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Abstract: In recent years, flash floods have become increasingly serious. Improving the runoff
simulation and forecasting ability of hydrological models is urgent. Therefore, data assimilation (DA)
methods have become an important tool. Many studies have shown that the assimilation of remotely
sensed soil moisture (SM) data could help improve the simulation and forecasting capability of
hydrological models. Still, very few studies have attempted to assimilate SM data from land surface
process models into hydrological models to improve model simulation and forecasting accuracy.
Therefore, in this study, we used the ensemble Kalman filter (EnKF) to assimilate the China Land
Data Assimilation System (CLDAS) SM product into the MISDc model. We also corrected the CLDAS
SM and assimilated the corrected SM data into the hydrological model. In addition, the effects of
the 5th and 95th percentiles of flow were evaluated to see how SM DA affected low and high flows,
respectively. Additionally, we tried to find an appropriate size for the number of ensemble members
of the EnKF for this study. The results showed that the EnKF SM DA improved the runoff simulation
ability of the hydrological model, especially for the high flows of the model; however, the simulation
for the low flows deteriorated. In general, SM DA positively affected the ability of the MISDc model
runoff simulation.

Keywords: data assimilation (DA); soil moisture (SM); CLDAS; the MISDc model; direct insertion (DI);
ensemble Kalman filter (EnKF)

1. Introduction

In recent years, with global climate change, the problem of flash floods has become
more and more serious, and the problem of flood forecasting has become a key issue. The
simulation and forecasting of floods in small- and medium-sized river basins (usually
<3000 km2), especially, has been a global problem. Many hydrological models have been
developed in the past decade to simulate and predict flood hazards. Due to the simple
structure and small computational effort of lumped hydrological models (which generalize
the watershed as a whole, ignoring the influence of the local unevenness of geology,
geomorphology, soil, vegetation and other elements on the hydrological cycle within
the watershed), they are often used to forecast floods in small- and medium-sized river
basins, and their forecast accuracy is no less than that of some distributed hydrological
models [1–3]. Uncertainties in a hydrological model’s structure and parameters [4], as well
as the quality of the data used to drive the hydrological model [5–8], can lead to errors in
runoff simulation and the misrepresentation of the real flood processes. Therefore, in recent
years, many scientists have proposed using data assimilation (DA) methods to correct the
process of hydrological model runoff simulations in anticipation of improving the forecast
accuracy of hydrological models [9,10].

DA is a key technique for modeling, as it is a way to evaluate and validate prediction
models, and it has gradually come to the forefront of research on ecohydrological processes
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and remote sensing inversion [11–14]. DA can consider the uncertainties of model structure
and model input data, and it can be used to make real-time corrections of hydrological
state variables (such as runoff and soil moisture (SM)) combined with observation data in
order to reduce the uncertainties of state variables and improve the prediction accuracy of
hydrological models. As a common DA method, the ensemble Kalman filter (EnKF) has
been widely used in SM DA [15,16]. The EnKF is a Monte-Carlo simulation based on the
Kalman filter (KF), which uses a set of state variables and observations superimposed with
noise perturbations to generate a set of analytical values (ensemble) of a system state field,
then assumes that the ensemble mean is true, estimates the error of each ensemble member,
obtains the error covariance matrix of the state field, and then uses the new observations
to update the error covariance [17]. The EnKF method has received much attention in the
field of hydrology because of its advantages in dealing with nonlinear problems in the
context of hydrological models.

SM is a key variable that regulates surface water and groundwater interactions as well
as energy exchanges between land and atmosphere [18]. In particular, SM measurements
contain information about the pre-storm hydrological state and storm rainfall estimates,
which are critical for accurate runoff simulations. Therefore, the assimilation of SM into hy-
drological models has become a viable approach to improve model runoff simulations [19].
Brocca, et al. [20] showed that pre-event SM conditions impacted runoff simulations, noting
that the runoff characteristics of a watershed (runoff depth and peak flow) were highly
correlated with pre-event SM, as assessed by the MISDc model. Therefore, SM can be
assimilated into a hydrological model to improve the model’s forecast accuracy. Due to the
spatial heterogeneity of soil texture, the spatial distribution of SM significantly varies from
location to location. As a result, it is difficult to obtain accurate regional or even global
SM by only relying on measurements from ground stations. Therefore, remote sensing
observations of SM and estimates acquired from the land surface process have become
necessary [21]. Large-scale SM data can be conveniently obtained through remote sensing
monitoring. However, remote sensing monitoring also has shortcomings in time and space
resolution, and errors in remote sensing data are generally larger than those of ground
station observation data. In addition, remote sensing monitoring can only provide surface
measurement, but hydrological simulations are concerned with SM at both the surface
layer and the root zone layer. Moreover, many studies have demonstrated that assimilated
remote sensing SM data can improve the accuracy of SM estimation and runoff simulation
in land surface process and hydrological models. For example, De Santis, et al. [22] assimi-
lated SM data from the European Space Agency (ESA) Climate Change Initiative (CCI) into
the MISDc-2L model in more than 700 small- and medium-sized river basins in Europe and
found that the DA method improved the simulation accuracy of the hydrological model in
many basins; Gavahi, et al. [23] assimilated SM data from SMOS and evapotranspiration
data from MODIS into the VIC model and found that the DA algorithm improved the
model simulation not only for surface SM (SSM) but also for root zone SM (RZSM), and
they used the SM data obtained by the DA algorithm for drought studies.

