
Citation: Yang, H.; Yu, X.; Liu, J.;

Tang, Z.; Huang, T.; Wang, Z.; Zhong,

Q.; Long, Z.; Wang, L. A Concise

Review of Theoretical Models and

Numerical Simulations of Membrane

Fouling. Water 2022, 14, 3537.

https://doi.org/10.3390/w14213537

Academic Editor: Jesus

Gonzalez-Lopez

Received: 17 September 2022

Accepted: 31 October 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Review

A Concise Review of Theoretical Models and Numerical
Simulations of Membrane Fouling
Haiyan Yang 1, Xuri Yu 2, Junxia Liu 2,*, Zhiwei Tang 2, Tianyi Huang 2, Zhihong Wang 2, Qiyun Zhong 3,
Zhihong Long 3 and Lin Wang 4,*

1 School of Environment, South China Normal University, Guangzhou 510006, China
2 School of Civil and Transportation Engineering, Guangdong University of Technology,

Guangzhou 510006, China
3 Guangzhou Water Supply Co., Ltd., Guangzhou 510600, China
4 School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
* Correspondence: whjunxia@163.com (J.L.); lynn04@126.com (L.W.)

Abstract: Membrane fouling can cause severe flux drops and affect the quality of produced water,
which is a major obstacle for membrane applications. Great efforts have been made to examine
theoretical models and numerical simulations for fouling behavior and mechanisms in the past
decades, but there is a lack of literature providing a systematic summary. This work aims to present a
state-of-the-art review of the principles, applicability and advantages of fouling theoretical models
(i.e., the concentration polarization, cake layer formation and blocking models), and numerical simu-
lations (i.e., computational fluid dynamics, Monte Carlo simulation, and artificial neural networks)
for fouling behavior and mechanisms. Through these models and simulations, the behaviors of
foulant particles at the microscopic level are analyzed in detail from the perspective of force, energy,
and particle trajectory during the fouling process. The concise summary of fouling modeling in this
review gives guidelines for the selection and application of models to simulate the membrane fouling
process accurately, and the optimization of the operation in membrane-based processes.

Keywords: membrane fouling; concentration polarization; cake layer formation; blocking model;
computational fluid dynamics; Monte Carlo simulation; artificial neural networks

1. Introduction

Due to the effective removal of contaminants with various sizes, from suspended solids
to emerging pollutants, easy-to-operate and cost-effective membrane filtration technology is
broadly applied in wastewater and drinking water treatment, water reuse, and desalination.
However, membrane fouling, mainly including inorganic fouling (e.g., scaling), organic
fouling (e.g., humic acids, polysaccharides) and biofouling (e.g., bacteria, fungi), can lead
to reduced water production, increased operating costs, and shortened membrane service
lifespan. Membrane fouling is thus one of the major barriers restricting their sustainable
applications [1,2].

Membrane fouling is the successive processes of concentration polarization, mem-
brane pore blockage, and cake layer formation [3,4], which are highly affected by feed
characteristics, solution chemistry, membrane properties, and operating conditions [4–6].
These factors can significantly affect the transport of foulants towards the membrane and
back-diffusion of particles away from the membrane, as well as the interfacial interaction
between foulants and the membrane, thereby regulating fouling [4,7–9]. Owing to the
complicated fouling process, theoretical simulations are often applied to reveal the under-
lying mechanism. Compared with experimental tests, investigation via theoretical models
can achieve expected aims effectively and economically, providing a theoretical basis for
fouling control strategies.
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Traditionally, the concentration polarization model, cake layer formation, and pore
blocking model have been developed and widely used to describe fouling behaviors
over the past few decades [10–12]. With the on-going development in computer science
(e.g., computer calculation and programming), various numerical simulation methods
such as computational fluid dynamics (CFD), Monte Carlo (MC) simulation, and artificial
neural networks (ANNs) have been increasingly applied as powerful tools to the intensive
simulation of membrane fouling [13–15], especially combined with those theoretical models.
Compared to the conventional theoretical models (i.e., concentration polarization, cake
formation, and pore blocking), these numerical simulations for separate or combined
application can describe the fouling behavior of particles in fine detail. Specifically, CFD
is used mainly to simulate the fouling process by describing flow hydrodynamics (e.g.,
mass transfer) during the membrane process, while the MC approach is used to simulate
fouling by describing the random trajectory of foulant particles. Meanwhile, ANNs can
predict the membrane process in a comprehensive environmental matrix with high accuracy
and simplicity through its powerful capability to learn and recognize trends. Despite the
fundamental importance of understanding fouling mechanisms, fouling characteristics,
and fouling control strategies, few articles have been published giving an overall review of
fouling modelling, especially for the numerical simulation of fouling.

The object of this review is to provide a concise and critical summary of theoretical
models and the numerical simulation approaches for membrane fouling. Their principles,
applicability, and advantages are discussed in detail. Firstly, the major theoretical models,
including concentration polarization, cake layer formation, and pore blocking are intro-
duced from the perspective of the membrane fouling formation process, followed by a
summary of the numerical simulation approaches of CFD, MC simulation, and ANNs.
Through these models and simulations, the behaviors of foulant particles at the microscopic
level are analyzed from the perspective of force, energy, and particle trajectory during the
fouling process. Unlike the previous reviews which focused on theoretical models solely,
or only on one specific numerical simulation approach (e.g., CFD [16], ANN [17]), the
present study summarizes the theoretical models and numerical simulations for membrane
fouling overall, which is to provide guidelines for the accurate selection and application of
models to simulate membrane fouling and further optimization of membrane-based water
treatment.

