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Abstract: For the past few decades, remote sensing has been a valuable tool for deriving global
information on snow water equivalent (SWE), where products derived from space-borne passive
microwave radiometers are favoured as they respond to snow depth, an important component of
SWE. GlobSnow, a novel SWE product, has increased the accuracy of global-scale SWE estimates
by combining remotely sensed radiometric data with other physiographic characteristics, such as
snow depth, as quantified by climatic stations. However, research has demonstrated that passive
microwaves algorithms tend to underestimate SWE for deep snowpack. Approaches were proposed
to correct for such underestimation; however, they are computer intensive and complex to implement
at the watershed scale. In this study, SWEmax information from the near real time 5-km GlobSnow
product, provided by Copernicus and the European Space Agency (ESA) and GlobSnow product
at 25 km resolution were corrected using a simple bias correction approach for watershed scale
applications. This method, referred to as the Watershed Scale Correction (WSC) approach, estimates
the bias based on the direct runoff that occurs during the spring melt season. Direct runoff is estimated
on the one hand from SWEmax information as main input. Infiltration is also considered in computing
direct runoff. An independent estimation of direct runoff from gauged stations is also performed.
Discrepancy between these estimates allows for estimating the bias correction factor. This approach
is advantageous as it exploits data that commonly exists i.e., flow at gauged stations and remotely
sensed/reanalysis data such as snow cover and precipitation. The WSC approach was applied to
watersheds located in Eastern Canada. It was found that the average bias moved from 33.5% with
existing GlobSnow product to 18% with the corrected product, using the recommended recursive filter
coefficient β of 0.925 for baseflow separation. Results show the usefulness of integrating direct runoff
for bias correction of existing GlobSnow product at the watershed scale. In addition, potential benefits
are offered using the recursive filter approach for baseflow separation of watersheds with limited in
situ SWE measurements, to further reduce overall uncertainties and bias. The WSC approach should
be appealing for poorly monitored watersheds where SWE measurements are critical for hydropower
production and where snowmelt can pose serious flood-related damages.

Keywords: snowmelt; direct runoff; SWE; GlobSnow

1. Introduction

Hydrological processes for watersheds located in northern latitudes and at high
elevations are greatly affected by seasonal snowfall. Spring snowmelt is arguably one of
the most important processes for operational hydrology of these territories, as it is a critical
component for determining flood risk [1]. However, the prediction of spring snowmelt
is contingent on having accurate estimates of the amount of liquid water stored in the
snowpack, i.e., snow water equivalent (SWE), and more particularly, the maximum snow
water equivalent (SWEmax) before the onset of snowmelt. This is especially true for effective
management of water resources and for predicting spring floods over large watersheds
where spring snowmelt may last for extended periods and where there is a delay between
the occurrence of SWEmax and peak flow. Additionally, accurate estimates of SWE are
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important ecologically in terms of water availability. This is so because groundwater
replenishment depends on the amount of snowmelt and unusually low SWEmax will affect
summer low flows [2].

SWE, including SWEmax, are traditionally estimated from manual point snow surveys.
These surveys are limited in their spatial (i.e., individual observation points) and temporal
coverage (i.e., typically only begins once the snowpack is considered well developed)
and, therefore, do not always well represent watershed state [3]. For smaller and more
homogeneous environments, the interpolation of spatially sparse point snow observations
from either snow courses or weather stations may be adequate for estimating SWE and
SWEmax at the watershed scale. However, for larger and more heterogeneous watersheds,
alternative methods are needed in order to capture the high spatial (and temporal) variabil-
ity of the snowpack, combined with terrestrial heterogeneity, and therefore, estimate SWE
and SWEmax at the watershed scale.

Passive microwave (PM) sensors have been used for decades to improve the spatial
coverage of SWE estimates. These sensors quantify the brightness temperature natu-
rally emitted from Earth across the microwave wavelengths and can be used to estimate
SWE because snow grains of a developed snowpack scatters microwave radiation as it
is transmitted through the snowpack [4]. This method has three main limitations Firstly,
the microwave brightness temperature decreases as the snowpack gets deeper [5]. This
methodology is limited to dry snow conditions, as wet snow is opaque to microwaves and
the quantified microwave radiation originates from a thin layer at the top of the snow-
pack [6]. Secondly, this methodology underestimates SWE under deep snow conditions
(i.e., when SWE exceeds approximately 150 mm). The main reason is that higher brightness
temperature values are recorded as snow absorbs radiation from the bottom layer and emits
a signal stronger than that of dry snow covering soil, which is not properly accounted for [7].
The exact limit depends on snowpack stratigraphy and grain size. Thirdly, Space-borne mi-
crowave radiometers, like the Advanced Microwave Scanning Radiometer-EOS (AMSR-E)
and the Special Sensor Microwave Imager/Sounder (SSMI/S) provide SWE estimates with
full spatial coverage under dry snow conditions. However, these estimates suffer issues
related to the coarse spatial resolution of these sensors (approximately 25 km2). Snow-
pack properties are highly variable at spatial scales smaller than the satellites’ footprint
(<25 km2), driven by changes in vegetative and topographic controls [4,8], this fine-scale
heterogeneity results in measurement errors in SWE estimates. Therefore, stand-alone
algorithms for these PM observations can be suitable for mesoscale to continental scale
applications but may not provide sufficient accuracy at the watershed scale for operational
hydrology application [9], save for very large watersheds.

Methods that combine remote sensing with ground-based measurements, for example,
the algorithm in described in Pulliainen [10], can help overcome limitations of either method
alone and have further improved SWE estimates. Pullianinen’s algorithm combines passive
microwave radiometer data with ground-based synoptic snow depth observations in the
Helsinki University of Technology (HUT) snow emission model to estimate SWE [11]. The
algorithm first solves the HUT model using weather station measurements of snow depth
to obtain effective snow grain size by fitting simulated to observed satellite brightness
temperature measurements at the locations of weather stations. This information is then
interpolated to a 25 km × 25 km pixel resolution and used in an assimilation procedure
for estimating SWE [10]. GlobSnow applies this approach using PM data from Nimbus-
7 Scanning Multichannel Microwave Radiometer (SMMR), The Defense Meteorological
Satellite Program (DMSP) SSM/I and DMSP SSMI/S to produce a 25-km SWE product
over the Northern hemisphere, as described in Takala et al. [12] and Luojus et al. [11].
Further refinement to the original GlobSnow dataset uses land cover/land use data [13] to
downscale SWE estimates to a 5-km product, which is available in near-real time.

