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Abstract: Typhoon Morakot had a serious impact on Taiwan, especially the uncommon type of
landslide called large-scale landslide (LSL), not many in number but serious in effect, the origin of
which the study induced. To establish a specific relationship between LSL and triggering rainfall for
future applications of LSL early warning predictions, relevant cases from satellite imagery, along
with field investigation data, major event reports, and seismic data from 2004 to 2016, were collected.
All collected cases are distributed around the mountainous area in Taiwan, and a total of 107 cases
which were mainly distributed in the southern part of the mountainous area were finally selected,
including 28 occurrence-time-known cases and 79 occurrence-time-unknown cases. In addition,
149 potential areas identified by the Soil and Water Conservation Bureau (SWCB) were used for
improving bounding estimates. Based on the concept of safety factor, two dimensionless quantities,
rainfall/landslide depth (R/D) and friction angle/slope (φ/θ), were analyzed by linear regression. In
addition, D was assumed to be nonlinearly dependent on R, θ, and φ, and the parameter uncertainties
were evaluated by the resampling with bootstrap method. Based on the currently obtained data,
there were 8% Type-I errors in the results of the linear regression analysis, and 1% Type-II errors
in the results of the nonlinear regression analysis. Through the comparison of statistical indicators,
the results of nonlinear regression analysis have a better correlation trend. Based on the needs of
early warning operations, more conservative indicators can reduce the risks faced by management
operations. Therefore, according to the results of this study, the lower boundary values from nonlinear
analysis could be used as the LSL early warning management settings. Incorporated with real-time
rainfall forecasts, the variation of statistical indicators will provide the trend information dynamically,
and will help to increase the response time for relevant evacuation operations, that will be welcome
for the further extended applications to guide the evacuation operations of early warning systems.

Keywords: landslide; large-scale landslide; triggering rainfall; early warning system; linear regression;
nonlinear regression; uncertainty

1. Introduction

Typhoon Morakot brought Taiwan a historically record-breaking rainfall in August 2009.
Half of Taiwan Island had accumulated rainfalls exceeding 500 mm [1] with some hot
areas receiving up to 3000 mm [2]. There were 673 people killed, 26 people missing, and
more than TWD 19.5 billion in agricultural losses [3]. Various types of sediment disasters
occurred in large numbers during Typhoon Morakot.

Among the sediment disasters, there were 43,519 landslide cases found after this event,
but only 259 cases of the uncommon type of landslide called large-scale landslide (LSL),
which is not many in number but serious in effect, were found. The most famous case was
Xiaolin Village, in Jiaxian District of Kaohsiung City, which was horribly destroyed in this
event and 462 people from 180 households were buried in mud and rocks [4]. The tragedy
of Xiaolin Village not only shocked all sectors of society, but also made the public realize
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that we are not familiar with LSL, and knowledge of the key for prevention and mitigation
of LSL incidents is urgently needed. This need prompted the present study.

After Typhoon Morakot, the National Science and Technology Center for Disaster
Reduction (NCDR) of Taiwan defined an LSL as a landslide area larger than 10 ha, earth
volume larger than 100,000 m3, or a collapse depth deeper than 10 m [5]. Under the
situation that epistemic conditions of LSLs are insufficient, in order to find a practical
solution for early warning works, this study tries to find the most intuitive indicator, and
rainfall and some other factors of LSLs seem to be the best choice. In order to establish the
specific relationship between LSLs and triggering rainfall for the future LSL early warning
predictions, LSL cases, satellite imagery, rainfall data, seismic data, and other support
datasets were collected. In this study, two dimensionless factors, rainfall/landslide depth
(R/D) and friction angle/slope (φ/θ), were assumed to have a linear relationship, and all
factors, R, D, φ, θ, were assumed to have a nonlinear relationship, and the both linear and
nonlinear regressions were analyzed statistically.