2. Theoretical Models
2.1. Concentration Polarization

During membrane filtration, the foulant particles can transport towards the surface of
the membrane by the permeate drag (Figure 1). The retention of foulants on the membrane
can lead to an increased concentration of foulant near the membrane surface compared to
that in the bulk flow. This phenomenon of the foulant concentration gradient is named
concentration polarization (CP) [10]. At the same time, these foulant particles in the
hydrodynamic boundary layer will back migrate towards the bulk flow due to the existence
of the concentration gradient. In a steady state, the convection transport of solute towards
the membrane surface (JC) is balanced by the back-diffusion transport D (dC ⁄ dx), and thus
a film theory was proposed by Porker in 1972 to describe the CP phenomenon [10]:

JC = D
dC
dx

(1)

where J and C are the solvent flux through the membrane, and the concentration of foulant at
distance x away from membrane, respectively. D represents the particle diffusion coefficient,
and dC

dx represents the concentration gradient in the hydrodynamic boundary layer. The
foulant concentration at x = 0 (i.e., at the membrane surface) is fixed at an upper limit (Cm)



Water 2022, 14, 3537 3 of 20

and the foulant concentration at x = δ (i.e., at the boundary layer near the bulk flow) is fixed
at lower limit Cb [10]. Thus, the CP model enhances the integration of Equation (1) as:

J =
D
δ

ln
Cm

Cb
(2)

where δ is the thickness of the boundary layer. Cm and Cb are the foulant concentration
at the membrane surface and bulk flow, respectively. Equation (2) shows that the flux
through the membrane J is dependent on the solute characteristics of D and Cm/Cb, and
the boundary layer thickness δ. Operational management thus should be directed towards
increasing D or decreasing δ. Here the diffusion coefficient D can be obtained according to
the Stokes-Einstein equation [18]:

D =
kBT

3πµdP
(3)

where kB is the Boltzmann’s constant; T represents the absolute temperature; µ represents
the solution viscosity; and dp is the particle size. In addition, the term D/δ in the right part
of Equation (2) is recognized as the mass transfer coefficient k [10]:

k =
D
δ

(4)

By substituting Equation (4) into Equation (2), one can obtain:

J
k
= ln

Cm

Cb
(5)

where J/k is Péclet number, the ratio of convective to diffusive transport in the boundary
layer [6]. Cm/Cb is the CP modulus M, which represents the degree of CP [4]. It is
worthwhile to note that the concentration of foulant in permeate Cp is not included in
the mass balance (Equation (1)). Therefore, Equation (5) can be applied to model the CP
behavior where the concentration of foulant in permeate Cp is negligible compared to that
at the membrane surface Cm and bulk flow Cb (i.e., in the NF/RO process). When further
considering the role of Cp, the convection transport of solute towards the membrane surface
(JC) should be balanced by the sum of permeate JCp and the back diffusion transport D(dC
⁄dx) away from the membrane. Thus, Equation (5) can be expressed as a common form [19]:

J
k
= ln

Cm − Cp

Cb − Cp
(6)

Equations (5) and (6) are the typical CP models, which were widely applied to scale
the CP in processes such as reverse osmosis (RO), nanofiltration (NF), ultrafiltration (UF),
and microfiltration (MF) [5,6,10,19].

An important assumption in conventional CP models (i.e., Equations (5) and (6)) is
that the deposit of foulants onto the membrane is not considered in the mass balance. On
this account, the influence of the deposited foulants on CP was further considered. For
example, Kostoglou and Karabelas considered the probability of attachment which was
expected to depend on the physical properties of the particles [20]. Furthermore, Liu and
co-workers [5,6,18] recently proposed a modified CP model stating that the convection
transport of foulant towards the membrane (JC) depended on the balance of the back
diffusion D(dC/dx), the permeate JCp, and the foulant loss from the solution phase because
of their attachment onto the membrane αJCm. Accordingly, the CP model can be given
by [6]:

J
k
= ln

Cm − Cp − αJCm

Cb − Cp − αJCm
(7)

where α is the attachment coefficient, which describes the probability of the successful
attachment of foulant when particles transport and collide with the membrane. The value
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of α is therefore between 0 and 1, which represents the conditions from that collision
never resulting in fouling (α = 0), to that collision always leading to colloidal attachment
(α = 1). To determine α, Liu et al. [6] further adopted the classical Boltzmann distribution
to describe the number density of particles during their attachment in different energy
states. For attachment of a free particle onto the membrane, the particle must overcome
the potential energy barrier of ∆Eb inducing from the membrane–colloid interaction [21].
At the same time, a potential energy ∆Ed is provided to promote its attachment by the
hydrodynamic drag force acting on the particle [18]. Therefore, the attachment coefficient α
can be given by:

α =
1

1 + exp
(

∆Eb
kBT −

∆Ed
kBT

) (8)

A distinct feature of Equations (7) and (8) is that they can be applied to simulate the
role of membrane-colloid interaction in CP, which is often overlooked in traditional CP
models (Equations (5) and (6)).
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2.2. Cake Formation

A fouling cake layer is formed with more and more foulant attaching onto the mem-
brane surface (Figure 2), which results in an additional hydraulic resistance (i.e., the cake
resistance Rf). The membrane permeate flux is thus decreased under constant applied
pressure due to this cake resistance. Based on Darcy’s law [22], the permeate flux can be
expressed as:

J =
∆P

µ
(

Rm + R f

) (9)

where ∆P and Rm are the applied pressure and membrane inherent resistance, respectively.
The cake resistance Rf is decided by the foulant mass deposition mf and specific cake
resistance αf as shown in Equation (10):

R f = α f m f (10)
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It is well known that the specific cake resistance αf exerts important roles in membrane
fouling [23–25]. The value of αf can be calculated by the Carmen–Kozeny equation [26]:

α f =
180
(

1− ε f

)
ρpε3

f d2
p

(11)

where ε f , ρp are the cake layer porosity and particle density, respectively. In addition, αf
can also be experimentally determined according to the foulant mass deposition mf and
flux variation [27]:

α f =
∆P

µm f

(
1
J f
− 1

J0

)
(12)

where J0 and Jf is the initial flux and final flux, respectively, for any given filtration period.
The cake layer is considered to be compressible and soft, in which case the specific

cake resistance strengthens with the operational pressure [28–30]. An empirical power law
is assumed as Equation (13) for practical purposes [30,31]:

α f = β∆Ps (13)

where β and s represent an empirical coefficient and the cake compressibility, respectively.
Notably, αf cannot change with respect to ∆P when s = 0 for incompressible foulant cake
layers, and the value of s is larger for a more compressible cake layer. It was reported that
the value of s ranges from 0.4–1.0 for UF and MF membranes fouled by bentonite and
kaolin particles [32]. In addition, the value of s is highly affected by the solution chemistry.
For silica colloids fouling UF membranes, s is ~0.82 in distilled water, and it decreases to
~0.36 when ionic strength increases to 100 mM [33].

The cake layer filtration model considers the effects of deposition kinetics and the
resistance of the deposit layer on the fouling process. It is suitable for the simulation of cake
layer formation. Besides introducing an additional hydraulic resistance, the cake-enhanced
osmotic pressure (CEOP) phenomenon is also induced by the foulant cake layer [34]. The
CEOP phenomenon arises by the hindered back diffusion of salt ions and particles from the
fouled membrane surface to the bulk solution, in which the foulants diffuse within the cake
layer through tortuous paths [4]. This causes the osmotic pressure and the concentration
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of solute at the membrane wall to be significantly enhanced [34,35]. This CEOP is also a
source of flux decline, which is expressed as a modified cake filtration model [34]:

J =
∆P− ∆π∗m

µ
(

Rm + R f

) (14)

where ∆π∗m represents the drop of transient osmotic pressure. This CEOP model provides
insights into membrane fouling driven by osmotic pressure, which successfully simulates
the fouling process of forward osmosis (FO) [36], reverse osmosis (RO) [35], and pressure-
retarded osmosis (PRO) [37], where the osmotic pressure cannot be neglected during
membrane filtration.

2.3. Pore Blocking

For porous MF/UF membranes, pore blocking is also a significant factor leading to
a drop in water flux. Particles with a smaller size compared to the size of the membrane
pores will deposit or adsorb onto the pore wall. The attached particles will narrow the
pore size, and thus reduce the flow cross-sectional area significantly [38–40], while particles
with a larger size compared to the size of the membrane pores will block pore entrances,
leading to increased filtration resistance, and form a contiguous cake layer which can
block or attach on the membrane surface [3,41]. Based on the physical mechanisms of pore
blockage, Hermans and Bredee [12] proposed four blocking models, which are complete
pore blocking, standard pore blocking, intermediate pore blocking, and cake filtration
(Figure 3).
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After that, Hermia [3] proposed another mathematical equation for the above blocking
processes using the common power law framework for non-Newtonian fluids, which can
be given by:

d2t
dV2 = K

(
dt
dV

)n
(15)

where V and t are the cumulative filtrate volume in unit area, and the filtration time,
respectively. K is the resistance coefficient, and n represents the pore blocking index, a
dimensionless filtration constant depended on the pore blocking situation. The value of n
is 2, 1.5, 1 and 0, for complete pore blocking, standard pore blocking, intermediate pore
blocking and cake filtration, respectively.
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In complete pore blocking (Figure 3a), each particle completely blocks an open pore
where the particle size is larger than that of the membrane. It is assumed that all particles
deposited onto the membrane surface are “sealing” membrane pores [40]. It is idealized
to assume that no particles are on the membrane surface or on top of other particles. The
formula of complete pore blocking (n = 2) can be expressed as Equation (16) [39], where Kc
represents the complete pore blocking coefficient.

Ln J = Ln J0 − Kc (16)

In the standard pore blocking law (Figure 3b), the particle size is considerably smaller
than the pore size. The flux decline therefore is caused by the constriction of membrane
pores due to the small particles deposited onto the pore walls [3]. The equation of standard
pore blocking (n = 1.5) can be given as [39]:(

1
J

)0.5
=

(
1
J0

)0.5
+ Kst (17)

where Ks represents the standard pore blocking coefficient.
For intermediate pore blocking (Figure 3c), those foulants reaching the membrane

cause not only pore blocking, but also the attachment on other, already deposited, fouling
particles [41]. The model of intermediate pore blocking (n = 1) can be described as [39,41]:(

1
J

)
=

(
1
J0

)
+ Kit (18)

where Ki is the intermediate pore blocking coefficient.
In the case of cake filtration (Figure 3d), the cake layer gradually grows as filtration

proceeds. Particles do not change the membrane pores since the cake layer forms on the
membrane surface, increasing hydraulic resistance [3]. The law of cake formation (n = 0) is
given by [39,41]: (