However, very few studies have assimilated SM data calculated by a land surface
process model into a hydrological model in DA experiments to see whether the land
surface process model positively affected the hydrological model forecasts. The coupling
of land surface process models with hydrological models, especially with grid hydrological
models, is relatively easy. In flash flood forecasting, lumped hydrological models are most
often used. The structure of a lumped hydrological model is different from that of a land
surface process model, so how to couple land surface and lumped hydrological models
and how to use the simulation results of a land surface model to improve the simulation
accuracy of a lumped hydrological model are questions worth considering. In this paper,
we assimilated land surface process SM data into a lumped hydrological model (MISDc)
as an example and propose the idea that lumped hydrological models can be used for
hydrological flood forecasting studies. There are many land surface process data products
that can be generated (e.g., SM data, evapotranspiration). If these products can be used in
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lumped hydrological models, could they have positive effects on hydrological modelling
studies? The influence of land surface processes on hydrological processes was considered.
The fact that the studied land surface process model had RZSM data and that the data were
updated in real time facilitated the SM DA experiments.

Although land surface process models can, under certain circumstances, make accurate
estimates of SM, they also contains many uncertainties [24]. For example, (1) the quality
and quantity of the data used to drive a model has a significant influence on the quality
of its final outputs [5–8]; (2) parameter estimation errors of a model are inevitable, which
may lead to large errors at the model input site [4]; and (3) the simple representation of
real processes in nature by land surface process models and hydrological models lead
to assumptions and simplification errors, which lead to problems in the simulation of
complex, realistic conditions [25]. However, the SM data from the land surface process
model can be bias -corrected to obtain a more accurate set of SM data before assimilation
studies of SM data are conducted. Wang, et al. [26] used a back-propagation neural network
(BPNN) to train SM data at 0–10 cm of the China Land Data Assimilation System (CLDAS)
product and 0–10 cm of in -situ observations in the Huai River Basin. A new set of SM
data (CLDAS-BPNN SSM) was obtained. The results showed that the BPNN method could
reduce the bias of the original CLDAS results without destroying the temporal correlation
between the original CLDAS results and the in-situ observations.

The main DA method used in this paper was the ensemble Kalman filter (EnKF)
method, and the direct insertion (DI) method was compared with it. The hydrological model
used in this paper was the event-based rainfall–runoff (RR) “Modello Idrologico Semi-
Distribuito in continuo” (MISDc) model. This model was first proposed by Brocca, et al. [27]
and then improved by Brocca, et al. [28], and the improved version was used in this
paper. Although the MISDc model has a simple structure, its simulation accuracy of flood
processes is adequate [24,29]. In addition, the single-layer version of the MISDc model can
directly assimilate SM data of a corresponding soil layer once the soil layer thickness is
determined, which was of great convenience to our research. The MISDc model has been
widely applied in Italy and other European countries, as well as in research on remote
sensing SM data assimilation [20,22,24,29–33]. Therefore, this paper used the MISDc model
for SM DA experiments. The study was carried out in three sub-basins of the Huai River
Basin in China, ranging in area from 200 to 3000 km2. The SM data used in this paper
were from a CLDAS SM product published by the China Meteorological Administration
(http://data.cma.cn (accessed on 10 September 2022)). Its data accuracy in China is superior
to competing SM products [34]. In addition, the cumulative distribution function (CDF)
matching method [35] was applied to match the CLDAS-BPNN SSM data with the CLDAS
data to calculate a five-layer time series of CDF SM data.

In this work, due to the uncertainties of the input forcing data of the MISDc model,
the representation of SM by the model was found to be poor, which led to poor runoff
simulation. Therefore, we intended to use DA technology to improve the ability of the
MISDc model to simulate runoff in the Huai River Basin of China. Since the accuracy of
CLDAS SM data in the Chinese region is higher than other products of the same type and
because the data contain precious information on SM variability, we attempted to assimilate
CLDAS SM data into the MISDc model to answer the following questions:

1. Which layer of CLDAS SM data is most suitable for DA experiments in the MISDc
model? (Section 2.6);

2. To what extent does the assimilation of CLDAS SM products improve the runoff
simulation capability of the model? What is the effect of SM bias correction (i.e., using
CLDAS-BPNN SSM data) on the results? (Section 3.3);

3. What are the implications of using the EnKF method for high and low-flow simula-
tions in the hydrological model? (Section 3.4);

4. What is the effect of different ensemble numbers on the results of the EnKF method
for the hydrological model runoff simulations? (Section 3.2).

http://data.cma.cn
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The structure of this paper is as follows: Section 2 introduces the study area and the
data we used, and also presents the specific operation process of the hydrological model
(MISDc), the CDF, and the EnKF method, as well as the performance indexes used in this
paper. Section 3 introduces the results of this paper. Section 4 discusses the results of this
paper. Section 5 is a summary of this paper.

2. Materials and Methods
2.1. Study Area

The Huai River Basin, which spans the Henan, Anhui, Jiangsu and Shandong provinces,
plays an extremely important role in Chinese economic and social development. The arable
land area of the basin is about 130,000 km2 (accounting for about 12% of the total arable
land area of the country), the grain output accounts for about 1/6 of the total output of the
country, and the commodity grain supply accounts for about 1/4 of the total output of the
country [36]. As a result, this basin plays a pivotal role in the national food security system.

