, algae, and bacteria with a characteristic
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size in the order of micrometers, to individual ions with a hydration radius in the order of
angstroms [44,45].

One of the earliest examples of the modification of the transport properties of mem-
branes by surface modification can be found in W. Pfeffer’s monograph of 1877, which
describes the formation of a layer of copper ferrocyanide on the surface of porous porcelain.
The membranes in Pfeffer’s work were prepared by saturating porous porcelain with a
copper sulfate solution (II). One side of the porcelain was then kept in contact with a
potassium ferrocyanide solution. These procedures resulted in semipermeable copper fer-
rocyanide membranes [46,47]. Pfeffer’s membrane preparation method is similar to what
was reported over 100 years after Pfeffer’s work as the preparation method for composite
polyamide membranes RO.

Ceramic Pasteur–Chamberland water filters were first modified in 1896 by C. J. Martin
using gelatin or silica [48,49]. Advances in membrane manufacturing processes continued,
and in 1928, membrane technology became attractive for industrial use; modern membrane
manufacturing processes were developed in the early 1980s. Since then, many membrane
researchers have focused on improving the properties of basic membrane architectures
through surface modification. Currently, there are several surface modification techniques,
such as chemical treatment, plasma treatment, and UV irradiation. The membrane surface
modification methods can be used alone or in conjunction with other techniques [36,50].
As mentioned above, one of the key membrane surface modification methods is plasma
treatment, which is widely used in polymer surface modification. In plasma treatment,
the surface of the membrane is exposed to various plasmas to achieve a hydrophilized
membrane surface [51–54]. Plasma can also activate the membrane surface, and the desired
modification can be carried out by other methods [52,55,56].

Plasma membrane modification has been addressed in several publications [36,51,52].
In some of the published articles, researchers evaluated the performance and properties
of plasma-modified membranes [36]. However, little information is available about the
performance of membranes modified using microwave-driven plasma-associated processes
such as plasma-induced polymerization [57,58]. Case studies published between 2000
and 2010 highlighted the performance and properties of membranes modified using low-
pressure plasma processes [59–61]. Plasma-modified polymeric membranes have been
reported to exhibit antifouling properties [62]. In addition, some published articles on
plasma-modified membranes have highlighted how the surface hydrophilicity of water
purification membranes can be improved. Modification processes for low-pressure and
atmospheric-pressure membranes are also being studied in the context of pure plasma
physics and chemistry [36,60,63,64].

3. Plasmonic Membranes

A plasmon is a quantum of vibration of plasma. The energy of a plasmon can be
defined as Ep = hωp, where h is Planck’s constant andωp is the characteristic frequency
which depends on the plasma’s mass, density, and charge. Exploiting the properties of
collective modes in conducting systems has led researchers to investigate the applications
of plasmons. Thus, a new field of research, a subfield of nanophotonics, plasmonics,
was defined [65,66]. Metals consist of solid positive ion cores and mobile conduction
electrons; thus, the study of the properties of metals from the electromagnetic point of
view leads to the conclusion that metals are plasmas [67,68]. Thus, NPs of metals can
be used as the plasma required for modifying membranes. Membranes modified with
metallic NPs are called plasmonic membranes. Plasmonic metallic NPs can convert light
from various sources, such as the sun, into heat. Therefore, plasmonic membranes can
be used in photothermal water purification systems [8]. The most commonly studied
plasmonic metallic NPs are noble metals such as gold (Au) and silver (Ag). Although the
use of gold and silver NPs for membrane modification is preferred due to the exceptional
plasmonic properties of gold and silver, several problems limit the widespread use of gold-
and silver-modified membranes in the industry [69,70]. One main problem is the price
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and availability of gold and silver metals. In the case of silver-modified membranes, there
are safety and environmental issues due to the probability of silver NPs leaching into the
water. Leached silver particles can harm humans and other living organisms, especially
aquatic life.

Therefore, some researchers have recently investigated alternative plasmonic materials
to gold and silver metals. For example, Ren and Yang [71] proposed using NPs made of
metal nitrides as substitutes for noble metals. One of the most studied metal nitrides is tita-
nium nitride (TiN) [72]. Naik et al. [73] introduced TiN NPs in 2011, and Patsalas et al. [70]
listed the advantages of using TiN NP instead of gold and silver NPs. The main advantage
of using TiN NPs is that titanium and its compounds are cheap and abundant compared
with Au and Ag and have similar plasmonic resonances as Au NPs. TiN NPs can also
withstand high temperatures. A theoretical study by Lalisse et al. [44] found that TiN
NPs exhibit better or the same thermoplasmonic properties as Au NPs under the same
illumination conditions.