With these advances, the GlobSnow SWE product is at a spatial resolution appropriate
for hydrological applications at the watershed scale; however, limitations regarding the
issue of SWE underestimation in deeper snowpack remains. Several methods have been
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proposed to reduce the bias with some success, such as explicitly considering snowpack
stratification in the microwave emission model [11,14] and assimilating PM data into a
microwave emission model using snow grain size simulated by a physically based snow-
pack model [14]. However, these approaches are complex to implement operationally and,
therefore, there is a need for a simple bias correction approach that can provide SWE and
SWEmax estimates at the watershed scale. The Watershed Scale Correction (WSC) approach
proposed here aims to correct the underestimation of spatially varying SWE, including
SWEmax, produced by GlobSnow, at the watershed scale. This approach innovatively
applies historical streamflow measurements and, thus, can be applied even if there are no
available ground-based snow measurements. To do so, runoff water volumes retrieved
from streamflow gauge stations are compared with the volumes resulting from SWEmax of
GlobSnow, and then corrected based on the volumetric difference. The functionality of the
approach is demonstrated by comparing the corrected SWE values with those obtained
from snow course measurements at selected watersheds of varying sizes in the province of
Québec, Canada.

2. Materials and Methods
2.1. WSC Overview

The WSC approach aims to improve the accuracy of the SWEmax of regional databases,
such as GlobSnow V3 [11] using streamflow information. The approach was coded in MATLAB.

The motivation behind the WSC approach is that the watershed surface runoff origi-
nating from snowmelt, along with any precipitation during the spring snowmelt period,
will eventually leave the watershed through its outlet. This approach focuses on direct
runoff (i.e., total runoff minus baseflow) instead of looking at total runoff. According to the
mass balance equation applied at the watershed scale, the direct runoff calculated from the
amount of snow over the watershed, referred to as DRG (Direct Runoff using GlobSnow),
should be equal to DRH, the direct runoff hydrograph retrieved from measured streamflow,
which is:

DRH = DRG (1)

However, given that SWEmax from GlobSnow is typically underestimated, it is likely
that DRG be less than DRH. To remove this bias, an adjustment is applied to GlobSnow’s
SWEmax, according to the following equation:

SWEcorr
max= SWEGlob

max ∗ CF (2)

where, SWEGlob
max is the SWEmax estimated from GlobSnow, SWEcorr

max is the corrected SWEmax,
and CF is the correction factor value. Note that a single CF value is applicable to the entire
watershed, while SWEmax (both corrected and GlobSnow) is spatially distributed.

The estimation of DRG and DRH can be done using the following equations:

DRH = ROtotal − B (3)

DRG =( SWEcorr
max − I + P ) × A (4)

where, ROtotal is the total runoff estimated from the streamflow hydrograph, B is the
baseflow, I is the infiltration, P is the total precipitation occurring during the snowmelt
period, and A is the watershed surface area.

Combining Equations (1)–(4), one obtains the equation for CF:

CF =
ROtotal−B

A − P + I

SWEGlob
max

(5)

Given that SWEGlob
max is typically underestimated, DRG is likely less than DRH, and

therefore CF will be larger than 1.
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Recall that a single CF value is applicable to the entire watershed, while SWEmax
(either corrected or GlobSnow) is spatially distributed. A CF value should be computed for
each year, where a spring runoff hydrograph is available. Therefore, it is expected that no
single CF value will characterize a watershed for the following reasons:

1. SWEGlob
max is derived using the HUT model. GlobSnow V1 and V2 [12] assume that

the snowpack is made of a single homogeneous layer, while V3 [11] represents the
snowpack as a stacked system of snow layers. Despite this improvement over the
original HUT model, uncertainties in SWEmax estimation remain, especially when the
snowpack undergoes multiple freeze-thaw and rain-on snow events, which will be
reflected by changing CF values.

2. Because of the limited penetration depth of the PM signal, it is expected that the CF
will be larger when deeper snowpack conditions are encountered.

3. Flow measurements also have errors related to the rating curve used to convert stream
water level into streamflow.

4. Finally, other sources of uncertainty related to precipitation, baseflow, and infiltration
estimates will also affect CF.

Therefore, the proposed WSC approach is likely to provide a range of CF values.
Although this might raise questions regarding how to select the ‘best’ CF value for cor-
recting SWE, when the approach is applied to flood forecasting, the range of CF values
is compatible and may be seen as reflecting the various sources of uncertainties affecting
SWE estimation.

The WSC method can be divided into three main blocks as depicted in Figure 1. The
first block relates to the organisation and retrieval of data, based on the watershed’s location.
Each watershed is characterized by its own hydrometeorological regime and state variables
(e.g., streamflow, precipitation, temperature, and SWE).
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The second block uses the information obtained in Block 1 to estimate watershed state
variables and hydrological processes required to compute DRG and DRH, and ultimately
the correction factor (as shown in Block 3). Watershed state variables include SWEmax from
the GlobSnow database and the duration of the snowmelt period, defined as the difference
between the time SWEmax occurs and when the snow has disappeared. Both state variables
can be retrieved from time series of SWE provided by the GlobSnow database. Alternatively,
snow cover area obtained from ERA5 land cover product, based on information from
MODIS datasets, can be used to establish the last day where there is snow in a watershed,
and therefore to estimate the duration of the snowmelt period. Watershed hydrological
processes include precipitation during the snowmelt period, watershed infiltration and
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baseflow. Once the duration of the snowmelt period is established, the total precipitation
(rain and snow) occurring during this period can be retrieved. Baseflow separation and
watershed infiltration methods used here are briefly described below.

Baseflow separation. Baseflow separation was performed using the HydRun tool
box [15], a nested group of functions used for rapid and flexible rainfall-runoff analysis.
The package, written in MATLAB, allows computing baseflow (Bt) and direct runoff (qt)
from total runoff Qt, see Equations (6) and (7) below. The baseflow is computed using the
recursive digital filter technique proposed by Nathan and McMahon [16]:

Bt= β · Bt−1 +
1− β

2
· ( Q t+Qt−1), (6)

qt= Qt − Bt, (7)

where Bt is the baseflow at time t, qt is the direct runoff, Qt represents the original stream-
flow and β, is a filter coefficient which affects the magnitude of the baseflow values. For
example, increasing β produce a lower baseflow. Researchers used prescribed values for
β to obtain optimal results [17,18]. Gan and Zuo [17] set the β value between the range
0.90–0.95, whereas Mau and Winter [18] used 0.85 for best results. Nathan and McMa-
hon [16] suggested that the optimal β value should be 0.925. It is advised to thoroughly
investigate the β value depending on the hydro-geological conditions in the catchment. To
facilitate baseflow separation, the software also offers options to preprocess the hydrograph,
such as hydrograph filtering establishing the maximum tolerable difference of discharge
between the start and finish of an event and discarding peaks lower than a threshold value,
allowing small fluctuations to be ignored while computing Bt.