The Huai River Basin is located between 111◦55′ E to 121◦25′ E and 30◦55′ N to
36◦36′ N, covering an area of 274,657 km2. It is located in the transitional zone of climate
between the north and south of China and belongs to the semi-humid monsoon climate
zone of a warm temperate zone. Its annual average temperature ranges from 11 ◦C to
16 ◦C, increasing from north to south and from coastal to inland. The highest monthly
average temperature in July is about 27 ◦C, and the lowest monthly average temperature in
January is about 0 ◦C. The relative humidity in the basin is relatively high, with an average
of 66%~81% for many years. In summer, it is generally more than 80%, and in winter, it
is about 65%. The annual sunshine hours range from 1990 to 2650 h. The average annual
precipitation is about 895 mm, and the average annual runoff depth is 221 mm. The annual
average surface evaporation is 1060 mm.

To illustrate the generalizability of the MISDc model for SM DA on the Huai River
basin, three small- and medium-sized river basins in the Huai River basin were randomly
selected. The Wangwuqiao (WWQ), Dapoling (DPL) and Changtaiguan (CTG) sub-basins
of the Wangjiaba Basin in the southwest of the Huai River Basin were selected as per the
study area. The specific locations of the three basins are shown in Figure 1. The areas of
the WWQ, DPL, and CTG basins are 200, 1640 and 3090 km2, respectively. As can be seen
from Figure 1c, the WWQ Basin is relatively flat and belongs to a plain landform, with an
elevation ranging from 51 to 84 m with little difference. As can be seen from Figure 1b, the
DPL basin is a sub-basin of the CTG basin, which has a high altitude, with the highest areas
reaching 1110 m in elevation and a net elevation difference of more than 1000 m.

2.2. Observed Discharge Data

The observed discharge data of the three hydrological stations (Wangwuqiao station,
Dapoling station and Changtaiguan station) used in this paper were from the daily mean
flow tables of the Hydrological Yearbook. The time series of the data was from 1 January
2010 to 31 December 2017, of which 1 January 2010 to 31 December 2014 was used for
the calibration of the MISDc model and 1 January 2015–31 December 2017 was used
for validating.

2.3. China Land Data Assimilation System Product
2.3.1. Forcing Data

The rainfall and temperature data were from the CLDAS atmospheric forcing product
V2.0, which covers the Asian region (0–65◦ N, 60–160◦ E), with a spatial resolution of
0.0625◦ × 0.0625◦ and a temporal resolution of 1 h. Its quality in China was evaluated
using more than 2400 national automatic station time observations.

The rainfall product was formed by interpolating satellite precipitation products
(FY2/EMSIP precipitation products) to analyze grid points outside the Chinese region and
by interpolating fused rainfall products to analyze grid points within the Chinese territory.
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The correlation coefficient (R) of hourly rainfall data was calculated as 0.72, the RMSE was
0.94 mm/h, and the deviation was −0.004 mm/h. The unit of the product is mm/h.
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(d) Dapoling (DPL) basin and (e) Changtaiguan (CTG) basin.

The temperature product was formed by using the ECMWF numerical analysis/forecast
product as the background field. The part within the Chinese region was formed by fusing
the ground-based automatic station observation data using topographic adjustment and
multiple grid variation techniques (STMAS). The part outside the Chinese territory was
created with topographic adjustment, the variable diagnosis of the background field, and
interpolation of the analysis grid points. The temperature product’s correlation coefficient
(R) was 0.97, the RMSE was 0.88 K, and the deviation was −0.13 K. The unit of the product
is K. The average CLDAS values of all grids in the three basins were used as rainfall and
temperature data of the corresponding study area.

2.3.2. Soil Moisture Data

The SM data from the CLDAS SM product were based on the multi-model averaging
of three different land surface models (i.e., CLM3.5, CoLM, and Noah-MP) and generated
by the China Meteorological Administration within an East-Asian domain that covers the
Asian region (0–65◦ N, 60–160◦ E), with a spatial resolution of 0.0625◦ × 0.0625◦ and a
temporal resolution of 1 h.

The SM analysis product contains five soil layers between 0 and 5, 0 and 10, 10 and
40, 40 and 100, and 100 and 200 cm. The product was in good agreement with actual
observations on the ground. The national average correlation coefficient (R) was 0.89, the
RMSE was 0.02 m3/m3, and the deviation was 0.01 m3/m3. The unit of the product is
m3/m3. The average CLDAS SM values of all grids in the three basins were used as SM
data of the corresponding study area.
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Because of the systematic deviation caused by model parameters and structural errors
of CLDAS SM products, we needed to conduct deviation correction of the CLDAS SM
data before conducting our SM DA experiments. Wang, et al. [26] used a back propagation
neural network (BPNN) model to map the relationship between in situ SM observations and
each corresponding CLDAS grid at the original spatial resolution in the Huai River Basin,
China. Based on his study, the CLDAS-BPNN SSM data were generated. According to his
work, the CLDAS-BPNN data can reduce the bias in the original CLDAS results without
damaging the temporal correlation versus in situ observations, and the CLDAS-BPNN data
showed better results than the original CLDAS data. Based on these positive results, the
CLDAS-BPNN product can be used for data assimilation [26].

It is worth noting that the CLDAS-BPNN SMM data corresponded to the CLDAS SM
data at 0–10 cm, and the SM data correction for the other layers of the CLDAS is described
in Section 2.5.