It was observed that membranes modified with plasmonic metallic NPs have antifoul-
ing properties. Therefore, the use of different plasmonic materials to achieve antifouling
properties has been investigated by researchers. For example, Yang et al. [74] proposed a
membrane modified with copper–zinc–tin–selenide (CZTSe) nanocarambolas. The synthe-
sized CZTSe nanocarambolages were deposited on the surface of a hydrophilic membrane
in a solar-powered interfacial water evaporation system. The modified membrane could
be operated for over 30 days without decay or loss of efficiency. Amoli-Diva et al. [75]
proposed two new types of composite membranes with antifouling and anti-biofouling
properties. These membranes were prepared by modifying commercial polyamide mem-
branes (PA) with synthetically prepared biplasmonic Au–Ag and Ag–Au photocatalysts.
Shen et al. [76] proposed using a plasmonic p–n heterojunction of Ag/Ag2S/Ag2MoO4,
which exhibits enhanced photocatalytic activity under visible and infrared radiation for the
purification of wastewater. The use of Ag/Ag2S/Ag2MoO4 can remove 99% of rhodamine
B (RhB), 100% of methylene blue (MB), 83% of tetracycline (TC), and 77% of hexavalent
chromium (Cr (VI)) under visible light irradiation. Up to 62% RhB, 58% MB, 52% TC,
and 50% Cr(VI) can be removed by Ag/Ag2S/Ag2MoO4 under near-infrared illumination
generated with an 808 nm laser light source. The sensitivity of such photocatalysts to visible
and infrared radiation has attracted the attention of researchers due to the high utilization
efficiency of solar energy. Thus, membranes modified with such materials may provide
a sustainable method for purifying wastewater using renewable energy sources such as
solar energy. Another attractive property of Ag/Ag2S/Ag2MoO4 is that it can be used as
an efficient and recyclable photocatalyst.

Plasmonic Chemically Modified Bioactive Membranes

As mentioned above, most of the developed plasmonic materials used to modify
membranes are toxic to humans and other life forms. Therefore, it is necessary to develop
bioactive plasmonic materials. Fungi, bacteria, and algae can be used to biologically treat
wastewater, such as those contaminated with dyes from the textile industry. Therefore,
biological treatment methods have attracted the attention of researchers in recent years.
Biological treatment is advantageous because it is less energy-intensive and environmen-
tally friendly. The processes associated with biological treatment methods are simple and
less sludge is produced [77–79]. Srikanlayanukul et al. [80] studied the application of the
fungus Coriolus versicolor for the biological treatment of textile wastewater. Immobilized
Coriolus versicolor was applied to the polyurethane foam surface to treat the wastewater
in an aerobic bioreactor. The objective was to decolorize the wastewater. It was found
that using Coriolus versicolor on the foam removed 67% of the chemical oxygen demand
(COD), and 80% of the dye dissolved in the wastewater within 48 h. Selvakumar et al. [81]
studied the use of the fungus Ganoderma lucidum in the treatment of textile wastewater. It
was found that 81.4% of the dye and 91.3% of COD in the wastewater were removed in
5 days in a batch reactor using Ganoderma lucidum. Kıvanc and Doğruer [82] investigated
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the application of Aspergillus flavipes. It was found that 92% of the dye and 45.92% of
COD were removed from the water within one week. However, the biological wastewater
treatment methods could not achieve the discharge standards required for textile wastew-
ater. Therefore, Isik et al. [83] developed a bioactive ultrafiltration membrane from the
fungus Aspergillus carbonarius, which is filamentous. The ability of the developed bioac-
tive ultrafiltration membrane to treat wastewater was tested using a sample of industrial
textile wastewater. The performance of the developed membrane was then evaluated in
terms of the decolorization capacity and COD rejection of fungal biomass in batch reactors.
The developed bioactive membrane material achieved 91% decolorization and a 73.2%
reduction in COD. Figure 1 shows the process used to prepare the bioactive ultrafiltration
membrane, as described in the study by Isik et al.
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The main drawback preventing the use of bioactive membranes made from fungi or
other organisms is that most industrial wastewater contains substances which are toxic
to all life forms. For example, industrial wastewater is usually not biodegradable due to
impurities such as dyes, heavy metals, salts, and nitrogen and phosphorus compounds,
e.g., in some detergents [84–86]. Sulfur is an abundant, cheap, and biologically active
element [87–89]. Therefore, a candidate for solving the problem of bioactive membranes
made from different organisms is the use of different forms of sulfur. Sulfur is in the
same group of the periodic table of elements such as oxygen, but is much weaker in terms
of its electronegativity. Therefore, the electrical conductivity of sulfur is poor, which is
the main problem in using sulfur as a bioactive agent in plasmonic membranes. Several
methods have been proposed to solve this problem. Some of the proposed methods include
using composite materials composed of sulfur and doping other materials with sulfur. The
combination of sulfur or nanosulfur with carbonaceous materials, metal oxides, conductive
polymers, polar inorganic materials, and transition metal sulfides is known for its excellent
electrochemical performance. It is believed that using complex structures with plasmonic
properties is even more desirable than single particles for some applications due to the
strong coupling between the plasmons of individual particles [89–93].

Plasmonic NPs used to modify membranes can be prepared from the leaf extracts of
some plants containing bioactive substances such as alkaloids and phenolic compounds.
The anti-inflammatory, anti-tumor, and antibacterial properties of the extracts of such plants
make their use interesting for the preparation of bioactive plasmonic membranes. One of
these plants is Crinum latifolium (CL). Vo et al. [56] used the aqueous extract of the leaves
of CL to biosynthesize silver and gold NPs. It was found that the synthesized CL–Ag NPs
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could strongly inhibit the action of four bacterial strains. Figure 2 shows the biosynthesis
of CL–Ag NPs and CL–Au NPs and their applications for wastewater treatment [94].
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prepared Plasmonic NPs in wastewater treatment. Reproduced with permission from [94]. Copyright
© 2019, Hindawi.