1
J

)2
=

(
1
J0

)2
+ Kc f (19)

where Kcf is the complete pore blocking coefficient.
Pore blocking is a critical factor controlling the overall performance of membrane

filtration. The blocking filtration laws, including complete blocking, standard blocking,
intermediate blocking, and cake filtration, are convenient to confirm fouling mechanisms
from experimental data, and thus can provide guidelines in selecting the membrane module
and fouling control strategies. It has been widely applied in the fouling simulation for
MF [38,42], UF [39,43] and membrane bioreactors (MBR) [44,45]. However, an obvious
shortcoming of the Hermia blocking models is the difficulty in identifying the behavior of
solution chemistry and colloid-membrane interaction on fouling.

3. Numerical Simulation
3.1. Computational Fluid Dynamics (CFD)

CFD is a branch of the science of fluid mechanics that produces quantitative predictions
of the fluid flow phenomena according to the conservation laws. In the CFD simulation,
the governing equations of fluid flow are discretized through the finite difference, finite
volume, or finite element methods; the numerical solutions of fluid flow (e.g., mass, momen-
tum, and energy) are then developed at the desired boundary conditions using computer
calculations. A variety of approaches are utilized in multiphase simulations of CFD, such
as volume of fluid (VOF), coupled VOF and level-set (CLSVOF), the Lattice-Boltzmann and
Eulerian methods [46]. As a result, CFD can provide a detailed quantitative description
of flow hydrodynamics, which could hardly be achieved by conventional experimental
tests [47–50].
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CFD is an effective modeling tool for the study of membrane fouling. To describe the
fouling process, the CFD model coupled with the Navier-Stokes equation and Darcy’s law
has been developed for the simulation of fluid flow in porous tubes [51]. In this model,
the governing equations (conservation equations of mass, momentum, and energy) are lin-
earized and solved numerically using a finite difference scheme with dynamically updating
boundary conditions. The continuity equation of mass is expressed as Equation (20), where
ρ is the fluid density, and xi and ui represent the distance and fluid velocity at i direction,
respectively.

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (20)

The conservation equation of momentum is expressed as Equation (21), where p, τij
and f are pressure, viscous stress, and body force, respectively.

∂ρ

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
+

∂τij

∂xj
+ ρ fi (21)

The conservation equation of energy is expressed as Equation (22), where e, T and Se
are energy, temperature, and the source term of energy, respectively.

∂

∂t
(ρe) +

∂

∂xj

(
ρeuj

)
= −ρ

∂uj

∂xj
+

∂

∂xj

(
k

∂T
∂xj

)
+ Se (22)

Compared with those approaches using simple equations, the spatial variation in driv-
ing force [52], and the physical properties dependent on concentrations [53] are considered
in the CFD simulation. Thus, more comprehensive, and accurate solutions regarding flow
field, the concentration distribution as well as the fouling resistance can be obtained. Due
to the ability to predict local variables and time factors, CFD has been widely applied to ex-
plore the processes of fluid flow transmission and fouling, as well as the critical parameters
for these processes in pressure-derived membranes, membrane distillation, MBR, reverse
osmosis filtration and other membrane-based separations [54–59]. The recent applications
of CFD in membrane simulations have been summarized in Table 1.

For example, CFD has been used successfully to simulate the fluid velocity for MF
and UF filtration accurately [60,61], and explain the negligible impact of a powdered
activated carbon layer on the permeation of mobile genetic elements [60]. In addition,
2D and 3D CFD simulations have been developed to study the comprehensive effects
of operating conditions (e.g., feed and permeate velocities, temperatures, and salinities)
and membrane modules (e.g., system length, membrane conductivity and thickness) on
MD treatment [57,58,62,63]. The relationship between mass transfer and heat transfer
have been explored for different MD configurations using a CFD simulation. For instance,
temperature polarization was found to be more significant at high feed temperature and
low feed velocity for vacuum MD [58]. Liang et al. also found that slip velocity was a
major driving force of mass transfer and flux enhancement for the electro-osmosis process
using a CFD simulation [64]. Additionally, CFD was applied to simulate the water quality,
multiphase dynamics, and the backwashing process for MBR [56,65]. The simulation
results suggested that the membrane fouling level can alter the backwash solution velocity
inside fiber lumen and have a further effect on effective backwash length [56]. As a
result, CFD modeling is also a useful tool to provide guidelines on the membrane module
design, process optimization, as well as module scale-up through simulation of membrane
processes under different conditions [58,63,65–68] (Table 1). The fluid velocity distribution
of microfiltration simulated by CFD, combined with the experimental microfiltration test
data, suggested that the optimal geometry of the turbulence promoter should be elliptical
for enhancing filtration flux and mitigating fouling. Meanwhile, a 3D CFD model was
developed to simulate the multiphase dynamics and water quality of MBR to obtain the
optimized level of gas–liquid dispersion for membrane scouring, achieving cost-effective
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membrane scouring and nitrogen removal [65]. Zhang et al. [58] obtained a short module
design for high thermal efficiency of vacuum membrane distillation through analyzing the
effects of operating conditions and module dimensions on heat transfer by using a CFD
model.

Table 1. Application of CFD for fouling simulation in different membrane systems from the literature.

Membranes Aims Highlights References

RO/NF

• Description of the effect of
biofilm development on RO
performance.