2.4. Hydrological Model

The hydrological model used in this paper was the MISDc model (“Modello Idrologico
Semi-Distribuito in continuo”). The MISDc model is a single-layer model, and it consists of
two main components, i.e., a soil water balance (SWB) model and a semi-distributed event-
based rainfall–runoff (RR) model. The SWB model simulates the temporal patterns of SM
and sets initial conditions for the second component (the RR model, used for flood process
simulation). The two models are coupled through a simple linear relationship between the
saturation (W(t)/Wmax) and the soil retention parameter (S) of the soil retention service
curve number (SCS-CN) method [20].

The SWB model considers the temporal evolution of soil water in a single soil layer,
and the soil water balance equation is the main equation, that includes infiltration, drainage
and evapotranspiration. The Green–Ampt equation expresses the infiltration, the drainage
is represented by a nonlinear gravity equation [37], and the potential evapotranspiration
(ETp(t)) is expressed according to the modified Blaney–Criddle equation [38]. The RR
model uses the SCS-CN method to estimate loss and geomorphic instantaneous unit
process lines (IUH) and linear reservoir IUH to route excess rainfall in catchments and in
areas directly discharging into the main channel, respectively [39].

The MISDc model contains eight parameters and is characterized by a low computa-
tional effort that is very attractive for hydrological practice. The details of the parameters
are listed in Table 1. For a detailed description of the MISDc model, the reader is referred
to the work of Brocca, et al. [30] and Brocca, et al. [20].

Table 1. Description of MISDc model calibration parameters, units and ranges.

Model Component Parameter Description Unit Range

SWB Wmax Maximum water storage of the soil layer mm 100–1000
Ks Saturated hydraulic conductivity mm/h 0.01–20
m Drainage exponent - 5.0–60

Nu Fraction of drainage versus interflow - 0–1.0
b Correction coefficient for the potential evapotranspiration - 0.4–2.0

RR η Lag–area relationship parameter - 0.5–6.5
λ Initial abstraction coefficient - 0.0001–0.2
a Relationship between modelled SM and the S of the SCS-CN method - 1.0–5.0

2.5. Cumulative Distribution Function

The cumulative distribution function (CDF) was first proposed by [35]. We used this
method to relate the 0–10 cm layer of CLDAS SM data to other layers one by one and then
extrapolate the SM data of different layers from CLDAS-BPNN SSM data. Figure 2 shows a
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concrete representation of this process. The central content is the same cd f value between
the matching data, i.e.:

cd f (XCLDAS−BPNN) = cd f (XCLDAS_Li) (1)

where XCLDAS−BPNN stands for the SM data from the CLDAS-BPNN SSM (the SM data of
0–10 cm) and XCLDAS_Li stands for the other layers SM (besides 0–10 cm) from CLDAS.
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Figure 2. A graph showing how the CDF of CLDAS-BPNN SSM was adjusted into that of SM at
other layers.

So, based on the CLDAS-BPNN SSM data, the SM data from the five CLDAS lay-
ers were reanalyzed and processed with the CDF method (Equation (1)) to generate the
corresponding BPNN-05, BPNN-40, BPNN-100 and BPNN-200 data for subsequent DA
experiments. For the convenience of writing, the CLDAS-BPNN SSM data are recorded as
BPNN-10 in a uniform format.

2.6. Determination of the Thickness of the Model Soil Layer

Since the CLDAS SM data used in this paper represented soil water content and
soil water storage was required to conduct the DA experiment, the magnitude of the
soil thickness (L) simulated by the model needed to be determined when performing the
transformation of these two variables. The determination was conducted by calculating the
correlation between the soil water storage obtained from the model simulation and the soil
water storage of CLDAS at different depths (z), with z corresponding to the maximum value
of the correlation was the thickness of the soil layer of the MISDc model in the basin [24,32].

In this paper, SM information for any soil depth between 0 and 200 cm, θCLDAS,
was obtained via the weighed mean of the soil moisture provided by the related layer,
according to:

θCLDAS = θ1 : z ≤ 5cm
θCLDAS = θ2 : 5 < z ≤ 10 cm

θCLDAS = 10θ2+(z−10)θ3
z : 10 < z ≤ 40 cm

θCLDAS = 10θ2+30θ3+(z−40)θ4
z : 40 < z ≤ 100 cm

θCLDAS = 10θ2+30θ3+60θ4+(z−100)θ5
z : 100 < z ≤ 200 cm

(2)

where θi (i = 1, 2, 3, 4, 5) is the SM for each of the five layers of the CLDAS product and z
is the parameter representing the depth. The SM data obtained from CDF calculations at
different depths were processed in the same way.

Since the time series of the DA experiment was from 31 March 2015 to 31 March 2018,
the data from the same time series were to determine the thickness of the soil layer for
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the model. We set z to vary from 0 to 200 cm, calculated a series of soil water contents
according to Equation (2), and correlated them with the model output soil water content.
Figure 3 shows the trend of the correlation coefficients between the soil water storage at
different depths of CLDAS and the soil water storage obtained from the model simulation.
From Figure 3, we can see that the value of R calculated for these three basins reached its
maximum value near z = 100 cm. As a result, integrated soil water storage from 0 to 100
cm was used to form the data for the assimilation experiment.