The toolbox is effective for analysis of rainfall-generated hydrographs but presents
some uncertainty as it remains to be tested for hydrographs generated by snowmelt [15].
However, other studies have applied the digital recursive method of separation to areas
with snow cover [17,19–21]. While Hammond and Kampf [19] and Fan et al. [21] used
β = 0.925 as the optimal filtering parameter value as suggested by previous studies [16,20],
baseflow separation is highly sensitive to the filtering parameter and heuristic baseflow
separation should be done with care, as true values of baseflow in snow-dominated systems
are seldom available for optimizing the filtering parameter value [20].

As an alternative to observed baseflow values, Ref. [17] simulated baseflow in glacier
melt dominated basins using the SWAT hydrological model and compared these ‘observa-
tions’ with baseflow produced according to the recursive filter method with β = 0.925. They
found that the recursive filtering method produced flows comparable to SWAT during the
low-flow period but overestimated baseflow in the high-flow method. Therefore, for the
catchments examined here we chose a β range of values from 0.800–0.995, with one run
including the suggested optimal value, as it will be seen/discussed later.

Infiltration. Frozen ground is common to northern regions and infiltration of meltwa-
ter into frozen ground is a complex process that involves exchange of heat and mass flow
with phase change [22]. To estimate DRG (see Equation (4)), it is required to estimate the
amount of water infiltrating into frozen ground. According to Nicholaichuk and Gray [23],
infiltration of snowmelt into frozen ground involves three possible water transfer and
storage conditions depending on the surface entry conditions for the study area: restricted,
unlimited, and limited. Restricted and unlimited water flows result in most all, or no
snowmelt being infiltrated, respectively. In contrast, limited water flows result in some
snowmelt being infiltrated and is influenced primarily by the soil physical properties,
such as the available water storage capacity. Gray et al. [22] describe an algorithm that
calculates areal infiltration into frozen ground on a watershed or hydrological response
unit that combines the above three infiltration conditions. For each landscape unit in the
watershed, the fraction classified as unlimited, restricted and limited infiltration varies dy-
namically according to the water holding capacity of frozen soil and cumulative infiltration
is computed accordingly.
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The equation used to quantify the Infiltration for frozen, unsaturated soils of limited
infiltrability is described as:

INF = C S2.92
0 (1− SI)

1.64 (273.15 − TI /273.15)
−0.45 t0.44

0 , (8)

where INF if the cumulative infiltration (mm), S0 is the soil moisture content at the soil
surface, C is the land cover type coefficient, t0 is the infiltration opportunity time (h), SI and
TI are the average soil saturation (mm3/mm3) and temperature (K), respectively, of the first
40-cm soil layer at the start of infiltration. S0 is usually taken as 1 due to low infiltration
rate for frozen soil in areas where snow ablates rapidly. For prairie land covers C is 2.10,
while for the forest covers it is 1.14.

The variable t0 is the time it takes for the snow cover to completely melt assuming
that the melt is continuous, there is a small storage space, and little evaporation [22]. The
following equation was used to estimate the t0:

t0= TimeSWE(MAX) − TimeSWE(ZERO), (9)

Here, we assumed that limited infiltration conditions prevail during the snowmelt
period and, accordingly, Equation (8) was used to calculate total infiltration into frozen
soil. Note that depending on the value taken by SI, which is the soil saturation at the onset
of the snowmelt, solving Equation (8) would result in restricted infiltrability if the soil is
completely saturated (SI = 1, therefore INF = 0) and unlimited infiltrability would result as
SI = 0. Further information on the infiltration into frozen ground algorithm is given in Gray
et al. [22] and in Zhao and Gray [24].

Figure 2 proposes a linear relationship between CF and SWE. As mentioned above,
CF corrects for the bias in SWEGlob

max estimates based on the direct runoff that occurs during
the spring melt season. The same correction factor cannot be applied to correct SWEGlob

observations during the winter season, which presents SWE information when SWE is
below SWEmax. Previous research e.g., [25–27] has shown that PM starts underestimating
SWE under deep snow conditions. It is therefore conceivable that the CF factor should vary
between 1 (no correction) when SWE is above a certain threshold value, called SWEthres,
and CFmax, the correction factor corresponding to SWEmax.
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Whether or not this linear relationship holds true would require a detailed analysis
of GlobSnow derived SWE against ground measurements. Nevertheless, for simplicity
a linear relationship was applied here and provided reasonable estimates of corrected
SWE values when compared against observed ground measurements (see result section
for details). Here, we calculated CF only during the build-up of the snowpack. Initially,
we defined SWEthresh as 150 mm following Luojus et al. [27] However, we observed that
some years GlobSnow reported values of SWEmax below 150 mm and our associated CF
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values were smaller than 1 suggesting that SWEthresh should be smaller than 150 mm. This
is in line with Larue et al. [7] in their analysis of GlobSnow data in Eastern Canada, who
observed that PM SWE starts to be underestimated at depths above 100 mm. Accordingly,
we defined SWEthresh value as 100 mm.

2.2. Study Area

The study was conducted on eight watersheds located in south central Quebec, Canada,
between 50 to 54◦ N latitude and 67 to 70◦ W longitude, see Figure 3. All watersheds
have natural flows, except for the Manic 5 watershed, which has regulated flows. The
watersheds’ areas vary from 795 km2 (02PG022—Ouelle River Watershed) to 24,698 km2

(Manic 5 watershed), see Table 1. All watersheds are mostly forested; for example, forests
in 02PA007 (Batiscan River) and Manic 5 watersheds occupy respectively 87 and 83% of
the total surface area. The remaining landcover is characterized as either open water
(including wetlands), agricultural, or urban areas; for example, 14% of Manic 5 watershed
consists of open water and wetlands, while only 7% of 02PA007 watershed is open water
and wetlands. The Manic 5, 02RH035 (Aux Écorces River), 02NE011 (Croche River), and
02PA007 watersheds are in the Canadian Shield, which is characterized by small lakes and
rolling hills as the result of glacial erosion from the last ice age. 02PL005 (Upper Bécancour
River), 01010000 (St-John River), 01AD003 (St-Francis), and 02PG022 watersheds are located
in the Appalachian Region of Eastern Canada, which is characterized by rolling hills and
mountains. These watersheds are characterized by heavy winter snowfall and snowmelt
runoff in the spring. Average maximum snow water equivalent (SWE) varies from 217 mm
for 02PL005 watershed up to 298 mm for 02RH035 watershed, and generally increases from
south to north because of lower air temperature with increasing latitude. Annual peak flow
predominantly occurs during the spring thaw. The Manic 5 watershed, the largest in size
and with heavy snowpack, has mean annual discharge is 529 m3/s [28] and annual peak
flows exceeding on average 2000 m3/s, occurring in May. SWE can reach values of 300 mm
or more [29]. Flow from Manic 5 drains into a 2000 km2 hydropower reservoir, with an
installed capacity of 2.6 GW [30].

Hydrometeorological information about these watersheds can be found in Table 1.

Table 1. Physiographic and hydrometeorological data of the watersheds under study.