The results of LSL occurrence time and location evaluated from the data of the Broad-
band Array in Taiwan for Seismology (BATS) were applied in this study for establishing
the specific relationship between LSLs and triggering rainfall. Compared with previous
research results using only cumulative rainfall of events, the reliability is expected to be
considerably improved.

2. Literature Review

Current research topics of LSLs include a wide range of subjects, e.g., occurrence
mechanisms, monitoring, and early warning. In order to clearly understand past studies,
including the key points and effectiveness, a detailed literature review on the above topics
was conducted.

2.1. Occurrence Mechanism-Related Research

The stability of a slope can be considered by the factor of safety (FS), the ratio of shear
strength τR and shear stress τD. When the FS is greater than or equal to 1, it can be regarded
as a balanced state [6]. The limit equilibrium method is popular in many studies on slope
stability analysis [7]. Slope stability analyses can be roughly divided into three common
theories based on the corresponding concept of slope type: infinite slope theory [6,8–11],
finite slope theory [6,9,12], and the method of slices [6,9–11].

Numerous numerical models have been developed based on the three simulation
functionalities of movement status as the following:

1. Simulate the occurrence of landslide only models, such as SHALSTABLE, SINMAP,
TRIGRS, Scoops3D, PLAXIS, and GeoSutio [6,13–17].

2. Simulate the movement of soil on the slope after landslide only models, such as Flo2D,
Landslide2D, PFC, and DDA [6,18,19].

3. Simultaneously simulate the occurrence of landslide and the movement of soil on the
slope after landslide models, such as FLAC, ABAQUS, and Anura [6,20].

In this study, the most important issue is whether the slope is stable or not, which is the
reason why limit equilibrium theory is used, but not numerical simulations of landslides,
for the selection of parameters for statistical analysis.

2.2. Monitoring-Related Research

Slope monitoring data is the basis for the LSL research and early warning predictions.
Slope monitoring can be carried out through on-site monitoring and remote sensing.

1. On-site monitoring

The purpose of on-site monitoring is mainly to obtain on-site data, including surface
changes, underground changes, surface hydrology, groundwater hydrology, and struc-
tural deformation. The comparison of various on-site monitoring programs is shown in
Table 1 [21]. In recent years, new technologies and equipment have been continuously
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improved, e.g., GPS [22,23], TDR [23], RGB-D sensors [24,25], and ERT [26]. On-site moni-
toring has the advantages of high efficiency, high frequency, and accuracy from directly
measuring on-site data, and it is quite convenient for subsequent analysis and application.
Therefore, the program of on-site monitoring is widely used. However, since the results
of on-site monitoring are limited to “points”, if wide-range monitoring is to be carried
out, a lot of resources have to be invested not only in equipment construction but also in
subsequent maintenance because underground monitoring instruments are vulnerable to
damage from ground deformations.

Table 1. Comparison table of on-site monitoring programs (modified from [21]).

Investigation Item Instruments Investigation Objects Accuracy

Surface
changes

Surface inclinometer Tilting direction and amount of ground surface 1′ ′

Surface extensometer Fracture displacement and velocity 0.2 mm

Surface measurement

Optical measuring
instruments Tilting direction and amount of ground surface 1~10 mm

GNSS Displacement of the ground surface NA

LiDAR scanner Terrain 3D variation NA

Underground
changes

In-place inclinometer Sliding surface position and variation 5~10′ ′

Pipe strain gauge Sliding surface position and variation 1 × 10−6

Borehole extensometer Sliding surface dislocation rate 0.2 mm

Multipoint
borehole extensometer Sliding surface position and dislocation rate 0.3 mm

Surface hydrology Rain gauge Rainfall amount 0.5 mm

Underground
hydrology

Water level gauge Variation of water level in the hole 0.05%FS

Pore pressure gauge Variation of water pressure of the sliding surface 0.05%FS

Soil moisture meter Variation of soil saturation NA

Flowmeter Variation of discharge NA

Structures

Earth pressure gauge Earth pressure acting on retaining walls, deep
foundation piles 0.1%FS

Load cell Tension acting on the ground anchor 0.1%FS

Strain gauge Deformation of the structure 1 × 10−6

Rebar gauge Stress acting on the rebar gauge 0.1%FS

Inclinometer Tilt variation of structure 1~10′ ′

In-place inclinometer Bending deformation of steel pipe piles 5~10′ ′

Note: FS—Factor of Safety; ” —inch; NA—Not Available.