Plant waste can be recycled and converted into plasmonic bioactive hybrids. Barbinta-
Patrascu et al. [95] used environmentally friendly approaches to synthesize and develop
novel plasmonic biohybrids which can be used as bioactive coatings. The garden herbs
Mentha piperita and Amaranthus retroflexus were used to produce Ag NPs, and lemon
peels were used to obtain pectin. The Ag NP and the extracted pectin were then used
to prepare a pectin-coated bio-nanosilver. The prepared nano-biohybrids were found to
be spherical nanoscale particles. Studies on the biological performance of the prepared
plasmonic materials in terms of antibacterial properties showed that the proposed novel
pectin-based hybrid coatings were impressively effective against Escherichia coli bacteria.
The studies of the antioxidant properties of the novel pectin-based plasmonic hybrid coating
showed that the developed coating was capable of removing 96.1% to 98.7% of short-lived
and 39.1% to 91% of long-lived free radicals. The obtained results were promising, and the
bioapplication of such coatings in situations where potent antioxidant and antimicrobial
properties are important has been proposed [95–97]. Thus, such materials can be used
as coatings for membranes in the water and wastewater treatment industry to eliminate
pathogens and carcinogenic free radicals.

4. Plasmonic Membranes

Researchers have recently investigated various applications of plasma-modified and
plasmonic membranes. Most of these studies suggest using plasmonic membranes in
thermal, adsorptive, and photocatalytic water purification and wastewater treatment
processes. The applications of plasmonic and plasma-modified membranes are discussed
in the following sections.
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4.1. Application of Plasmonic Membranes in Thermal Water Treatment Methods

Water can be purified using thermal methods. Some commercially available thermal
systems for water purification are multi-stage flash technology (MSF) and multi-effect
distillation (MED), but these systems require a lot of thermal and electrical energy for their
operation [98–100]. Membrane filtration processes such as reverse osmosis (RO) have been
developed to solve the problems of conventional thermal evaporation methods for water
purification. The key to the success of RO technology is that 3 to 6 kW h m−3 of power is
required to overcome the osmotic pressure of saltwater, compared with the 15 kW h m−3 of
power required to evaporate the same saltwater sample. However, despite the success of
the RO technology, it has some weaknesses which prevent maximum water recovery of
more than 40–50%. This limitation is because the rejected stream from the RO system has
high salinity. Higher water recovery factors can be achieved in RO systems by applying
higher hydraulic pressures, but there is a risk of forming deposits in the membrane module
and consequently exceeding the membrane burst pressure, usually 60–70 bar [101–108].
Therefore, in recent years, membrane distillation technology (MD) has emerged, combining
thermally based evaporation and membrane filtration methods. In the MD method, the
water recovery factor is not limited by the osmotic pressure and can be increased to a
value close to 90%. The high water recovery factor is achieved at a moderate operating
temperature between 60 and 80 ◦C [109,110]. In the MD method, a net flux of water vapor is
generated by contact between a warm and highly saline stream and the side of a membrane.
The partial pressure gradient across the hydrophobic and microporous membrane is the
reason for mass transfer in MD systems [107,109]. Figure 3 shows the operating principle
of an MD system.
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Figure 3. The working principles of an MD unit: (a) diffusion of vapors and prevention of passage
of liquids through the membrane due to its hydrophobic properties; and (b) transfer of water
vapor from the hot stream to the cold stream due to a partial pressure difference created by the
temperature difference between different sides of the membrane. Reproduced with permission
from [111]. Copyright © 2016, Elsevier.

Many publications have mentioned the applications of the MD method for the desalina-
tion of sea and brackish water. However, the MD technique is not limited to the desalination
of water; MD can also be used in industrial wastewater treatment for purification, extrac-
tion, concentration, and final formulation of organic and inorganic compounds [112,113].
In the MD water treatment method, only the volatile components evaporate. In this way,
suspended solids and non-volatile salts and dyes can be separated from the water; thus,
the quality of the output water from MD systems is high. In addition, MD systems require
little space compared with thermal processes, and the water vapor flow in such systems
is not affected by the solute concentration in the feed water [114–117]. However, conven-
tional MD systems have low thermal efficiency. This low thermal efficiency is due to the
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phenomenon of temperature polarization (TP), which occurs because heat is dissipated in
the form of latent heat during the evaporation of water. The performance and efficiency
of the MD system are also affected by the conductive heat flux through the membranes.
However, conductive heat flux through the membranes has a more negligible effect on
the system’s efficiency than the removal of latent heat [118,119]. Due to the occurrence of
TP in MD systems, the overall efficiency of such systems drops to 50%. However, the low
operating temperatures of MD systems make the use of waste heat from industrial pro-
cesses and heat from renewable sources an exciting option in such systems [107,120–123].
Using membranes modified with photothermal NPs is a solution for TP in MD systems.
Photothermal NPs can convert localized light into heat. Therefore, they can be used as
nano heaters on the surface of the membrane.