Long Term Averaged
Measured Values

Watershed ID Station Name Data Period Area (km2)
SWEmax

(mm)
Peak Flow

(m3/s)

02RH035 aux Écorces River at highway-bridge 169 1985–2013 1110 298 166
01AD003 St. Francis River at outlet of Glasier lake 1985–2016 1359 231 200
Manic5 Manicouagan 5 2006–2016 24,698 269 2018

01010000 St. John River at Ninemile Bridge 1985–2016 3473 225 690
02NE011 Croche River downstream of Changy Brook 1985–2013 1570 274 190
02PA007 Batiscan River downstream of des Envies River 1985–2013 4480 280 551
02PL005 Bécancour River upstream Palmer River 1985–2013 919 217 214
02PG022 Ouelle River near St. Gabriel de Kamouraska 1986–2013 795 252 207
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2.3. Data
2.3.1. GlobSnow

The GlobSnow V3 SWE dataset, as described in Luojus et al. [11], was selected for
analysis. The product combines passive microwave radiometer data from Nimbus-7
Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor Microwave
Imager/Imager (SSM/I) and the Special Sensor Microwave Imager/Sounder (SSMIS)
Defense Meteorological Satellite Program (DMSP), along with ground based synoptic snow
depth observations using Bayesian data assimilation in the HUT snow emission model [11].
The algorithm first solves the HUT model using weather station measurements of snow
depth to obtain effective snow grain size by fitting simulated to observed satellite brightness
temperature measurements at the locations of weather stations. This information is then
interpolated to a 25 km × 25 km grid cell and used in an assimilation procedure for the
estimation of SWE [10,27]. Takala et al. in their study [32] applied a two-dimensional
convolution window of 0.25◦ × 0.25◦ (25 km × 25 km) to change the calculation grid
to 0.05◦ (approximately 5 km) projected in EASE-grid. The 25-km gridded GlobSnow
product is available from 1979 to present. The 5-km product is available from 2006 to
present and provides daily SWE 12 h after global satellite data has been acquired [33].
According to Luojus et al. [11], the 25-km product has an overall root mean square error
(RMSE) for shallow to moderate snowpack (SWE < 150 mm) of 32.7 mm for the period
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covering 1980–2016 with no apparent bias but uncertainty increases when SWE is above
this threshold.

We retrieved the SWE information for the study watersheds from the GlobSnow
database. Figure 4 illustrates the temporal evolution of SWE for three watersheds, namely
02RH035 (Rivière des Écorces), 01AD003 (St-Francis River), and Manic 5. The temporal cov-
erage, average SWEmax from GlobSnow and from ground observations for the watersheds
illustrated in Figure 4 along with other study sites are presented in Table 2, showing that
GlobSnow underestimates SWE compared to in situ measurements.
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Table 2. GlobSnow and in situ seasonal maximum SWEmax data.

Watershed ID Data Period
Average SWEmax

GlobSnow Product In Situ Measurements

02RH035 1985–2013 171 298
01AD003 1985–2016 178 231
Manic5 2006–2016 185 269

01010000 1985–2016 162 225
02NE011 1997–2013 158 274
02PA007 1985–2013 162 279
02PL005 1985–2013 151 216
02PG022 1985–2013 181 252

2.3.2. ERA5

The fifth-generation European Centre for Medium- Range Weather Forecasts (ECMWF)
atmospheric Reanalysis of global climate (ERA5) database provides hourly data estimates
at a resolution of approximately 31 km for the global atmosphere, land surface, and ocean
waves from 1950 to present. We used ERA5 to obtain the average soil saturation (SI) and
temperature (TI) required as input for the Gray’s infiltration model. Compared to its
predecessor ERA-interim, ERA5 has been greatly improved [34]. Improvements of the land
surface model of ERA5 include a point wise simplified extended Kalman filter for three
soil moisture layers in the top 1 m of soil, and a one-dimensional optimal interpolation
for soil temperature [35]. Additional improvements of ERA5 are explained in detail by
Hersbach et al. [36].

2.3.3. Streamflow Data

We used streamflow information from the Hydrometeorological Sandbox—École de
technologie supérieure (HYSETS), a comprehensive dataset containing daily hydrometeoro-
logical data for over 14,400 watersheds across north America [31]. Streamflow information
includes station location, flow regime (i.e., natural or regulated), daily flow data, as well as
maximum and minimum daily air temperature and precipitation weather gauges, along
with the SWE of ERA5-land. The database includes data covering the period 1950–2018
depending on the type and source of data. The streamflow data in HYSETS were retrieved
from national water agencies repositories. For our study watersheds, streamflow is col-
lected by Water Survey Canada (WSC) and stored in the National Water Data Archive
(HYDAT). Further details on the HYSETS configuration are given in Arsenault et al. [31].

2.3.4. In Situ Data

The in situ SWE data, which from hence forth will be used interchangeably with the
term ‘reference SWE data’, comes from Hydro-Québec’s (HQ) snow course measurements
for Manic 5 watershed and from Québec’s Ministère de l’Environnement et de la Lutte
contre les changements climatiques (MELCC) for the remaining watersheds investigated
in this study. The SWE measurements are the average value of 10 samples equally spaced
along a 300-m snow course [29]. These measurements are usually taken biweekly once the
snowpack is developed until the snowmelt begins. The location of the measurement sites is
depicted in Figure 3.

3. Results

Correction factors (CF) values were computed for all watersheds and years under
study according to Equation (5). This was done through estimation of the direct runoff
DRH, calculated with Equation (3) by removal of the estimated baseflow from total runoff
estimated from gauged stations. Direct runoff was also estimated from SWEmax data from
GlobSnow, that is DRG, and considering precipitation and watershed infiltration occurring
during the snowmelt period. Results are shown in Figure 5 and Table 3.
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Figure 5. CF values of Manic5 (a), 02RH035 (b) an 01AD003 (c) watersheds. For each watershed,
upper left graph shows the direct runoff hydrograph (DRH) in blue, watershed infiltration (I) in
purple, and maximum snow water equivalent from GlobSnow (SWEGlob

max ) in green. Lower left graph
shows the resulting CF values. Values lower than 1 are discarded. The graph to the right shows the
sorted CF values ranked from lowest to largest. The average CF value is shown as the dotted line. In
this figure, baseflow was estimated using β = 0.925.

Table 3. Computed CF values for all watersheds under study.