Water 2022, 14, x FOR PEER REVIEW 8 of 23 
 

 

the soil water storage of CLDAS at different depths (𝑧), with 𝑧 corresponding to the 296 
maximum value of the correlation was the thickness of the soil layer of the MISDc model 297 
in the basin [24,32]. 298 

In this paper, SM information for any soil depth between 0 and 200 cm, 𝜃େ୐ୈ୅ୗ, was 299 
obtained via the weighed mean of the soil moisture provided by the related layer, ac- 300 
cording to: 301 

1

2

2 3

2 3 4

2 3 4 5

: 5cm
:5 10cm

10 ( 10) :10 40cm

10 30 ( 40) : 40 100cm

10 30 60 ( 100) :100 200cm

CLDAS

CLDAS

CLDAS

CLDAS

CLDAS

z
z

z z
z

z z
z

z z
z

θ θ
θ θ

θ θθ

θ θ θθ

θ θ θ θθ

= ≤
= < ≤
+ −= < ≤

+ + −= < ≤

+ + + −= < ≤

 (2)

where 𝜃௜ (i=1, 2, 3, 4, 5) is the SM for each of the five layers of the CLDAS product and 𝑧 302 
is the parameter representing the depth. The SM data obtained from CDF calculations at 303 
different depths were processed in the same way. 304 

Since the time series of the DA experiment was from 31 March 2015 to 31 March 305 
2018, the data from the same time series were to determine the thickness of the soil layer 306 
for the model. We set 𝑧 to vary from 0 to 200 cm, calculated a series of soil water con- 307 
tents according to Equation (2), and correlated them with the model output soil water 308 
content. Figure 3 shows the trend of the correlation coefficients between the soil water 309 
storage at different depths of CLDAS and the soil water storage obtained from the mod- 310 
el simulation. From Figure 3, we can see that the value of 𝑅 calculated for these three ba- 311 
sins reached its maximum value near 𝑧 = 100 cm. As a result, integrated soil water stor- 312 
age from 0 to 100 cm was used to form the data for the assimilation experiment. 313 

 314 
Figure 3. The correlation coefficient (R) between soil water storage of MISDc and CLDAS at different depths for the 315 
three basins. 316 

2.7. Ensemble Kalman filter 317 
The ensemble Kalman filter (EnKF), as a sequential data assimilation method, was 318 

proposed by Evensen [9] and has been widely used in various fields. Since most land 319 

Figure 3. The correlation coefficient (R) between soil water storage of MISDc and CLDAS at different
depths for the three basins.

2.7. Ensemble Kalman Filter

The ensemble Kalman filter (EnKF), as a sequential data assimilation method, was
proposed by Evensen [9] and has been widely used in various fields. Since most land
surface processes are moderately nonlinear and the EnKF can deal with such systems with
high reliability, it has been widely recognized and applied to land surface modeling. In
particular, the EnKF has the following advantages: (1) the assimilation system is relatively
easy to implement; (2) for discontinuous and nonlinear models, good assimilation results
can also be achieved; and (3) based on the Kalman filter, it overcomes the weakness that
model operators need to be linearized.

The members (N members) of the system synthesis updated at time k (X f
i,k, i = 1, 2, . . . , N)

are propagated through the state transfer function:

X f
i,k+1 = f (Xa

i,k, ui,k, vi,k) (3)

where superscripts a and f represent the analytical process and the forecast process, respec-
tively. Xi,k+1 is the value of the ith state variable at time k + 1; ui,k represents the perturbed
forcing data and vi,k is white Gaussian noise with mean equal to zero and variance equal
to Qk.

The main equation for EnKF implementation is as follows:

Xa
i,k+1 = X f

i,k+1 + Kk+1

[
Zk+1 − H(X f

i,k+1) + ηi,k+1

]
(4)

where Z is the observed value, H is the observation operator, ηi,k+1 is white Gaussian
noise with a mean equal to zero and variance equal to Rk+1, and Kk+1 is the Kalman gain
matrix [40]:

Kk+1 = P f
k+1HT(HP f

k+1HT + Rk+1)
−1

(5)
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In Equation (5), P f
k+1 is the priori information error variance prediction matrix at the

moment k + 1:

P f
k+1 =

1
N − 1

N

∑
i=1

(X f
i,k+1 − X f

k+1)(X f
i,k+1 − X f

k+1)
T

(6)

where N is the number of ensemble members, which is discussed in Section 3.2.
Figure 4 shows the application of the EnKF method and the DI method on the

MISDc model.
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2.8. Performance Indexes

Three indexes were used to describe the model performance during the calibration
and validation periods. The first one was the Nash efficiency coefficient, NS [41]:

NS = 1−

n
∑

t=1
(Qobs −Qsim)

2

n
∑

t=1
(Qobs −Qobs)

2 (7)

where n is the period of analysis, Qobs is the observed discharge, Qsim is the discharge
simulated by the model and Qobs is the mean discharge during the period n.

The second one was ANSE (Equation (8)), which evolved from NS and is also used to
describe high flow conditions [42]. The third one was the correlation coefficient, R, which
was used to reflect the degree of fit between Qobs and Qsim.