Recently, many efforts have been made to develop efficient photothermal NPs. Pho-
tothermal NPs were developed by changing the chemical composition of various materials
and surface and structural changes. Recent studies have shown that using thermoplasmonic
materials in MD units is beneficial for water evaporation through a photothermal interface.
Thermoplasmonic materials can be used to generate heat with a beam of light. This effect is
achieved due to the optically resonant plasmonic excitations in metallic NPs [107,124–129].
The use of thermoplasmonic-modified membranes reduces heat loss and recovers heat at
the water–vapor interface. Thus, using such membranes improves the interfacial evapora-
tion of water [107,130–132]. Figure 4 shows the mechanism of heat generation by irradiated
light beams in plasmonic membranes.

Water 2022, 14, x FOR PEER REVIEW 9 of 26 
 

 

extraction, concentration, and final formulation of organic and inorganic compounds 

[112,113]. In the MD water treatment method, only the volatile components evaporate. In 

this way, suspended solids and non-volatile salts and dyes can be separated from the wa-

ter; thus, the quality of the output water from MD systems is high. In addition, MD sys-

tems require little space compared with thermal processes, and the water vapor flow in 

such systems is not affected by the solute concentration in the feed water [114–117]. How-

ever, conventional MD systems have low thermal efficiency. This low thermal efficiency 

is due to the phenomenon of temperature polarization (TP), which occurs because heat is 

dissipated in the form of latent heat during the evaporation of water. The performance 

and efficiency of the MD system are also affected by the conductive heat flux through the 

membranes. However, conductive heat flux through the membranes has a more negligible 

effect on the system’s efficiency than the removal of latent heat [118,119]. Due to the oc-

currence of TP in MD systems, the overall efficiency of such systems drops to 50%. How-

ever, the low operating temperatures of MD systems make the use of waste heat from 

industrial processes and heat from renewable sources an exciting option in such systems 

[107,120–123]. Using membranes modified with photothermal NPs is a solution for TP in 

MD systems. Photothermal NPs can convert localized light into heat. Therefore, they can 

be used as nano heaters on the surface of the membrane. 

Recently, many efforts have been made to develop efficient photothermal NPs. Pho-

tothermal NPs were developed by changing the chemical composition of various materi-

als and surface and structural changes. Recent studies have shown that using thermoplas-

monic materials in MD units is beneficial for water evaporation through a photothermal 

interface. Thermoplasmonic materials can be used to generate heat with a beam of light. 

This effect is achieved due to the optically resonant plasmonic excitations in metallic NPs 

[107,124–129]. The use of thermoplasmonic-modified membranes reduces heat loss and 

recovers heat at the water–vapor interface. Thus, using such membranes improves the 

interfacial evaporation of water [107,130–132]. Figure 4 shows the mechanism of heat gen-

eration by irradiated light beams in plasmonic membranes. 

 

Figure 4. The mechanism of conversion of light to heat using plasmonic NPs: (a) Evaporation of 

water around a metallic NP due to the generation of a localized surface plasmon by photons; (b) 
Figure 4. The mechanism of conversion of light to heat using plasmonic NPs: (a) Evaporation
of water around a metallic NP due to the generation of a localized surface plasmon by photons;
(b) Relationship between the degree of temperature increase for an Au NP and the irradiance of
different wavelengths of light. Labels represent the size of the used gold NPs; (c) The thermal and
optical interactions between different particles in a plasmonic MD unit; (d) Local heat generation
in NPs smaller than the phonon mean free path in a substrate material. Reprinted with permission
from [133]. Copyright © 2013, Elsevier.
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Over the years, researchers have attempted to use solar energy for water treatment
or desalination using various membrane technologies [23,74,98,134–140]. Some published
articles have reported the successful use of plasmonic membranes in MD units. For example,
Farid et al. [98] experimentally demonstrated using plasmonic titanium nitride NPs as
a coating for hydrophilic porous membranes which evaporate water using solar energy.
The system designed by Farid et al. included a photothermal TiN membrane and a 2D
pathway for transporting the vaporized water. The designed system achieved a solar
thermal conversion efficiency of 84.5%, and the portable water production rate in the
system was 1.34 kg/m2h. The high efficiency and water production rate were achieved
using only cheap and readily available materials. Figure 5 shows a schematic diagram of
the systems studied by Farid et al.
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Figure 5. The experimentally studied systems by Farid et al.: (a) transport of water through the
microporous channels of the membrane to the surface where plasmonic NPs are placed; (b) evap-
oration of water on the surface of the membrane due to the heat generated by plasmonic NPs in a
non-insulated system; and (c) insulating the system using an aerogel pad to reduce the heat loss for
enhancing vapor generation. Reprinted with permission from [98]. Copyright © 2020, Elsevier.