Watershed ID Area
GlobSnow Average

SWEmax (mm)
CF

Average Std Dev Min Max

02RH035 1110 171 1.37 0.43 1.01 2.57
01AD003 1359 178 1.43 0.37 1.01 2.52
Manic5 24,698 185 1.43 0.41 1.01 2.51

01010000 3473 162 1.78 0.53 1.10 3.47
02NE011 1570 158 1.29 0.29 1.02 2.27
02PA007 4480 162 1.36 0.33 1.01 2.66
02PL005 919 151 1.91 0.52 1.20 4.08
02PG022 795 181 1.74 0.40 1.15 2.77
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As expected, CF values of a given watershed vary from year-to-year in response to
varying snowpack characteristics (e.g., stratigraphy, grain size), which are much simplified
in the radiative transfer model (HUT) used to retrieve GlobSnow’s SWE estimates. Any
important deviation from this snowpack representation will affect SWE estimation; for
example, the presence of ice lenses in the snowpack may have a significant effect on
microwave scattering and emission properties of the pack. This in turn may be wrongly
interpreted as a snowpack with smaller SWE than reality, producing a larger CF value
(CF > 1) (Equation (5)). Therefore, year-to-year variations in CF values can be seen as
a consequence of varying hydrometeorological conditions leading to a heterogeneous
snowpack, which are not adequately simulated by the HUT model used to estimate SWE.
Saturation of the microwave signal as the snowpack gets thicker will also increase deviation
of the estimated SWE compared to the ‘real’ SWE and, therefore, it is expected that large
CF values will be obtained for years with thicker snowpack.

The average CF factor of the watersheds, as show in Table 3, has values ranging from
1.29 to 1.91. These results indicate that the range is rather small. The standard deviation
for the study ranged from 0.29 to 0.53 with higher deviations coming from watersheds
furthest south of the St. Lawrence, which may be an indication of difficulty in retrieving
SWE data from the satellite microwave signal. A possible cause for such difficulty is the
presence of complex snowpack stratigraphy, e.g., ice lenses, resulting from mid-winter rain-
on-snow and freeze-thaw events, which are common in these regions. This is in contrast to
watersheds located further north, where such meteorological events are less susceptible
to occurs and therefore where snowpack is generally more homogeneous. Consequently,
standard deviation of the retrieved CF factors is generally smaller.

Figure 6 shows examples of scatterplots of available in situ maximum SWE data
against the original and corrected GlobSnow products with the recommended baseflow
separation factor β = 0.925 for the 02RH035, 01AD003, and Manic5 watersheds.

The limited in situ measurements affected the analysis; for example, the Manic5
watershed only had 11 years of in situ measurements over the 18 possible years. The
figure confirms that the original GlobSnow product underestimates SWEmax; for example,
the observed SWEmax values of the 02RH035 watershed vary between 170 and 450 mm
but the corresponding GlobSnow values range from 120 to 270 mm. After correction,
using the recommended β of 0.925, the range increases from 130 to 355 mm. Similar
behavior are observed for all watersheds under study. Despite the bias being reduced, an
underestimation remains.

Predominantly, the WSC approach increased the estimation of SWEmax, as summa-
rized in Table 4. The WSC approach increased the range between minimal and maximal
SWEmax values, and reduced the bias when compared to the referenced SWEmax. However,
the degree of linear correlation between estimated and reference SWEmax values did not
increase for all watersheds, nor did the RMSE systematically decrease (for example, see
02PL005). An increase of RMSE means that the WSC approach increased the dispersion of
the corrected SWEmax values with relation to observed SWEmax. This is related to uncer-
tainties along the modelling chain leading to the corrected SWEmax product. For example,
a recommended value of the baseflow separation factor β is 0.925 for all watersheds, but
studies have shown that β can differ depending on the watershed’s characteristics [18].
Higher/lower β values will decrease/increase baseflow and, therefore, directly affect the
magnitude of direct runoff (DRH) and the magnitude of the corresponding correction factor
(CF). The issue of model uncertainty is addressed later in this paper.
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Table 4. Statistical summary of the original (Glob) and corrected (C-Glob) SWEmax. A negative
bias means that GlobSnow and corrected GlobSnow underestimate SWE relative to the reference
(in situ) SWE.

Watershed
Average SWEmax

(mm)
Range
(mm)

Bias
(%)

Correlation
Coefficient

RMSE
(mm)

Glob C-Glob Glob C-Glob Glob C-Glob Glob C-Glob Glob C-Glob

02RH035 171 228 119–276 137–357 −42.4 −23.5 0.525 0.636 136.8 85
01AD003 178 241 108–273 137–410 −23.2 4.54 0.646 0.671 66.4 50.5
Manic5 185 263 112–240 177–321 −31.4 −2.2 0.227 0.691 103.3 38.6

01010000 162 264 104–277 114–417 −28.2 17.1 0.461 0.475 86.3 78.1
02NE011 158 196 93–277 93–314 −42.2 −28.3 0.756 0.639 123.5 93.1
02PA007 162 208 111–265 121–319 −42.1 −25.8 0.791 0.691 124.9 85.6
02PL005 151 275 103–232 142–558 −30.2 27.1 0.711 0.442 74.4 89.1
02PG022 181 292 127–281 132–441 −28.1 15.9 0.583 0.306 83.9 85.8

The time series of the corrected GlobSnow product and the original GlobSnow against
in situ SWE is shown in Figure 7. Once the snowpack is developed, the corrected SWE
estimation becomes greater than the original GlobSnow estimation and approaches the in
situ SWE data. However, the corrected GlobSnow still underestimates SWE for some years
and overestimates for others. Overestimation occurs in years that have gaps in the in situ
SWE data around the time when GlobSnow estimates the snowpack to be at its peak.
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Figure 7. Temporal evolution of SWE for Glob (blue), C-Glob (orange) and in situ (black) data for
watersheds (a) 02RH035, (b) 01AD003, and (c) Manic 5. Sub figures (A–D) represent specific years as
indicated on the main plot. Note that no corrections are applied once SWEmax is reached because
the WSC approach only applies during snowpack build-up. The Glob, C-Glob, and in situ data are
averaged watershed measurements.
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4. Discussion

In this study, we proposed a hydrograph-based approach to correct the underesti-
mation of SWE derived from remotely sensed passive microwave data (PM), specifically,
the GlobSnow product. The chief advantage of our Watershed Scale Correction (WSC)
approach is that it uses data that commonly already exists (i.e., flow at gauged stations and
remotely sensed data) and that it does not require labour intensive and costly field mea-
surements of SWE. This contrasts with more ‘classical’ approaches that consist of merging
point SWE measurements to SWE maps derived from PM. Moreover, the WSC approach
preserves GlobSnow’s physically based approach, but additionally incorporates a scaling
factor derived from hydrological processes (i.e., direct runoff). While purely statistical ap-
proaches, such as spatial interpolation (e.g., simple approaches such as Thiessen polygons
to more sophisticated methods such as kriging) between point SWE measurements have
no physical basis. Additionally, the WSC approach allows for the correction of daily SWE
products, such as GlobSnow, at the watershed scale, which SWE surveys cannot achieve.
Therefore, the WSC approach reduces the need to have frequent field surveys to have
greater temporal information on the state of watersheds. Therefore, the WSC approach
adds value in the continued interest of presenting watershed state information on SWE
during the snowpack accumulation period of winter. This in turn is valuable information
for operational water resources managers to mitigate the threats of spring flood and also
for optimal reservoir management for hydroelectric production.