• The model explained the loss of permeate flux
and the increase of salt passage in time due to
biofilm formation.

• Three mechanisms by which the biofilm
contributed to the flux decline were identified.

[69]

• Investigation of flow transition
behavior of commercial spacer
geometries.

• The flow transition was mainly ascribed to the
interaction of the vortices’ attachment onto the
filaments and the screw-vortex derived from the
spacer cells.

• The minimization of CP was not effectively
obtained by using this non-woven spacer design.

[66]

• Simulating and addressing the
effectiveness of implementing
directional freezing to seawater
desalination.

• The validation of the energy consumption model
showed good agreement with those reported in
the literature.

• Better partition and removal efficiency were
achieved under lower salinity brine, top freezing
instead of bottom or radial freezing.

[67]

• Studying the compression by
evaluating CP extent over time.

• The suppression effect on CP by transformed
morphologies was due to the larger shear stress
introduced by the flow field.

[70]

Electro-osmosis

• Analyzing the effect of
membrane permeance on the
resonant frequency and the
mass transfer.

• The resonant frequency of the unsteady forced
slip velocity was not affected by the membrane
permeance.

• The permeate flux enhanced for greater
membrane permeances (up to 23%) at the cost of
a 5–7% higher pumping energy.

[55]

UF

• Analysis of shear and
elongational strain rates and
associated hydrodynamic
influences on mobile genetic
elements (MGEs) retention.

• Significant deformation of MGEs occurred at the
distance of dozens of nm away from the
membrane.

• The existence of the PAC particles presented a
negligible impact on the permeation of MGEs
through UF membrane pores.

[60]

MF

• Examination of the fluid velocity
distribution.

• The velocity profile at different points was
obtained by CFD models.

• The experimental data and CFD results
suggested the cake resistance and mass of
circular-type promoters decreased at high
crossflow velocity.

[68]

• Predicting the permeate flux
through a microfiltration
membrane.

• The results show that the predicted CFD flux
values are more accurate compared with a simple
calculation using the feed-side pressure in the
Darcy equation.

[61]
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Table 1. Cont.

Membranes Aims Highlights References

MBR

• A 3D CFD model developed the
cost-effective optimization of a
lab-scale AEC-MBR.

• The height of gas–liquid dispersion for
membrane scouring was optimized.

• Simultaneous cost-effective membrane scouring,
and nitrogen removal was achieved.

[65]

• Investigating the effect of the
dynamics of fouling on effective
backwashing length.

• The degree of fouling can change the
backwashing velocity inside fiber lumen and
have a further influence on effective backwash
length.

• The signal variations of LBS correspond to the
simulation data.

[56]

Distillation

• A 2D CFD model was
developed to study the coupled
effects of temperature and
concentration polarization in the
direct contact membrane
distillation treatment of
hypersaline brines.

• Dramatic increases were observed in solute
concentration at the membrane surface,
exceeding 1.6 times the feed value.

• The temperatures, concentration, and vapor flux
vary considerably in the downstream direction.

[62]

• Description of the thermal and
hydrodynamic conditions in a
hollow fiber membrane module.

• Thermal efficiency varied with feed temperature
and feed velocity.

• Temperature polarization became more
significant at higher feed temperature and lower
feed velocity.

• A short module was better utilized for high
efficiency of VMD.

[58]

• CFD Simulation of the MD
process for desalination of high
salinity feedwater.

• The membrane conductivity and thickness had
an important influence on the DCMD
performance.

• Optimal membrane thickness was found to
increase with salinity.

• Better desalination of low salinity feedwater was
observed with a thinner membrane, whereas a
thicker one resulted in higher separation
performance.

[63]

Forward
Osmosis (FO)

• Modelling a FO system with an
asymmetric membrane using a
CFD model.

• The process of FO was well simulated through
CFD software.

• The volume fraction of NaCl in the sea water
chamber reduced with each time step.

[71]

CFD is a powerful tool to study the parameters of fluid characteristic and distribution
during the filtration process. It also has unparalleled flexibility in seeking optimal operating
conditions and membrane module design. However, CFD cannot use a universal model
for simulation of contaminant removal of both low pressure (e.g., UF and MF) and high
pressure (e.g., RO and NF) membrane filtration due to their different mechanisms. The
high accuracy achieved by CFD simulation requires huge calculations and computer power.
In addition, the times required for calculations are lengthy.

3.2. Monte Carlo Simulation

The Monte Carlo (MC) simulation is an approach to describe the random movements
of particles by capturing the fine details of distinct force and the resulting random particles
displacement [14]. During an MC simulation, a stochastic modeling strategy is utilized for
the selection of discrete particle displacements with statistical randomness and evaluation
of the selection based on its physical validity. As the simulation proceeds, each particle
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trajectory can be mapped through the generation of a pool of statistically random and
discrete particle movements at the microscopic level [14].