4.2. Application of Plasmonic Membranes in Adsorption Water Treatment Methods

The adsorption method is one of the most promising methods for removing dyes and
toxic substances from water, such as heavy metal ions [141–145]. There are biodegradable
and environmentally friendly adsorbents that adsorb the waste substances on their surfaces
by physicochemical processes [141–144]. One of the most commonly used adsorbents in the
industry is activated carbon, which exhibits exceptional performance, but its regeneration
has a high cost [146]. Therefore, the use of cheap alternative adsorbents has been suggested
by many researchers. Some of these materials are peanut shells, tea waste, and peels of
fruits and vegetables such as garlic, lemons, and oranges [147–150]. One of the materials
that has attracted the attention of many researchers is eggshell membranes (ESMs), which
have a fibrillar structure. ESMs contain amino acid units and functional groups such as
carboxyl (-COOH), amine (-NH2), thiol (-SH), hydroxyl (-OH), and amide (-CONH2). These
functional groups act as sites for positive charges in an acidic solution and can adsorb
anions of acids [151–154]. Alkaline wastes are adsorbed by forming an electrical double
layer on the surface of the ESM. Thus, anions and cations, mainly found in industrial
wastewater, can be removed by the double-layer structure of the ESM [22,155]. Although
using ESMs as an adsorbent is promising, there are concerns about detecting the low
concentrations of impurities in water. Modifying ESM with plasmonic NPs enables use
of the surface-enhanced Raman scattering (SERS) technique, which is used to detect low
concentrations of biological and chemical substances. SERS uses the scattering of light by
plasmonic nanostructures to determine the concentration of various compounds [156,157].
Candido et al. [152] investigated the use of plasmonic chemically modified ESMs as adsor-
bents and evaluated the performance of the modified membrane for the detection of low
concentrations of contaminants. It was found that the pH, mass of adsorbent, reaction time,
and concentration of waste materials were important factors affecting the performance of
ESM systems in waste removal. It was also found that the use of plasmonically modified
membranes enables the detection of concentrations as low as 10–9 M using the SERS tech-
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nique. The use of a rough metal substrate over a large area evenly distributes the hotspots
and enables detection. In addition, silver-based flower nanoparticles (SFNPs) can be used,
which have hierarchical structures. Figure 6 shows the scanning electron micrograph (SEM)
of an SFNP and the absorption of UV and visible light spectra by the Ag nanoparticles.
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4.3. Application of Plasmonic Membranes in Photocatalytic Water Treatment Methods

Nowadays, a wide variety of contaminants are released into the environment through
wastewater. The release of contaminants such as antibiotics, analgesics, anti-inflammatory
drugs, and organic dyes used in the cosmetic, leather, paper, textile, and food industries
has raised new concerns due to genotoxicity to various organisms and other unpredictable
effects [158–163]. Studies by Voogt et al. [164] showed that 44 different types of pharmaceu-
ticals are present in the water cycle, and most of them are difficult to remove from water
resources using conventional water and wastewater treatment methods [165]. Other studies
also showed that up to 20% of consumed dyes enter water resources through wastewa-
ter [166,167]. As mentioned earlier, adsorbents such as activated carbon can be used to
effectively remove pollutants such as dyes. However, the reproduction cost of effective
adsorbents is high. As mentioned above, one method to treat wastewater containing dyes
and other hazardous substances is using bioadsorbents such as ESMs. Another promis-
ing method to remove many pollutants from water is using photocatalysts in advanced
oxidation processes (AOPs) for oxidative mineralization [168–171]. Bimetallic NPs, espe-
cially NPs containing metals such as gold and silver which have plasmonic properties, are
excellent catalysts and stable materials [172–175]. When plasmonic materials are exposed
to light, oscillation occurs in the electron cloud. Therefore, the extent of photocatalytic
activity of plasmonic materials can be determined by the number of hot electrons generated
by the localized surface plasmon resonance (LSPR) phenomenon. A higher number of
hot electrons increases the photocatalytic activity of plasmonic materials [176–178]. Using
semiconductor photocatalysts such as titanium dioxide, zinc oxide, and NPs of noble metals
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can also harness the full potential of solar photons [179,180]. Plasmonic materials cannot
be used alone for wastewater treatment because the photocatalytic activity is insufficient to
remove pollutants. Therefore, the use of plasmonic materials together with membranes is
proposed. The photocatalytic properties of plasmonic materials can be used in membrane
reactors (MRs) to effectively remove pollutants from water.

The most commonly used material for the fabrication of MRs is polyamide (PA). PA
is very stable at various pH values, can operate in a low-pressure environment, and has
an excellent salt rejection rate compared with cellulose-based membranes. However, PA
is susceptible to fouling. PA membranes also need to be replaced frequently as they lose
their resistance to chlorine [75,181,182]. As mentioned above, the antifouling properties of
plasmonic materials have been demonstrated by various researchers. Therefore, modifying
PA membranes with plasmonic materials can solve the fouling problem and reduce the
number of replacements required. Amoli-Diva et al. [75] studied the applications of
plasmonic materials in membrane filtration reactors for industrial wastewater treatment.
Two antifouling membranes were prepared from commercially available PA modified by the
in situ polymerization of polyacrylic acid (PAA) and the grafting process. Two plasmonic
Au–Ag and Ag–Au photocatalysts were synthesized for the grafting process. Figure 7
shows the transmission electron microscopy (TEM) image of the plasmonic NPs used.