Because PM typically underestimates SWE for deeper snowpacks [7], a number of
physically based approaches have been proposed to correct the underestimation and have
been successful. However, such approaches are complex to implement and are computer
intensive when applied at the watershed scale. For example, LaRue et al. [14] implemented
a chain of models to assimilate PM observations and obtained substantial bias reduction
compared to original SWE simulations [14]. In their approach, they coupled the physically
based Crocus snow model, driven by a global-scale atmospheric model, to the Dense
Media Radiative Transfer-Multilayers (DMRT-ML) model to calibrate the snow stickiness
parameter of DMRT-ML. They then assimilated AMSR-E TB observations in the calibrated
DMRT-ML model to improve SWE estimations for 12 weather stations in northeastern
Canada where continuous SWE measurements were available. Our WSC approach is
comparatively simpler and can be applied to correct SWE at the watershed scale while
retaining the physics of the algorithm used to convert TB into SWE.

Correction factor-based approaches were proposed in the literature and have been
shown to provide more accurate SWE estimations. However, these approaches were de-
veloped to correct snowfall and not SWE directly. For example, Kang et al. [37] adjusted
snowfall using a correction factor that was obtained by minimizing the difference between
simulated SWE from a distributed hydrological model and observed SWE from PM. How-
ever, their approach is limited to shallow snowpacks because they assumed the reference
SWE estimated from PM is unbiased, which does not hold true as the snowpack gets thicker.
To our knowledge, no other study has presented an approach based on correcting SWE
based on observed flow. Our WSC approach is relatively simple, requiring less complex
modeling, and, therefore, is more user friendly.

4.1. Baseflow Separation as a Source of Uncertainty

As in any modelling approaches, the WSC has uncertainties in the modelling chain
that affect results represented by the range of CF values obtained (see Figure 5 and Table 3).
One uncertainty pertains to the HUT model’s simplification of the snowpacks complex
structure (e.g., stratigraphy, crystallography) when converting the PM signal into SWE in
the GlobSnow product (see results section for more details).

Another potentially important source of uncertainty relates to the baseflow separation
technique used for estimating direct runoff. Nathan and McMahon [16] recommend that
the baseflow filter coefficient (β) of the recursive filter approach should assigned the value
of 0.925. However, Ref. [15] stipulate that the Hydrun toolbox used in our study (which is
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based on the digital recursive method) was not intended for cold regions winter analysis
because it was originally developed by associating a runoff event to a rainfall input event.
Therefore, it is likely that the volume of direct runoff estimated using this method will
be misrepresented for watersheds where slower melt events occur. This limitation likely
contributed to errors, however, future versions of the toolbox is expected to include more
detailed characterizations of snowmelt processes [15].

Using the current iteration of the toolbox, this source of uncertainty can be reduced
by optimizing the β factor for each watershed. To do so, indirect approaches are required
because baseflow is seldom directly measured. Gan and Zuo [17] proposed to use a
hydrological model to fit the β factor to match simulated baseflow; however, the resulting
optimized β factor will be dependent of the structure of the hydrological model used to
perform baseflow matching. In contrast, we optimized the β factor by minimizing the
distance between GlobSnow’s SWEmax and observed SWEmax and, thus, our method is
not model dependent. However, the drawback is that in situ SWEmax measurements are
required, which negates the WSC approach’s prime advantage of not requiring in situ
SWE measurements.

The optimization process is summarized in Table 5 that details the % bias of the corrected
GlobSnow SWEmax relative the reference SWEmax for different baseflow β factors. The % bias
for the recommended β value of 0.925 is shown in this table. With this β value the average
bias was reduced to 18%, notably better than the Globsnow products 33.5% existing bias.
While bold values are % bias which were minimized by adjusting β. Results indicate that
using a single value for β fails to optimally correct for the underestimation of GlobSnow
SWEmax values. Instead, β values vary from 0.800 to 0.995 for the 8 watersheds under analysis.
Interestingly, the average β is 0.914, which is close to the 0.925 recommended value of [16].
Adjusted β values reduced the bias in the WSC approach as illustrated in Figure 6. Moreover,
RMSE was reduced, and the degree of linear correlation overall increased, as shown in Table 6.
Optimizing β values therefore contributed to reducing overall uncertainty.

Table 5. Performance of the WSC approach to replicate the maximum measured SWE for the studied
watersheds as a function of baseflow separation factor β.

Watershed In Situ
SWE Max

% Difference from In Situ SWEmax Measurements
GlobSnow Baseflow Separation Factor β

0.800 0.825 0.850 0.900 0.925 0.975 0.995

02RH035 298.1 −42.4 −42.4 −38.0 −35.6 −29.2 −23.5 −8.1 −1.9
01AD003 230.9 −23.2 −19.1 −17.1 −14.3 −3.7 4.5 27.1 40
Manic5 269.2 −31.4 −24.3 −22.1 −16.8 −6.5 −2.2 13.4 21.6

02PA007 279.7 −42.1 −41.4 −40.4 −38.7 −31.7 −25.8 −8.4 −0.7
02PG022 251.8 −28.1 −9.2 −6.1 −2.0 8.8 15.9 34.0 42.4
02PL005 216.6 −30.2 −0.1 3.9 8.42 19.8 27.1 46.0 60.7
02NE011 274.0 −42.2 −42.2 −40.4 −39.3 −33.7 −28.3 −14.1 −5.4
1010000 225.4 −28.2 −10.1 −6.3 −1.8 9.5 17.1 35.8 46.1

Table 6. Performance metrics of the WSC approach using the recommended β and the optimized β

for the watersheds.

Watershed
Average SWEmax

(mm)
Range
(mm)

Bias
(%)

Correlation
Coefficient

RMSE
(mm)

β = 0.925 βopt β = 0.925 βopt β = 0.925 βopt β = 0.925 βopt β = 0.925 βopt

02RH035 228.1 292.5 137–357 173–484 −23.5 −1.9 0.636 0.653 85 55.2
01AD003 241.4 222.5 137–410 137–384 4.5 −3.7 0.671 0.697 50.5 44.2
Manic5 263.2 263.2 177–321 177–321 −2.2 −2.2 0.691 0.691 38.6 38.6

02PA007 207.5 281.5 121–319 121–443 −25.8 0.7 0.691 0.570 85.6 62.1
02PG022 291.9 246 132–441 130–365 15.9 −2.0 0.306 0.286 85.8 65.7
02PL005 275.2 216.5 143–558 139–443 27.1 0.1 0.442 0.360 89.1 58.0
02NE011 196.6 259 93–315 93–406 −28.3 −5.3 0.639 0.560 93.1 68.8
01010000 263 221 114–417 114–345 17.1 −1.8 0.475 0.485 78.1 59.3
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We demonstrate that with watershed specific optimized β values, one can improve
SWEmax estimation from GlobSnow. However, this is at the expense of requiring in situ
SWEmax measurements. One way to avoid requiring in situ SWE, would be to develop a
relationship between β and watershed physiographic and/or hydroclimatic characteristics
and apply such relationship to watersheds where SWE is not measured.