Among various numerical models in microscopic scale, the MC simulation is a com-
putationally efficient algorithm for multiparticle interactions [72]. Briefly, the probability
distribution is firstly developed according to the experimental conditions (e.g., effective
membrane pore size and molecular solute). Sampling is then conducted by random number
based on the Poisson probability distribution and the results are estimated based on the
probability of particle random displacements. The particle i is supposed to be randomly
displaced from the location of rm

i to rn
i using the algorithm:

rn
i = rm

i + (2a0 − 1)δ′rmax (23)

where a0 represents a random number with value of 0–1, and δ′ rmax represents the maxi-
mum displacement allowed. The proposed displacement of the particle is then evaluated
to be accepted or rejected, with a criterion of the change in potential energy δ′Vn,m for the
system calculated by Equation (24):

δ′Vn, m =

(
N

∑
j=1

V
(

rn
i,j

)
−

N

∑
j=1

V
(

rm
i,j

))
(24)

If δ′Vn,m > 0, the proposed move is uphill; if δ′Vn,m < 0, the proposed move is downhill.
Whether the move is accepted or not is dependent on the qualification of the probability
ρn/ρm which is corresponded to the Boltzmann factor for the energy difference in the
Metropolis method:

ρn

ρm
=

exp(−β′Vn)exp(−β′δVn,m)

exp(−β′Vn)
= exp

(
−β′δ′Vn,m

)
(25)

where β′ is equal to 1/kBT. A uniform random number ξ (0–1) is generated and compared
with exp(−β′δ′Vn,m). When ξ < exp(−β′δ′Vn,m), the uphill move is accepted. Otherwise
(ξ ≥ exp(−β′δ′Vn,m), the proposed move is rejected.

The MC simulation can capture the random movement of particles at the microscopic
level and thus accurately describe the trajectory, collision, and energy of these particles in
the short time step. In the past decades, the MC approach has been extensively applied to
simulate the mass transport and fouling behavior during the membrane filtration processes
of MF, UF, NF and RO, etc. The application of the MC approach for the simulation of
membrane fouling is listed in Table 2.

For porous UF/MF membranes, the MC simulation can be adopted to model the
behaviors of pore blocking [73–75], cake formation/structure [72,73] and phase transition
phenomenon [14]. For instance, Chen et al. [74] performed the MC method to simulate
particle capture and membrane pore blocking within the early stage of MF and found that
a narrow pore distribution and high porosity of the membrane was unfavorable for pore
blocking. Furthermore, Chen and co-workers [73] adopted the MC method coupled with
DLVO theory for cake layer formation simulation and found that the morphology and
density of the cake layer varied at different capture probabilities, which depended on the
energy barrier and flow modes. In addition to the above factors, the roles of the foulant
zeta potential, feed ionic strength, osmotic pressure, and the diffusion coefficient on the
volume fraction of the particle deposit process (i.e., phase transition phenomenon), can also
been simulated by the MC approach [76,77].

For nano/non-porous NF/RO membranes, an MC simulation can be utilized to
model the effects of membrane properties, membrane defects as well as foulant–membrane
interaction on mass transport and fouling. For example, Xu and Chen [78] adopted the MC
approach to investigate the effect of nanoparticles (NPs) in the active layer of a thin film
composite membrane on its flux enhancement, in which the addition of porous or even non-
porous NPs was simulated to produce an obvious flux elevation. Membrane defects were
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unavoidable in membrane fabrication [2,79]. With the help of the MC model, Elimelech and
co-workers [80] found that small imperfections in the stacking of 2D laminate nanosheets
led to the emergence of microporous framework defects in the membrane’s matrix. They
further found 2D nanomaterial frameworks with a packing density of 75% were projected to
achieve <92% NaCl rejection at a water permeability of <1 Lm−2 h−1 bar−1, even with ideal
interlayer spacing [81]. Liu et al. [82] also dissected the different effects of local defects on
fouling due to their local energy barrier towards the membrane surface. Through a collision–
attachment-based MC approach, Liu and co-workers [5] systematically investigated the
transitional fouling behavior from foulant–clean membrane interaction (F-M) to foulant–
deposited-membrane interaction (F-F) for colloidal fouling of NF/RO membranes. They
further applied the MC approach to dissect the effect of local defects of the local energy
barrier of the membrane surface and found that when F-F repulsion (Ef) was above a critical
value (Ec), flux stability was independent of defects; when Ef < Ec and Em (F-M energy
barrier)≥ Ec, large coverage or a low energy barrier of defects enhanced fouling; for Ef < Ec
and Em < Ec, serious fouling occurred with/without defects [82].

Besides the MF/UF and RO/NF processes, the MC method can also be applied to
model MD processes [83,84]. For example, Khayet and co-workers [83] performed the MC
method to examine heat and mass transfer applying direct contact MD process. Their MC
model can simultaneously simulate the vapor flux and membrane surface temperatures,
with the results well in agreement with the experimental data. Imdakm et al. [84] adopted
an MC simulation to describe the vapor flux in a vacuum distillation process, and found
that the higher feed temperature and larger pore size didn’t necessarily result in an elevated
vapor flux.

Despite the fundamental advances achieved, there are still some serious concerns
in implementing the MC method for predicting membrane fouling, including (1) most
reported MC models estimate the compressive force using only the cake volume fraction,
but cannot simulate the force summation or transfer phenomenon; (2) colloidal particles
can overcome the repulsive barrier, and directly contact and adhere to each other when the
hydrodynamic drag force is enhanced too much. In this condition, the MC simulation thus
cannot accurately evaluate the adhesion forces [72].

Table 2. Application of MC method for fouling simulation in different membrane systems from the
literature.

Membrane Aims Highlights References

MF

• Examining the pore blocking
phenomena in cross-flow
microfiltration

• Reduced pore blocking is observed in membranes
with a high porosity and narrowed pore
distribution.

• Particle concentration and size distribution have
significant influences on particles passing
through, being adsorbed, and sticking on the
membrane pore.