Water 2022, 14, x FOR PEER REVIEW 12 of 26 
 

 

as ESMs. Another promising method to remove many pollutants from water is using pho-

tocatalysts in advanced oxidation processes (AOPs) for oxidative mineralization [168–

171]. Bimetallic NPs, especially NPs containing metals such as gold and silver which have 

plasmonic properties, are excellent catalysts and stable materials [172–175]. When plas-

monic materials are exposed to light, oscillation occurs in the electron cloud. Therefore, 

the extent of photocatalytic activity of plasmonic materials can be determined by the num-

ber of hot electrons generated by the localized surface plasmon resonance (LSPR) phe-

nomenon. A higher number of hot electrons increases the photocatalytic activity of plas-

monic materials [176–178]. Using semiconductor photocatalysts such as titanium dioxide, 

zinc oxide, and NPs of noble metals can also harness the full potential of solar photons 

[179,180]. Plasmonic materials cannot be used alone for wastewater treatment because the 

photocatalytic activity is insufficient to remove pollutants. Therefore, the use of plasmonic 

materials together with membranes is proposed. The photocatalytic properties of plas-

monic materials can be used in membrane reactors (MRs) to effectively remove pollutants 

from water. 

The most commonly used material for the fabrication of MRs is polyamide (PA). PA 

is very stable at various pH values, can operate in a low-pressure environment, and has 

an excellent salt rejection rate compared with cellulose-based membranes. However, PA 

is susceptible to fouling. PA membranes also need to be replaced frequently as they lose 

their resistance to chlorine [75,181,182]. As mentioned above, the antifouling properties of 

plasmonic materials have been demonstrated by various researchers. Therefore, modify-

ing PA membranes with plasmonic materials can solve the fouling problem and reduce 

the number of replacements required. Amoli-Diva et al. [75] studied the applications of 

plasmonic materials in membrane filtration reactors for industrial wastewater treatment. 

Two antifouling membranes were prepared from commercially available PA modified by 

the in situ polymerization of polyacrylic acid (PAA) and the grafting process. Two plas-

monic Au–Ag and Ag–Au photocatalysts were synthesized for the grafting process. Figure 

7 shows the transmission electron microscopy (TEM) image of the plasmonic NPs used. 

 

Figure 7. TEM image of the used plasmonic NPs: (a) Au NPs; (b) Ag NPs; (c) Au–Ag NPs; and (d) 

Ag–Au NPs. Reprinted with permission from [75]. Copyright ©  2020, Elsevier. 

Figure 7. TEM image of the used plasmonic NPs: (a) Au NPs; (b) Ag NPs; (c) Au–Ag NPs; and
(d) Ag–Au NPs. Reprinted with permission from [75]. Copyright © 2020, Elsevier.

In the experiment performed by Amoli-Diva et al., a xenon lamp was chosen as the
optimal light source. The half-life, kinetic properties, and rate constant were evaluated for
each synthesized photocatalyst. Reactions involving the photodegradation of ofloxacin
(OFX), methylene blue (MB), and dyes present in industrial wastewater were studied using
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a dead-end unit MR. The antifouling and flux of the membranes produced were analyzed
using actual pharmaceutical and textile wastewater samples. In addition, the anti-biofouling
properties and the ability to deactivate Escherichia coli (E. coli) bacteria and their colonization
zones were investigated. It was found that the output water of the modified plasmonic
membrane in the MR unit was cleaner than the MR unit, which used a standard and
unmodified membrane. Water flow was found to be more stable in systems using modified
membranes than in systems using non-modified membranes. This more stable flow is due
to the plasmonic-modified membranes’ excellent antifouling and anti-biofouling properties.
Figure 8 shows the experimental setup used by Amoli-Diva et al. [45].
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5. Comparing Plasmonic Membranes with Other Water Treatment Methods

Unfortunately, there are scant data available to compare the overall performance of
plasmonically modified membranes with other conventional water and wastewater treat-
ment methods. Researchers have separately compared the performance of experimentally
prepared modified membranes with unmodified membranes; however, the available data
are too scattered to compare the performance of plasmonically modified membranes with
unmodified membranes. As for plasmonic membranes in MD plants, studies by various
researchers have demonstrated the superior performance of plasmonic membranes in
wastewater and water treatment. For example, Farid et al. [98] studied the performance
of TiN plasmonic membranes and compared their performance against polyvinylidene
fluoride (PVDF) membranes in terms of steam generation in MD solar plants. Figure 9
presents a comparison of the steam generation performance of TiN membranes with the
performance of PVDF membranes in MD solar systems.

As shown in Figure 9, the evaporation rate is higher in the system where TiN-modified
membranes were used, which is due to the additional heat generated by the plasmonic
activity of TiN NP under light exposure, based on the studies by Farid et al. With such
an evaporation rate, 11 L of saltwater can be desalinated daily. This estimate was made
considering a TiN membrane with a surface area of 1 m2 exposed to sunlight for 8 h. In a
similar study by Wilson et al. [138], a water evaporation efficiency of 80% was achieved
when exposed to sunlight. They used a cheap setup consisting of a cotton-based mem-
brane modified with plasmonic candle soot NPs. Figure 10 compares the performance of
unmodified cotton membranes with modified membranes.
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Figure 9. Comparing the solar vapor generation performance of TiN and PVDF membranes with the
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the membrane’s surface temperature to the duration of exposure to sunlight; (b) evaporation rates
and efficiencies for various setups; and (c) dependence of the temperature of the bulk water to the
duration of exposure to sunlight. Reprinted with permission from [98]. Copyright © 2020, Elsevier.
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Figure 10. Comparing the performance of plasmonic-modified and non-modified cotton membranes
based on the studies performed by Wilson et al.: (a) evaporation performance of different systems on
the changes in the mass of liquid water; (b) performance of the plasmonic-modified system based on
the rate of evaporation; (c) stability of the plasmonic-modified system in case of the rate of vapor
generation; and (d) efficiency of different photothermal vapor generation systems. Reprinted with
permission from [138]. Copyright © 2019, Elsevier.
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Figure 10, similarly to Figure 9, demonstrates the superiority of plasmonic membranes
in photothermal water purification methods. Wilson et al. also proposed and tested the
usage of the designed membrane in wastewater treatment applications. Figure 11 shows
the difference between untreated sewage water and treated water.
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Figure 11. Application of the plasmonic-modified cotton-based membrane in wastewater treatment:
(a) bacterial colonies in the wastewater; (b) nonexistence of bacterial colonies in the water treated
with the designed membrane; (c) visual appearance of the wastewater and the treated water; and
(d) performance of the designed membrane in the removal of nitrate, phosphate, and sulfate ions.
Reprinted with permission from [138]. Copyright © 2019, Elsevier.