This was attempted here, although a small number of watersheds were analysed which
limits the robustness of our findings. Therefore, more watersheds need to be incorporated
into such analysis to confirm the reported relationships below.

As a first attempt, we investigated the relationship between β and in situ SWEmax,
see Figure 8. We found a strong linear relationship, with a R2 value of 0.798; deeper
snowpacks, which have larger volumes of spring melt runoff, had larger β values. Recall
that larger β value is associated with a lower contribution of baseflow to total runoff,
while a lower β value means that the baseflow contribution is more significant to total
runoff. This behaviour aligns with the nature of infiltration in northern watersheds, which is
restricted and, sometimes almost completely limited, by a layer of frozen ground. Therefore,
saturation overland flows occur as the soil above the frozen soil layer becomes saturated
and any additional snowmelt (and rainfall) causes runoff.
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Figure 8. Scatterplot of the optimum β versus in situ SWE max.

Our second attempt was to unravel possible relationships between β values and wa-
tershed physiographic characteristics (i.e., geology/pedology) as this influences baseflow.
Indeed, baseflow—which is not to confused with groundwater flow—is the proportion
of river runoff from stored sources such as soils, surficial deposits and permeable rocks.
We observed that the watersheds located in the Appalachian region (0PL005, 02PG022,
01AD003 and 01010000) had lower β values, ranging from 0.800 to 0.900, whereas the
watersheds located in the Canadian Shield (0RH035, 02PA007 and 02NE011) had higher
value of 0.995. These two regions are characterized by different geological and pedological
characteristics that likely effect baseflow. The Canadian Shield is generally associated with
thin soils and the occurrence of granitic, gneiss, and volcanic bedrock where the capacity
to store water is small. For example, at study sites characterized as Canadian Shield in
Ontario, Refs. [38,39] found that water storage capacity to be only 6 mm and 8 mm, respec-
tively. In contrast, the Appalachian region is mostly characterized by sedimentary bedrock
covered with fine-to-deep glacial deposits where flow through fractured sediment rock
and superficial deposits are more likely to occur. We argue that these different geologic
and pedologic regimes of these regions may explain differences observed in the β values
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of watersheds, where lower/higher β values are associated with higher/lower baseflow
contribution to total runoff. Additional analyses using more watersheds are needed to
validate this hypothesis.

4.2. Other Sources of Uncertainty

In addition to snowpack structure and baseflow separation techniques, other sources
of uncertainties in the WSC approach (see Equation (5)) include precipitation during the
melt period (P), modelling infiltration into frozen ground (I), and total runoff as measured
at the gaging station (ROtotal).

The accuracy of total precipitation (P) during the melt period is source dependent.
Here we used the ERA5 daily precipitation that, according to Xiong et al. [40], shows
good accuracy especially for the winter in our study region. Although, Crossett et al. [41]
indicate that ERA5 underestimates precipitation along the Atlantic coast but overestimates
precipitation inland compared to in situ observational weather stations. Despite that, ERA5
and similar products are particularly well suited for regions where weather stations are
scarce and for larger watersheds, such as Manic5. However, for smaller watersheds and
where weather station density is high, such as the study sites located in the Appalachian
region, it may be preferable to use in situ observations. In this study, P was estimated from
the ERA5 global reanalysis and therefore contains its uncertainties. This may affect the
accuracy of the CF derived, impacting the corresponding corrected GlobSnow product.

Frozen ground infiltration was estimated using Gray’s model (Equation (8)), which
requires average near-surface (40 cm) soil saturation (SI) and temperature (TI) that were
retrieved from the ERA5 reanalysis product. The ERA5 reanalysis product uses soil texture
information to simulate SI and TI, where soil texture is categorized using the seven soil types
derived from the root zone data of the FAO/UNESCO Digital Soil Map of the World [42].
However, this coarse representation of the true soil types inevitably introduced errors in SI
and TI, and incorporating these products into the limited infiltration equation may have
enhanced the bias associated with the algorithm and led to additional errors. Future works
will benefit from the addition of in situ soil data that more accurately represents infiltration.

The opportunity time (t0) is another variable affecting estimation of the infiltration into
frozen ground, which is calculated according to Equation (9). For simplicity, we determined
t0 from the ERA5 SWEmax and snow cover extent (SCE) product. Although the time at
which SWEmax occurs is rather straightforward to obtain, the time at which snow cover
completely disappears is more difficult to retrieve because of the relatively low spatial
resolution of the product. One way to improve future estimations of t0 would be to use
high spatial resolution snow cover data sets when available.

Given that t0 corresponds to the duration of the snowmelt period, which was used
to calculate the amount of precipitation (P), any error in estimating t0 will also have
repercussions on the estimation of P. Ideally, one should use the time during which surface
runoff is occurring to calculate P across this period. This could be retrieved from a baseflow
separation analysis; however, in our work, given the uncertainty at estimating the β filter
parameter, we decided to approximate the runoff duration time as the duration of the
snowmelt period. For small to medium size watersheds, this will have a minimal impact
as the time of concentration is in the order of hours to a few days. However, in larger
watersheds such as Manic5, the time of concentration will be several days and, therefore,
will potentially impact the estimation of total precipitation during the opportunity time.

A rating curve is used for converting surface water elevation into river discharge. The
curve is a relationship between water levels and discharges at a specific cross-section of the
stream or the river and is established using gauged discharges and water levels. Rating
curves can lead to significant errors. These errors can arise from a suite of operational
factors (e.g., the number of sampling points and location of gauged section) and the
uncertainty in discharge measurements might be as high as 20% of the observed value [43].
Furthermore, since discharge measurements are often impracticable during high floods,
extrapolation errors are generally introduced. Additionally, rating curves may provide poor
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estimates of river discharge under ice conditions, as the river cross-section is constricted
and produces higher river stage compared to ice-free periods. Any increase/decrease
of river flow will directly impact CF values, see Equation (5). For example, assuming
in a hypothetical watershed a ±10% uncertainty on river discharge, where P = 20 mm,
I = 0, SWEmax = 250 mm, total runoff = 350 mm and baseflow = 30 mm would result in CF
ranging between 1.20 and 1.52.