ANSE = 1−

n
∑

t=1
(Qobs + Qobs)(Qsim + Qobs)

n
∑

t=1
(Qobs + Qobs)(Qobs + Qobs)

(8)
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In order to evaluate the improvement of the model runoff simulation via data assimila-
tion, we used the Normalized Root Mean Squared Error (NRMSE) to qualitatively describe
it [43]:

NRMSE =

1
N

N
∑

i=1

√
1
n

n
∑

t=1
(Qi

a(t)−Qobs(t))
2

1
N

N
∑

i=1

√
1
n

n
∑

t=1
(Qi

sim(t)−Qobs(t))
2

(9)

where Qa is the discharge obtained by using the two data assimilation methods. At the
same time, to separately evaluate the impact of data assimilation technology on high and
low flows, we used the ANSE index for the high flows and the NS(logQ) index for the low
flows. NS(logQ) is the NS of the logarithm of the flow [33]:

NS(log Q) = 1−

n
∑

t=1
[log(Qsim + ε)− log(Qobs + ε)]2

n
∑

t=1

[
log(Qobs + ε)− log(Qobs + ε)

]2 (10)

where ε is a very small number to ensure that the value of log(·) is not zero.
For all of the above evaluation indicators, the closer the value of NS and R is to

one, the better the simulation results will be. An NRMSE greater than one indicates the
deterioration of data assimilation results, while an NRMSE of less than one indicates
relative improvement. For the difference between simulated values of the high and low
flow before and after data assimilation, the results of ∆ANSE and ∆NS(logQ) are worse if
less than zero and improved if greater than zero.

The flow chart schematic of this study is shown in Figure 5. This study is divided into
three major parts: the calibration and validation of model parameters, the pre-processing
of SM data, and the experimental part of DA.
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3. Results
3.1. Model Calibration and Validation

Prior to DA, the MISDc model was driven using CLDAS rainfall and temperature
data, and the observed discharge data were used to verify the accuracy of the simulated
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runoff. From 1 January 2010 to 31 December 2014, the parameters were calibrated, and
from 1 January 2015 to 31 December 2017, the model was validated. A comparison between
the runoff simulated by the MISDc model and the observed discharge is shown in Figure 6.
The used evaluation index formulas are shown in Equations (7)–(9), and their results and R
are shown in Table 2.
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Table 2. Performance of the MISDc model in the calibration and validation periods for the
three basins.

Catchments
Calibration

(1 January 2010–31 December 2014)
Validation

(1 January 2015–31 December 2017)

NS ANSE R NS ANSE R

WWQ 0.494 0.532 0.799 0.512 0.688 0.737
DPL 0.561 0.641 0.750 0.594 0.806 0.795
CTG 0.374 0.487 0.676 0.628 0.856 0.829

As shown in Table 2, the NS coefficients of the three basins ranged from 0.374 to 0.561
during the calibration period and from 0.512 to 0.628 during the validation period. In
general, the NS values in these three basins were generally accepted during the calibration
and validation periods. Similarly, for the ANSE index, values in the calibration period
ranged from 0.487 to 0.532, and values in the validation period ranged from 0.688 to 0.856.
These results may be due to the fact that the model did not simulate high flows well in
all three basins during the calibration period, while the model was able to simulate the
flooding process better during the validation period (Figure 6). In general, the results of
the ANSE values were satisfactory. As for R, the values were greater than 0.65 in the three
basins, in both the calibration and validation periods. In general, the results of linear fitting
were acceptable.

Overall, the simulation results of the model were not perfect, probably due to errors
in our input rainfall and temperature data. Still, such results were satisfactory enough for
our DA experiment. Moreover, the results of the model in the open-loop (OL, i.e., without
assimilation) for the period of the DA experiment (31 March 2015–31 December 2017) were
good enough.

3.2. The Influence of Different Numbers of Ensemble Members on the Results of the EnKF Method

In order to satisfy the problems of both computational accuracy and computational
cost, the number of EnKF ensemble members was investigated in this study. We calculated
the NRMSE values by varying the number of ensemble members (20, 50, 100, 200, and
500) during the assimilation period (31 March 2015–31 December 2017) and determining
the size of the number of ensemble members by comparing the NRMSE values. Figure 7
shows the NRMSE values for these three basins.
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As we can see from Figure 7, when changing the number of ensemble members,
the values of NRMSE of the three basins did not numerically change much, fluctuating
between 0.97–0.99 of CLDAS SM DA and 0.95–0.98 of BPNN SM DA for the WWQ basin,
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between 0.96–0.99 of CLDAS SM DA and 0.94–0.98 of BPNN SM DA for the DPL basin, and
between 0.97–0.99 of CLDAS SM DA and 0.96–0.98 of BPNN SM DA for the CTG basin. The
growth rates of NS calculated for different numbers of ensemble members were counted,
and the results are shown in Figure 8. As can be seen from Figure 8, no outliers were found
in the growth rate of NS calculated by changing the size of the ensemble members, and
they all fluctuated within a normal range. Through the boxplot, we can conclude that
changing the size of the ensemble members had little influence on the result of the EnKF
SM DA.
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However, for all three basins, when the number of ensemble members was set to
100, the values of NRMSE were all minimum. Therefore, when conducting the EnKF DA
experiment, the size of N was decided to be set to 100. In addition, as can be seen from
Figures 7 and 8, when BPNN SM DA was carried out, the indicators of runoff results
obtained by the model simulation were generally superior to those obtained by CLDAS
SM DA.