As a comparison between the performance of plasmonic and unmodified ESM mem-
branes in adsorption processes for water and wastewater treatment, Candido et al. [152],
as mentioned above, showed that using plasmonic membranes can simplify the detection
of pollutants with concentrations as low as 10−9 M. Amoli-Diva et al. [75] studied the
photocatalytic activity and kinetics of plasmonic membranes in a batch system for the
degradation of OFX, MB, and MO. Figure 12 shows the performance of the developed
plasmonic membranes compared with unmodified membranes in removing contaminants.
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plasmonic-modified membranes. (a) performance of different membranes in case of removal of
OFX; and (b) performance of different membranes in case of removal of MB. Reprinted with permis-
sion from [45]. Copyright © 2020, Elsevier.

The results obtained by Amoli-Diva et al. [75] indicate the superiority of Au-Ag (GS)
and Ag–Au (SG) modified plasmonic membranes in the treatment of industrial wastewater.

6. Advantages and Disadvantages

As mentioned earlier, high efficiencies can be achieved by using plasmonic mem-
branes in various water and wastewater treatment systems. Thus, plasmonic membranes
can be used in MD plants, photocatalytic MRs, and membrane filtration units. In MD
plants, forming plasmons by irradiating plasmonic NPs with light increases the efficiency
of the evaporation process by generating heat. Metallic plasmonic NPs prepared mainly
from Au and Ag NPs are exceptional catalysts and photocatalysts. Therefore, the use
of membranes modified with such compounds in MR plants increases the efficiency of
wastewater treatment. The use of plasmonic membranes in absorption wastewater treat-
ment processes facilitates the monitoring of pollutant concentrations, because the unique
properties of plasmonic materials enable the use of techniques such as SERS. Water flux
is higher with plasmonic- and plasma-modified membranes, and frequent membrane
replacement is not required due to the antifouling properties of such membranes. Plas-
monic materials effectively control pathogens and prevent the growth of bacterial colonies.
Therefore, plasmonic membranes are immune to biofouling and can be used to remove
pathogens from water. Many researchers have investigated and developed cheap and envi-
ronmentally friendly bioactive materials to replace more expensive commercially available
membranes [83,98,138,139,183]. These membranes can be chemically modified and coated
with a layer of plasmonic NPs to produce bioactive membranes with various desirable
properties. However, the use of plasmonic membranes is not always advantageous. The
main disadvantage of plasmonic membranes is that expensive metallic elements such as
gold and silver are used for the fabrication of such membranes. Less expensive materials
such as TiO2 show good plasmonic behavior, but are not as effective as plasmonic NPs
made with noble metals.

The second problem that can occur in systems using plasmonic membranes is the
possible erosion of the membrane surface, which increases the risks associated with the
slow release of the metallic NPs used in the membrane into the water and the environ-
ment. The cheaper Ag NPs used in plasmonic membranes are not as corrosion-resistant
as Au NPs and can dissolve in water when exposed to specific compounds or ions. As
a result, there is a risk of toxic Ag+ ions entering the water and the environment. The
application of plasmonic bioactive membranes, produced using fungi or other organisms,
in industrial wastewater treatment plants is limited due to the presence of materials such
as heavy metal ions in wastewater which are toxic to various organisms [184,185]. Table 1
summarizes the advantages and disadvantages of using plasmonic membranes in water
and wastewater treatment.
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Table 1. Some of the important advantages and disadvantages of plasmonic membranes.

Advantages of Plasmonic Membranes Disadvantages of Plasmonic Membranes

High efficiency in various processes The high price of metallic plasmonic NPs
Antifouling and anti-biofouling properties Possibility of the release of metallic NPs or Ag+ ions in water and environment

Excellent catalytic and photocatalytic activity bioactive membranes prepared from organisms have limited application in
industrial wastewater treatment

Antibacterial properties Erosion of the plasmonic coating of membranes

7. Challenges

The main challenges ahead of using plasmonic membranes in the water treatment
industry are the lack of data on the performance of such membranes compared with other
water treatment technologies. There are only a limited number of published articles on
plasmonic membranes, and data are lacking. Therefore, at this time, it is impossible to
provide a comprehensive overview of the performance of plasmonic membranes. In ad-
dition, there is no standard method for designing and fabricating plasmonic membranes.
The use of plasmonic NPs to modify membranes is a relatively new topic and is currently
at the research and experimentation level, which means that the industrialization of plas-
monic membrane technology requires further study. The price of metallic plasmonic NPs,
mainly made using noble metals, is high; therefore, further research on cheaper alternative
plasmonic materials is needed.