Some of the occurrence times of LSLs in this study were obtained from analyses using
the seismic data from the BATS. Since 1992, 42 stations have been set up in Taiwan and
offshore islands. Each station is equipped with a broadband seismograph, which can record
a wide frequency range of fluctuations due to the characteristics of its sensitive sensors,
which can record rich and high-quality seismic waveforms. It can effectively make up for
the insufficiency of seismic wave information recorded by acceleration type or traditional
narrow-band velocity type seismographs, thereby improving the evaluation accuracy of
earthquake location and scale [27].

2. Remote Sensing

Remote sensing mainly includes optical imagery, airborne LiDAR, and radar data.
Optical imagery can be obtained from unmanned aerial vehicle (UAV) imagery [28], aerial
photos [29], satellite imagery [29–31], etc., and usually requires special processes [30–32] to
derive surface variation or trend information. The airborne LiDAR acquires a large amount
of point cloud data through intensive light wave scanning ranging, and can derive high-
precision surface deformation after data calculation and spatial matching [33–37]. In recent
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years, with the gradual miniaturization of LiDAR products, there have been small LiDAR
applications that can be matched with UAVs [38]. Radar data analysis evaluates surface
variability through radar wave phase changes. In the application of surface variability,
the current common applications include differential InSAR (D-InSAR) [39,40], persistent
scatterer InSAR (PS-InSAR) [40–48], short baseline subset InSAR (SBAS-InSAR) [49], and
temporarily coherent point InSAR (TCP-InSAR) [50,51]. The advantage of landslide moni-
toring through remote sensing data analysis is to obtain the “plane” data of a landslide.
As acquisitions of data have to be coordinated with the schedule of the remote sensing
payload, and most of the original data have to be processed by some complex interpretation
and analysis, the time frame of data acquisition is slower than for on-site monitoring.

Rainfall data for statistical analysis in this study come from the CWB’s on-site mon-
itoring data and radar evaluation data, and all the terrestrial data of LSLs are based on
airborne LiDAR and satellite optical imagery.

2.3. Early Warning-Related Research

By comparing the literature of current LSL early warning studies from Taiwan [52],
the United States [53], Japan [54], Italy [55], and Canada [56], it is clear that each country
has a different approach to establishing warning systems according to the risks to be faced
and the technologies to be mastered. The approaches are follows:

1. Early warning indicators

Through the aforementioned on-site monitoring, remote sensing, and other solutions,
on-site information is obtained to establish early warning indicators, including:

• Surface or underground deformation, velocity, or amount of deformation [21,30,40,42,44,49–51];
• variation speed of groundwater level or water level changes [21,57–60];
• rainfall amount [59,61];
• comprehensive indicators [59].

2. Early warning management values

The management values of early warning indicators are determined by statistical
methods, which are generally divided into warning management values and evacuation
management values [62–68].

3. Real-time simulation

In addition, early warning indicators and management values are also introduced into
the numerical model of LSLs, and real-time simulation is performed to provide guidance
for warning and evacuation.

3. Materials and Methods

The process with major data analysis steps is as follows: case collection and screening
(Section 3.1), case confirmation (Section 3.2), occurrence time confirmation (Section 3.3), trig-
gering rainfall analysis (Section 3.4), linear regression analysis (Section 3.5), and nonlinear
regression analysis (Section 3.6). Details are delineated in the following subsections.