3.3. Data Assimilation Experiments

In this paper, two DA methods were used, i.e., the direct insertion (DI) method and
the ensemble Kalman filter (EnKF) method. Two types of SM data were assimilated into the
MISDc model to compare the effect of assimilating the corrected SM data (BPNN SM) and
the uncorrected SM data (CLDAS SM) on the model runoff simulation results. The study
period was from 31 March 2015 to 31 December 2017. The results of the NS coefficients are
represented in the “OL” row of the Table 3, where “OL” indicates the open-loop state or
only the result of model simulation without assimilation.
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Table 3. Results of the two methods SM DA for the three basins.

Catchments
WWQ DPL CTG

NS NRMSE NS NRMSE NS NRMSE

OL 0.510 0.593 0.678

DI
CLDAS 0.025 1.411 −0.121 1.660 0.120 1.653
BPNN 0.007 1.423 −0.124 1.662 0.109 1.664

EnKF
CLDAS 0.531 0.978 0.621 0.965 0.696 0.972
BPNN 0.551 0.957 0.637 0.944 0.702 0.962

Using the DI method, the SM content calculated by the model (SMsim) was directly re-
placed by the observed SM data (SMobs). In the flowchart in Figure 4, the DI method
is indicated by the blue dotted line. Here, the DI method did not involve the SWB
model component of the MISDc model. Instead, the simple linear relationship equa-
tion was directly calculated using SMobs data, and then the result was brought into the
RR model component to obtain the assimilated flow (Qa). The results of the two kinds of
SM data assimilated into the MISDc model using this method are shown in the “DI” row
of Table 3. From the results, we can see that when the DI method was used, the values
of the NS coefficients in all three basins decreased. The values of NRMSE were greater
than 1 (indicating worsening results), regardless of which of the two kinds of SM data
were assimilated. This phenomenon indicated that the results were less satisfactory when
only the model-simulated SM data were replaced by the soil moisture data for the DA
experiment, i.e., when the DI method was used. This is a well-known possibility in land
DA. The DI method assumes the observations are perfect but ignores the influence of the
structure of the hydrological model on the errors caused by real-world generalization. It
has been shown the overestimating the quality of assimilated observations can degrade
relative a DA system relative to an open loop. Therefore, there was a strong need for an
experimental DA study using the EnKF method.

The EnKF method was implemented as described in Section 2.7. In the flowchart in
Figure 4, the EnKF method is indicated by the red dotted line (note that the time state
process for the EnKF method is not shown in the figure). According to Section 2.7 and
Figure 4, we know that the EnKF method considers not only the SM data used for assimila-
tion (SMobs) but also the SM data obtained from model calculations when performing SM
DA (SMobs represents the optimal SM value obtained by the EnKF). This is how the EnKF
method differs from the DI method. The issue of the parameters to be set when the EnKF
method was used is described in Section 3.2. The “EnKF” row of Table 3 shows the results
of the method assimilating the two kinds of SM data.

As we can see from Table 3, the results improved (all NS values increased and all
NRMSE values were less than 1) when assimilating the two kinds of SM data into the
MISDc model by using the EnKF method for each of the three basins. Among them, the
most significant improvement in the results of model runoff simulations was found in the
DPL basin (NRMSE = 0.965 and 0.944), followed by the WWQ basin (NRMSE = 0.978 and
0.957) and the CTG basin (NRMSE = 0.972 and 0.962). Additionally, when assimilating the
SM data from the BPNN, i.e., SM data after deviation correction, the results of the perfor-
mance indexes were generally better than the results of the performance indexes calculated
by directly assimilating CLDAS SM. However, the improvement was not numerically
very high.

3.4. The Impact of the EnKF Method on High and Low Flows

Although it can be concluded from Table 3 that the model runoff simulation results
were improved when assimilating the two kinds of SM data into the MISDc model via the
EnKF method, the table does not directly express improvements for high and low flows
in these three basins. The selection rule was less than the 5th discharge percentile for the
determination of low flows. To determine high flows, the selection rule had to be greater
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than the 95th discharge percentile. Therefore, the high and low flows were analyzed within
each of the three basins, and the results are summarized in Figure 9. The index of low
flows was the difference between NS(logQ) before and after assimilation, ∆NS(logQ), while
the index of high flows was the difference of ANSE before and after assimilation, ∆ANSE.
Therefore, values of ∆NS(logQ) and ∆ANSE of greater than zero indicate the improvement
of the assimilation results, while values of less than zero indicate the deterioration of the
assimilation results.
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(a) NS(logQ) was well suited for highlighting the performance in the reproduction of low flows,
(b) ANSE was used for characterizing the agreement of high flows.

As can be seen from Figure 9, the EnKF method had a certain deterioration effect on
low-flow simulations in all three basins (except for assimilation BPNN SM in the WWQ
basin) demonstrated some improvements in high-flow simulations in all three basins. For
our flood forecasting, we tend to focus more on high-flow situations. Therefore, improving
the high-flow simulation results was satisfactory for our study. In Figure 9b, we can see
that the red part is higher than the blue part, which indicates that a DA study using the
corrected SM data could better improve the runoff simulation results of the model.

Generally, when assimilating CLDAS or BPNN SM data into the MISDc model using
the EnKF method, the model somewhat deteriorated for low flows but somewhat improved
for high and total period flows. This finding was satisfactory for flood forecasting in our
small- and medium-sized river basins.