8. Perspective

Recently published papers on the applications of plasmonic membranes in water
and wastewater treatment industries have reported promising results. Due to the severe
problems caused by population growth, shortages of freshwater resources, and the uncon-
trolled release of wastewater into the environment, seeking new water treatment methods
is necessary. Membrane technology is a promising solution to the problems currently faced
by the water and wastewater treatment industries. Membrane technology can be combined
with the currently available technologies for harnessing energy from renewable resources.
Using a combination of renewable energy sources and membranes is one way to treat
water cheaply. Modification technologies can further enhance the commercially available
membranes. In the case of plasmonic-modified membranes, although promising results
have been reported, there is still a fundamental gap in studies concerning the performance
of plasmonic membranes compared with other water treatment methods and the design
standards. Due to a lack of research on using plasmonic materials for membrane enhance-
ments, scant data are available about the performance of plasmonic membranes in real-life
operating conditions in industries. Due to the high price of noble metals used as plasmonic
NPs, industries have not shown interest in developing plasmonic membranes. Developing
cheap materials with excellent plasmonic properties that can be used as membranous
coatings has attracted the attention of researchers and industries. Developing bioactive
modified membranes which exhibit good performance can be a solution to environmental
problems and complications caused by a shortage of freshwater. Subsequently, some re-
search topics for future researchers interested in applications of plasmonic membranes in
water and wastewater treatment industries and various aspects of them are suggested:

• Further experimental validation of currently available results obtained from various
studies about plasmonic membranes.

• Writing codes and developing software packages or using currently available soft-
ware packages to simulate the operation of plasmonic membranes and evaluate the
performance of such modified membranes.

• Seeking cheap plasmonic materials that can be used for membrane modification.
• Comparing the performance of plasmonic membranes with other conventional water

and wastewater treatment methods.
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9. Conclusions

The population growth and shortage of freshwater resources are critical problems
facing modern society. Additionally, the release of wastewater into the environment is a
significant concern due to the enormous adverse effects of toxic materials in the water. The
release of heavy metals, dyes, and pharmaceutical chemicals can damage the ecosystem
and put the lives of humans and other organisms in danger. Thus, currently, wastewater
treatment is an important consideration. Membrane technology is a promising solution to
address the problems related to wastewater management and the shortage of freshwater
resources. However, another problem is the high energy prices required to operate systems
that use membranes for water purification. Additionally, membranes require frequent
replacement due to fouling and biofouling, adversely affecting the water flux in membranes.
To address these problems, researchers proposed modifying the membranes as a solution.
Through modifications, many desired properties can be achieved in membranes. It has
been known since 1877 that the transport properties of membranes can be changed by
applying modifications.

Currently, there are many methods available for modifying membranes. One of these
methods is plasma modification, which helps create membranes with antifouling properties.
Advances in solid-state physics and chemistry have led to the discovery of an exciting
property of metallic elements that can be exploited to make plasmons, which are quantums
of plasma oscillations. Thus, a new field of study, named plasmonics, has emerged. Since
then, various applications of plasmonic materials have been explored in many published
studies. One of the exciting applications of plasmonic NPs is that they can be used to
modify the surface of membranes to give them various properties. Plasmonic membranes
have antifouling and anti-biofouling properties. They can generate heat under exposure
to light and demonstrate brilliant catalytic and photocatalytic activity. Thus, they can be
used in various applications that involve membranes, ranging from MD to catalytic and
photocatalytic MR units. They can easily be integrated with technologies that produce
energy from renewable sources. Thus, the efficiency of water purification systems that use
plasmonic membranes is high. Plasmonic membranes can make monitoring the concentra-
tion of materials inside wastewater easier. Although many advantages can be detailed for
plasmonic membranes, various drawbacks must be addressed in future research efforts.
One of the main problems is the high price of plasmonic NPs, mostly fabricated using
noble metals. Some researchers have proposed using cheap materials such as TiO2, but
due to a lack of data and research in the field of plasmonic membranes, a general com-
parison of the performance of various forms of plasmonic materials cannot be performed.
The other problem is the release of the plasmonic coating of the membrane in the water
resources and environment over time due to corrosion and erosion. Bioactive plasmonic
membranes prepared from organisms are cheap and are not harmful to humans and the
environment. However, the toxicity of materials in industrial wastewater can damage
the organisms, or even kill them. As a result, such membranes have limited applications.
Thus, future researchers in the fields of membrane technologies and plasmonics must
consider the development of efficient bioactive plasmonic membranes to end the global
water shortage and environmental issues caused by the uncontrolled release of wastewater.
This article reviews the recent advances in plasmonic chemically modified bioactive mem-
brane technology and provides and mentions the challenges of utilizing this technology in
wastewater removal applications. This article also provides some perspectives to pave the
way for future researchers interested in investigating various applications and aspects of
plasmonic-modified membranes.
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