[74]

• Investigating the particle capture
at membrane surfaces in
cross-flow MF.

• Abrupt decline of permeability happens at short
times, while the stationary flux is observed at
long times.

• The quick reduction of permeability occurs with
increased foulant concentration.

• The permeability is more affected in a thinner
pore membrane.

[85]

• Simulation of the flux behavior
during the MF of
multi-dispersed iron oxide
particles.

• The major flux dominating parameter was cake
resistance rather than pore blocking for
non-flocculating situations.

• A porosity of 0.39 was obtained for
mono-dispersed particles, while a porosity of 0.33
was acquired for multi-dispersity.

[86]

UF

• Calculation of the osmotic
pressure and the diffusion
coefficient and characterizing the
cake layer development.

• Hypernetted Chain theory allowed the MC code
verification.

• The simulated osmotic pressure agreed well with
and the experimental data.

[76]
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Table 2. Cont.

Membrane Aims Highlights References

UF/MF

• Investigating the influence of
various operation conditions on
cake structure.

• A simple force balance model was developed for
a rational explanation of the calculated cake
volume fraction.

• The effects of operation parameters on the cake
reversibility were evaluated.

• A force accumulation and transfer model was
developed for the real filtration process.

[72]

• Simulating the pore blocking
and cake layer formation of
interfacial interactions.

• The capture probability is dependent on the
energy barrier and flow modes.

• The packing density reduces with the increased
capture probability.

• The resistance of the cake layer elevated with
higher capture probability.

[73]

RO

• Understanding water and solute
transport in thin film
nanocomposite (TFN)
membranes.

• The addition of a small amount of porous or even
non-porous NPs leads to an obvious flux
elevation.

• Thicker intermediate layer with minimized NPs
agglomeration is favorable to gain high flux.

[78]

RO/NF • Modeling the particle transport
and membrane fouling.

• Particle transport governed by the interplay of
hydrodynamic and electric effects can achieve a
more stable state than hydrodynamic effects
considered alone.

• Larger Reynolds numbers originated from higher
shear rates could keep more particles in the bulk
flow.

[87]

RO/NF

• Assessing the influences of
framework defects on the
performance of 2D nanomaterial
laminate membranes.

• 2D nanomaterial frameworks are extremely
tortuous (tortuosity ≈103) with water
permeability decreasing from 20 to
<1 Lm−2 h−1 bar−1 when thickness increased
from 8 to 167 nm.

• Framework defects allow salt to percolate through
the framework, hindering water–salt selectivity.

• 2D nanomaterial frameworks with a packing
density of 75% are projected to achieve <92%
NaCl rejection at a water permeability of
<1 Lm−2 h−1 bar−1, even with ideal interlayer
spacing.

[81]

• Revealing the origin of the
defects in the stacked nanosheets
and their impact on the overall
water-solute selectivity of the
lamellar 2D membrane.

• Small imperfections in the stacking of MoS2
nanosheets lead to the emergence of microporous
defects.

• These defects negated the interlayer sieving effect
and thus impaired the selectivity of the lamellar
structure.

[80]

• Simulating the fouling transition
from foulant–clean-membrane
interaction (F-M) to
foulant-fouled-membrane
interaction (F-F).

• The long-term membrane flux maintained
stability for high F-F energy barrier (Ef).

• Severe flux declines happened as both F-M energy
barrier (Em) and Ef are weak.

• A metastable flux behavior presented at the
combination of large Em but small Ef.

[5]

• Dissecting the role of membrane
defects with a low-energy barrier
on fouling development.

• When Ef was above a critical value (Ec), flux
stability was independent of defects.

• At Ef < Ec & Em ≥ Ec, large coverage or low
energy barrier of defects enhanced fouling.

• For Ef < Ec & Em< Ec, serious fouling occurred
w/o defects.

[82]

MD

• Studying heat and mass transfer
through hydrophobic
membranes applying direct
contact MD process.

• The proposed model can simultaneously predict
the vapor flux and membrane surface
temperatures.

[83]

• Describing the vapor flux across
the membrane in the membrane
distillation process.

• The higher feed solution temperature and higher
pore size do not necessarily increase the vapor
flux.

[84]
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3.3. Artificial Neural Networks (ANN)

ANNs are biologically-inspired computational networks, with a large number of nerve
cells or neurons which can work in parallel to promote rapid decision-making [88]. Due to
its high speed, simplicity, and powerful capability to learn and recognize trends within a
series of input and output data with high precision, the ANN is considered as a powerful,
fast and competitive alternative method for membrane fouling modeling [89].

An ANN is able to accurately predict the complex non-linear relationships among
variables in the system and simulate the impacts of these variables on fouling during MF,
UF, MBR and RO processes [90,91]. For instance, membrane fouling during crossflow MF
treatment of polydisperse suspensions was simulated by an ANN model previously, with
a highly accurate simulation of time-variant specific fluxes for different feed solutions
with a wide range of hydrodynamic parameters [92]. Meanwhile, the trans-membrane
pressure and membrane permeability of a submerged MBR has also been successfully
simulated using an ANN and the effects of simultaneous aeration on the membrane fouling
and contaminant removal efficiency were investigated through ANN modeling [93]. In
addition, ANNs have been applied in the dynamic simulation of protein crossflow UF,
in which total hydraulic resistance and permeate flux were accurately simulated with
excellent agreement with the actual data (average errors less than 1.1%) [94]. Moreover,
a good consistency was also observed using an ANN model (trained by a multi-layered
feed-forward network with a back-propagation algorithm) with the experimental flux data
during NF treatment of leather plant effluents, with a deviation no more than 1% [95].
More application of the ANN approach to the simulation of membrane fouling are listed in
Table 3.