4.3. The SWC Approach as Part of an Ensemble Flow Forecast System

Although the above uncertainties result in a range of watershed-scale CF values, we
argue that this is an appealing feature when applying the WSC approach to probabilistic
flow forecasts. An ensemble of corrected GlobSnow SWE values can be used to set initial
conditions of a hydrological model for generating ensemble flow forecasts. As mentioned
above, a 5-km GlobSnow SWE product is available 12 h after global satellite data has been
acquired (data available in the Copernicus site). Therefore, the raw SWE product can be
used to generate near real time corrected products. This is particularly useful to agencies
concerned by spring flow forecasts, e.g., hydropower companies and river forecast centers,
as forecasting flow scenarios becomes possible with estimates of corrected SWE at near real
time, along with forecasted temperature and precipitation information.

While the WSC approach strictly applies to correct SWEmax estimates from PM data
(here GlobSnow), in the context of operational flood forecasting, one needs to correct SWE
at any time a flow forecast is required. This requires having CF varying over time during
snowpack build-up. Here, we proposed a simple linear relationship between CF and SWE
from GlobSnow, see Figure 2, with a lower bound of CF = 1 and the upper value calculated
according to equation 5. Whether or not a linear relationship between CF and SWE truly
reflects the expected evolution of CF across the snowpack buildup remains to be validated
by comparing resulting SWE values against in situ SWE(t) measurements.

In a probabilistic forecast world, the WSC approach produces an ensemble of SWEmax
values. Combining the ensemble with the CF(SWE) relationship (Figure 2), results in an
ensemble of corrected SWE values each time a forecast is issued. Therefore, the correspond-
ing probability distribution of corrected SWE at a given time only depends the corrected
SWEmax distribution and on CF-SWE relationship. Beneficially, no exogeneous information
(e.g., observed SWE at the time a forecast is issued) is involved in defining the distribution.
With better knowledge on the trajectory of SWE as the snowpack gradually accumulates
(e.g., whether a thick or a thin snowpack is anticipated at the onset of the spring melt),
one may update the probability distribution of the corrected SWEmax. In other words,
having the prior distribution of SWEmax, one would obtain the posterior distribution of
SWEmax with knowledge of SWE at time t using a statistical inference method such as
Bayesian inference:

P(H|E) = P(E|H)× P(H)

P(E)
(10)

where P(H|E) is the posterior probability of H given E, P(H) is the prior probability of
H and P(E|H) is the probability of observing E given H. In this equation, H = SWEmax
and E = SWE at a given time t. P(H), P(E), and P(E|H) can all be obtained from historical
observations of SWE, including SWEmax.

Alternatively, the most likely SWEmax value in a given year could be computed/updated
each time new exogenous information affecting SWEmax becomes available. This would
require leveraging historical data to develop a statistical model between SWEmax and
exogenous variables at time t, such as the current SWE value. Using this approach, the most
likely SWEmax value computed at the time a forecast is issued would be used to correct the
current SWE value using the CF-SWE relationship (Figure 2).

4.4. Validation of the WSC Approach: An Issue of Scale Mismatch

In this study, we describe a novel approach for correcting a remote sensing derived
SWE product that avoids using in situ SWE measurements. However, as with the de-
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velopment of any quantitative remote sensing algorithm, we are limited in our ability to
effectively validate the approach due to the severe spatial scale discrepancy between the
data source used as the benchmark (i.e., in situ SWE measurements), and model product
(i.e., corrected GlobSnow SWE). As pointed out by Wu [44] (p. 1769), ‘Scale effects con-
strain the accuracy of retrieval and limit the development of remote sensing applications’.
Therefore, it is important to match the reference SWE and the corrected SWE product to
a common scale, here the watershed scale, for proper validation. The simplest upscaling
approach is the arithmetic mean (a member of the Area-Weighted Methods family), which
was used in this work.

In situ SWE sites are carefully selected to be representative surrounding areas by
avoiding local effects on SWE values; for example, sites where wind effects are significant
(resulting in either underestimating or overestimating the ‘true’ SWE) are avoided. Despite
such cautions, accurate local SWE measurements may not be representative of the water-
shed scale SWE if the number of measurement sites is small, as is the case for this study.
Benchmark SWE values were obtained from only one or two in situ SWE measurements for
all watersheds under study, except for the Manic 5 watershed, where 5 stations were used
(locations of in situ measurements illustrated in Figure 2). Therefore, the low number of
in situ stations used to obtain the reference SWE may explain situations where poor fits
between the reference and the corrected SWE were obtained, in addition to the various
sources of uncertainty discussed above. For example, watershed 01AD003 in 2010 was
found to have a poor fit, where the corrected GlobSnow SWEmax differed from the reference
SWEmax by 140 mm, resulting in a 60% deviation from the reference (note that this was
obtained using β = 0.925). An improved data archive or SWEmax would not only allow for
better validation of the WSC approach but would also help in better defining relationships
between the optimal β factor and SWEmax discussed above. Datasets such as SNODAS [45]
and CanSWE [46] may be considered for setting the benchmark.

5. Conclusions

In this study, we demonstrate the usefulness of integrating additional physical hydro-
logical processes, specifically direct runoff, in the bias correction of GlobSnow, a global
SWE database derived from space-borne passive microwave sensors. Unlike other physi-
cally based approaches that are more computer intensive and complex to implement, the
WSC approach can correct SWE at the watershed scale while preserving the physics of the
temperature brightness algorithm used in SWE conversion.

As with all modeling approaches, there are issues relating to uncertainties with the
WSC approach; of those, the most critical to the output was the baseflow separation
technique used in estimating direct runoff. While the recommended value of the baseflow
filter coefficient (β = 0.925) for the recursive filter approach, overall reduced bias for all
studied watersheds, we found that optimizing the β value for watersheds better corrected
for the underestimation of GlobSnow SWEmax values reducing overall uncertainty. We
found that the deeper the snowpack the larger the corresponding β value, which is in line
with the limited nature of infiltration in northern watersheds. Incorporating in situ soil data
will reduce uncertainty associated with using the Gray’s model to determine infiltrability.
Additional uncertainty comes from the rating curve as it may provide poor estimates of
river discharge under icy conditions as CF is sensitive to any increase or decrease in the
river flow.

Despite these uncertainties, the WSC approach can be used for probabilistic flow
forecasts. GlobSnow produces a near real time 5-km SWE product and an ensemble of
corrected GlobSnow SWE produced using the WSC approach could be used to initialize
conditions of a hydrological model. This application may be particularly useful to water
management organizations concerned about spring flows.

To conclude, our WSC approach performed acceptably, increasing the accuracy of
SWEmax estimates when compared to in situ measurements for the studied watersheds.
However, due to a scale discrepancy between the data used as benchmark and model
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product, and the representability of the local measurements to be used as a representative
for the watershed, there were situations of poor fit. An improved benchmark would allow
for better validating the WSC approach. Future studies will be dedicated to improving the
benchmark and other assumptions made in evaluation of the approach.
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