3.1. Case Collection and Screening

The FORMOSAT-2 satellite images of landslides caused by typhoons and torrential
rain events from 2004 to 2016 were collected. The images were compared with each other to
confirm each landslide type, location, and size. Based on the NCDR’s definition of an LSL,
43,519 collected landslide events were screened out and narrowed down to 259 landslides.
In addition, new landslides can be classified into the newborn landslide and the expanded
landslide (as shown in Figure 1), and 107 newborn landslides were selected for analysis.
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Figure 1. Landslide types of satellite images: newborn landslide (a,b) and expanded landslide
(c,d). (modified from: [66]). (a) Xiaolin Village Landslide (pre-event), (b) Xiaolin Village Landslide
(post-event), (c) Shanping Landslide (pre-event), (d) Shanping Landslide (post-event).

3.2. Case Confirmation, Area Size, and Average Slope Identification of LSL

In this study, the practice of the Central Geological Survey, MOEA on the identification
of landslides was referred to [69,70], and landslide cases caused by the influence of specific
events were obtained through the creation and comparison of landslide catalogues. The
LSLs discussed in this study are mainly new landslides. A total of 259 new LSL cases
were identified, including 107 newborn landslides and 152 expanded landslides. Only the
107 newborn landslides were used for analysis. In this stage, area size and average slope of
LSLs were obtained at the same time. The projected area A (m2) of an LSL was calculated
by the Calculate Geometry function of ESRI ArcMap® software. Based on 5 m resolution
DEM data, the slope of each data grid was calculated first with the Slope function of the
Surface tool in the Spatial Analyst Tools module of ArcToolbox, and the average slope θ
(degree) for the corresponding range of each newborn LSL was calculated by the Zonal
Statistics function in the Zonal tool module.

3.3. The Occurrence Time Confirmation of LSL

In order to accurately correlate the triggering rainfall with LSLs, the first task is to
confirm the occurrence time of each landslide. The occurrence time data cited in this study
mainly come from interviews with local residents [71,72], and the evaluation results of
the LSL occurrence time from the BATS [73]. Among the 107 newborn LSL cases, 28 cases
were identified with their occurrence time, and for the remaining 79 cases the exact time of
occurrence was unknown. The information of the 28 newborn LSLs is shown in Table 2.



Water 2022, 14, 3358 6 of 23

Table 2. Information of the 28 newborn LSLs.

No. ID Event Area Size (ha) Occurrence Time Cited From

1 SR-3

Typhoon
Morakot
(200908)

19 09 August 2009 17:00

Interviews
with
local

residents

2 SR-5 238 09 August 2009 17:00
3 SR-6 142 10 August 2009 12:00
4 SR-7 130 09 August 2009 02:00
5 SR-8 88 09 August 2009 02:00
6 SR-9 74 09 August 2009 04:00
7 SR-11 40 08 August 2009 16:00
8 SR-12 32 09 August 2009 07:00
9 SR-16 26 09 August 2009 07:00
10 SR-19 23 08 August 2009 15:00
11 SR-42 15 09 August 2009 07:00
12 SR-43 15 09 August 2009 07:00
13 SR-46 15 09 August 2009 05:00
14 SR-53 14 09 August 2009 00:00
15 SR-94 351 09 August 2009 10:00
16 SR-95 249 09 August 2009 06:00
17 SR-96 81 09 August 2009 10:00
18 SR-97 61 09 August 2009 09:00
19 SR-98 52 09 August 2009 06:00
20 SR-99 15 09 August 2009 04:00
21 SR-100 11 08 August 2009 10:00
22 SR-101 10 09 August 2009 09:00

23 2005_002
Typhoon
Haitang
(200505)

18 21 July 2005 14:33

The
evaluation
results of
the LSL

occurrence
time and
location
from the

BATS

24 2006_002 0609 Torrential
Rain 12 10 Jun 2006 00:53

25 2008_002 Typhoon Sinlaku
(200813) 89 18 September 2008

02:50

26 2008_003
Typhoon
Kamaegi
(200807)