Table 3. Application of ANNs for fouling simulation in different membrane system from the literature.

Membranes Aims Highlights References

RO

• An MLP-ANN with
back-propagation approach was
performed to predict the
dynamic Kw values for a RO
desalination plant.

• The Kw values were very closely to those
acquired by the existing correlations for the
operating pressure range and feed salinity.

• The effect of feed salinity on Kw value was more
significant at low pressure.

[91]

• MLP and RBF neural networks
were trained and developed to
predict total TDS concentrations
and permeate flow rates.

• ANN models showed a better simulation of
permeate flow rate.

• The accuracy of MLP (R = 0.9904) was slightly
better than that of the RBF model (R = 0.9853).

[96]

• ANNs were used to dissect the
crucial reasons for fouling in a
full-scale RO plant.

• Total chlorine, electrical conductance, and TDS
were essential parameters for early fouling.

• Turbidity, nitrate, organic nitrogen, and nitrite
were important indicators for later fouling.

[97]

• DNN was first time applied to
simulate cake growth and flux
decline based on real-time OCT
images.

• DNN could improve the prediction accuracy of
fouling layer growth of NF/RO membranes with
R2 > 0.99.

[98]

NF

• A bootstrap-based ANN was
developed to simulate the
rejections of organic matters.

• Good agreement was obtained between the
predicted and experimental rejections for the
bootstrap-based ANN model (R2 = 0.9862).

[99]

• ANN, SVM, and RF was
employed to forecast the
separation performance of an
organic solvent NF process.

• ANN obtained high accuracy in predicting the
permeance (R2 = 0.90) and rejection (R2 = 0.91). [100]
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Table 3. Cont.

Membranes Aims Highlights References

UF

• Short-term fouling fluctuations
were predicted during UF
process by the ANN incorporate
continuous fluorescence
characterization data.

• The trained neural networks offered a potentially
powerful modeling approach in predicting the
development of fouling resistance (mean
absolute percentage error <5%).

[101]

• ANN combined Darcy’s law
was to predict the specific cake
resistance and total suspended
solids in a UF pilot plant.

• The predicted specific cake resistance and TSS
data provided early indications of membrane
fouling propensity.

• Model provides an easy implementation to in an
industrial-scale UF plant.

[102]

MF
• An ANN was developed to

predict the characteristics of a
MF system.

• The prediction accuracy of permeation flux using
ANN (R2 = 0.996) was better than that of
complete blocking (R2 = 0.186), intermediate
blocking (R2 = 0.988), standard blocking
(R2 = 0.866), and cake filtration (R2 = 0.858).

[103,104]

MBR

• A feed-forward ANN model
was developed for the early
prediction of OMBR system
performance

• The most effective input variables for predicting
flux and fouling behavior were pH, conductivity,
ammonia nitrogen, and total nitrogen
concentrations.

[105]

• RBF-ANN was introduced to
predict the interactions of
sludge flocs—membranes.

• The trained RBF-ANN saved up to 98% of
computation time for quantification of the
interfacial interactions in comparation with the
XDLVO theory.

[106]

MD

• A feed-forward ANN was used
to model permeate flux in an air
gap MD system.

• The overall agreement between the ANN
predictions and experimental data was good
(R2 = 0.992).

[77]

• A combined ANN—GA was
developed to evaluate the effects
of operating parameters on
membrane fouling in MD.

• The model simulations were experimentally
validated with R2 > 0.98. [107]

Note(s): MLP: multilayer perceptron; RBF: radial basis function; DNN: deep neural network; SVM: support vector
machine; RF: random forest; MD: Membrane Distillation.

Compared to the traditional test methods and mathematical models, the ANN has
strong abilities of nonlinear mapping, self-learning, and self-adaption by using “black-box”
methods. However, the disadvantages of ANN simulation therefore are (1) operation
time, an important parameter for membrane separation, is ignored in ANN modeling;
(2) in-depth analysis of the algorithm is lacking for its selection; (3) the input variables of
the ANN are often selected based on experience without theoretical supports.

4. Conclusions

This review summarizes the application of mathematical modeling for fouling analysis
and prediction with regard to the aspects of principle, applicability, advantages, and
disadvantages. A series of fouling models and numerical simulation methods have been
applied to successfully predict membrane fouling in a variety of membrane separation
processes under different conditions. CP, cake layer formation, and pore blocking models
have been developed to simulate the fouling formation processes. CFD, MC, and ANN
simulations are the dominant algorithms for the microscopic behavior of foulant particles.
CFD is used to describe flow hydrodynamics during membrane processes, while the MC
approach is used to describe the random trajectory of foulant particles, and ANNs can
predict the fouling process in a comprehensive environmental matrix through “black-
box” learning methods. These models and algorithms are powerful tools for revealing
the essential fouling process from the perspectives of force and energy under various
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complex conditions. Compared to the traditional experimental tests for the study of
fouling, fouling analysis and prediction is more effective and rapid through mathematical
models and algorithms. This concise summary of fouling models and numerical simulation
approaches provides support for the appropriate selection and application of membrane
fouling modeling. These fouling models and simulations can be a powerful and cost-
effective tool to provide fouling control strategies for further field applications of membrane
technology.
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