4. Discussion

In our present study, we investigated the performance of the MISDc model on three
small and medium-sized river basins in the upper Huai River basin. In general, the perfor-
mance of the MISDc model for these three basins was found to be satisfactory, although the
model did not simulate the high flow component very well. This may have been due to
errors in the input forcing data and topographic conditions in these three basins, which also
occur in runoff simulations when using other models (e.g., HBV model; see Appendix A).
Therefore, there was an urgency for us to conduct a DA study. In the DA experiments, we
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investigated the effect of assimilating CLDAS SM data with the DI and EnKF methods on
the runoff simulation capability of the MISDc model. However, the results of the model
runoff simulation deteriorated when the DI method was used, a finding that was similar
to that of Nayak, et al. [44]. Nayak, et al. [44] used GLDAS SM as the initial SM condition
of a model (that is, the DI method in this paper), but found that the performance of the
model decreased. This demonstrates the importance of model errors in data assimilation
techniques. Berardi, et al. [45] proposed a new data assimilation technique based on the
EnKF that was applied in some comprehensive experiments showing improvements over
the classical ensemble Kalman filter, especially for problems with large model errors. Jamal
and Linker [46] proposed an adaptive inflation method within the EnKF framework that
updates the inflation factor in each time step based on model predictions and collected mea-
surements, and they conducted two case studies and found that the method outperformed
other existing methods. These results could be helpful for our future work. In the EnKF
method, the assimilation of SM data contributed to the improvement of the model runoff
simulation, and the CLDAS SM DA led to improvement for high flows but deterioration
for low flows.

For the small- and medium-sized river basins we studied, flash floods quickly come
and go, so timely forecasting helps us to prevent and control disasters. Therefore, EnKF
SM DA is particularly important for improving high-flow simulation. However, EnKF SM
DA worsened the simulation of low flow in our study, which was similar to the results of
Massari, et al. [33]. Massari, et al. [33] found that when SM was assimilated into the MISDc
model, the simulation of low flow was deteriorated for most basins while the simulation of
high flow was improved.

In this study, CLDAS SM was used in our DA experiment. Compared with remote
sensing SM products, CLDAS SM has real-time data release, which is convenient for our
future research on SM DA to improve the runoff prediction ability of the hydrological
model. In fact, SMOS and SMAP satellite remote sensing SM products also have RZSM
data (SMOS L4 and SMAP L4) [47,48], so in future studies, we can consider adding the
RZSM data of these two products to compare them with CLDAS SM products. When
conducting the DA experiments, we did not update the model parameters regardless of
whether the DI method or the EnKF method was used. In fact, whether or not a model’s
parameters are updated when conducting DA experiments was shown to make a difference
in the final results [49]. Therefore, we suspect that this may be one of the reasons why SM
DA using the DI method led to the decline of the runoff simulation ability of the model,
and this aspect can be further researched in a follow-up study.

5. Conclusions

An experimental DA study of the MISDc model was conducted on three small- and
medium-sized river basins in the upper Huai River basin using the DI and EnKF methods.
The CLDAS SM was assimilated into BPNN SM data after the correction of CLDAS using
a back propagation neural network and cumulative distribution function to improve the
hydrological model’s runoff simulation. The MISDc model’s runoff simulation deteriorated
when the DI method was used, regardless of the assimilated SM data. However, when
the EnKF method was used, the ability to assimilate SM data to simulate runoff from the
MISDc model improved and the improvement was more pronounced when assimilating
BPNN SM data. Although the EnKF method showed deterioration in the results for model
simulations at low flows, its improvement for model simulations at high flows cannot
be ignored. While varying the number of ensemble members for the EnKF method, the
fluctuation of the NRMSE was not very large. Still, the value of the NRMSE reached its
minimum when the number of ensemble members was 100 in all three study areas. This
finding led us to set the number of ensemble members to 100 when using the EnKF in this
study, which ensured the accuracy of the calculation results and reduced the cost of the
calculation. Since CLDAS SM data are updated in real time compared with remote sensing
SM data, and the accuracy of CLDAS SM data is higher than that of other similar products
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in China, assimilating CLDAS SM data into hydrological models to improve flash flood
simulation is a feasible method.
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Appendix A

We input the same rainfall and temperature data into the HBV model. The calculated
indexes are shown in Table A1, and the flood process line is shown in Figure A1. By
comparing Figure 6 with Figure A1, Tables 2 and A1, we found that the HBV model also
did not well-simulate the process of high flow. The two models failed to well-simulate the
high flow process in the three basins, which may have been due to input forcing data errors
and topographic factors in the three basins. The specific reasons need to be further studied.

Table A1. Performance of the HBV model in the calibration and validation periods for the
three basins.

Catchments
Calibration

(1 January 2010–31 December 2013)
Validation

(1 January 2014–31 December 2016)

NS ANSE R NS ANSE R

WWQ 0.287 0.321 0.536 0.357 0.442 0.613
DPL 0.464 0.586 0.687 0.727 0.760 0.865
CTG 0.471 0.566 0.689 0.610 0.741 0.781

Table A2. Full name of the abbreviated nouns used in the study.

Abbreviation Full Name Abbreviation Full Name Abbreviation Full Name

CDF Cumulative
distribution function DI Direct insertion

MISDc
Modello Idrologico
Semi-Distribuito in

continuoCLDAS China land data
assimilation system DPL Dapoling

CTG Changtaiguan EnKF Ensemble Kalman
filter SM Soil moisture

DA Data assimilation KF Kalman filter WWQ Wangwuqiao
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