10 19 July 2008 05:30

27 2012_002 Typhoon Saola
(201209)

19 03 August 2012 09:02
28 2012_004 25 03 August 2012 03:00

3.4. The Triggering Rainfall Analysis

From previous methods of analyzing the triggering rainfall of landslides and debris
flows [62,68,74,75], the triggering rainfall of LSLs can be described as Equation (1). The rain
field can be divided as in Figure 2. The analysis of landslide triggering rainfall R should
consider R0 and P. The cumulative rainfall R0 directly contributes to the landslide event
from the beginning of rainfall to the moment the LSL occurred and is called “direct rainfall”.
The rainfall P is called “antecedent rainfall” that occurred before the start of the current
rain event, and is related to the moisture content of soil which also affects the likelihood
of having a landslide. The length of time considered for the antecedent rainfall can be
adjusted according to the local geological characteristics. In this study, the rainfall of the
antecedent seven days is used. The sum of the direct rainfall of the current rainfall event
and the antecedent rainfall is the effective cumulative rainfall of the landslide, and is called
the triggering rainfall, which can be expressed by Equation (1).

R = R0 + P ≈ R0 + ∑N
i=1 αiRi, (1)

where:

R is the triggering rainfall for LSL (mm);
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R0 is the accumulated rainfall from the beginning of the rainfall event that caused the LSL
to the moment the landslide occurred (mm);
P is the antecedent rainfall (mm) ≈ ∑N

i=1 αiRi;
Ri is the rainfall on the i-th day (24 h) before the start of the rain field t0 (mm);
N is the number of days to consider the antecedent rainfall (), generally N = 7;
α is the daily (24 h) rainfall triggering landslide decay coefficient (), which can be 0.7 or 0.8.
At present, α = 0.7 is used in this study to calculate the antecedent rainfall [62].
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The aforementioned 107 newborn LSL cases and the data of 149 potential LSL areas evalu-
ated by the SWCB were used in this study for the follow-up analysis, with the information
of the cases shown in Table 3. Among the 107 newborn LSL cases, the occurrence time of
28 cases was confirmed through local resident interviews and evaluation of the data from
the BATS, and then triggering rainfall was also calculated. Since the time of occurrence
of the remaining 79 cases could not be confirmed, the total rainfall of the corresponding
event was used instead of the triggering rainfall. For the 149 potential LSL areas without
landslide, the total rainfall of Typhoon Morakot was used as the triggering rainfall in this
study. In summary, three different sets of LSL events were used in this study: 28 occurrence-
time-known cases, 79 occurrence-time-unknown cases, and 149 potential LSL areas. As
for other relevant parameters, the relevant data were collected and estimated based on the
actual collapse area and the potential collapse range delineated by the SWCB.

Table 3. Information of selected cases.

Cases Landslide or Not Rainfall Type Used

107 newborn LSLs
28 occurrence-time-known cases Yes Triggering rainfall

79 occurrence-time-unknown cases Yes Total event rainfall

149 potential LSL areas No Total rainfall of Typhoon Morakot

3.5. The Linear Regression Analysis

When the rain infiltrates the sliding surface and starts to accumulate, the pore water
pressure rises. It is assumed that the soil will start to slide when the pore water pressure
rises to a critical hc (m). According to the infinite slope theory, θ (degree) is defined as the
average slope of the sliding surface, D (m) is defined as the thickness of the sliding soil
layer, and hc is defined as landslide triggering pore water pressure or critical pore water
pressure for soil sliding. According to Towhata et al. [77], the hc/D is a function as shown
in Equation (2).

hc

D
= f

(
internal f riction angle

slope o f sliding sur f ace

)
= f

(
internal f riction angle

θ

)
(2)
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Alternatively, hc is replaced with the landslide triggering rainfall R, and the internal
friction angle is replaced by the equivalent friction angle φ (degree). Therefore, Equation (2)
can be rearranged in two dimensionless quantities, R/D and φ/θ, for a linear statistical
regression analysis as the following:(

R
D

)
= a×

(
φ

θ

)
+ b. (3)

In Equation (3), R can be derived from Equation (1), θ can be obtained by calculating the
average slope by the steps in Section 3.2, and D is the landslide volume V (m3) divided by
the projected landslide area A as Equation (4). With an empirical volume–area relation [78]
as Equation (4) from the SWCB, D can be evaluated as Equation (5).

V = 0.1025× A1.401 (4)

D =
V
A

= 0.1025× A0.401 (5)

Scheidegger mentioned that the equivalent friction coefficient f [] is a function of the
landslide volume V as in Equation (6) [79]. Since the friction coefficient f is equal to tan φ
based on the force balance (gravity and friction) of an incline plane, the equivalent friction
angle φ can be calculated by Equation (7).

log10 f = −0.1466 log10 V + 0.62419 (6)

φ =
tan−1 f × 180

π
=

tan−1
(

e−0.1466 log10 V+0.62419
)
× 180

π
(7)

3.6. The Nonlinear Regression Analysis

To evaluate of the stability of the slope using the concept of FS in Section 2.1, D, R, θ,
and φ are the four factors to be considered, and a generic nonlinear relationship is assumed
as shown in Equation (8).

D = f(R, θ, φ; a, b, c, d, e) =
a× Rb × θc

φd + e, (8)

where:
D is a nonlinear function of R, θ, φ (m),
a, b, c, d, e are the regression coefficients (). To be dimensionally correct, these coefficients
should have certain physical units. However, they are just regressionally fitted values and
the actual units are ignored in this paper for simplicity.

To deal with this inverse problem, a nonlinear regression is performed with bootstrap
resampling to evaluate parameter uncertainty. The analysis steps are shown in Figure 3.
The key steps of the entire nonlinear process are detailed as follows.

Step 1. Initial calculation

In this step, the coefficients of a, b, c, d, and e are initially set to be 1.0, and the initial
predicted values can be calculated as Equation (8). The (relative) residual is defined as
Equation (9).

∆i ≡ 1− pi
oi

, i = 1 · · · n, (9)

where:

∆i is the residual of the i-th data [],
pi is the landslide thickness of the i-th prediction (m),
oi is the landslide thickness of the i-th observation (m),
n is the total number of observations ().
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Step 2. Solver

For the nonlinear regression analysis, the built-in Solver add-in of Microsoft Excel®

is used to find the optimized coefficients a, b, c, d, e. The sum of squared errors (SSE) as
in Equation (10) is used as the target function, and the coefficients can be obtained by
minimizing the SSE with Solver. Solver uses the GRG nonlinear solving method to solve
the problem with an accuracy of the constraint of 0.000001.

SSE =
n

∑
i=1

∆i
2 =

n

∑
i=1

(
1− pi

oi

)2
(10)

Step 3. SSE convergence

To obtain the optimal solution, a convergence criterion of 0.0001 is set in Solver. When
the absolute value of the change of the SSE in the last 5 iterations is less than the convergence
criteria, the GRG nonlinear solution method will stop. With the final optimized coefficient
ã, b̃, c̃, d̃, ẽ, the optimized prediction value p̃i and the corresponding optimized residual
value ∆̃i will be used for the following bootstrap procedure (steps 4 to 8).

Step 4. Bootstrap method processing

The bootstrap method was proposed by Efron in 1979 [80] and can be used to estimate
the uncertainty of system parameters. The concept of this method is to use the existing
data to generate a large number of “phantom samples” through a procedure of resampling
with replacement [81]. Since this method is a nonparametric method, there is no need to
make assumptions about the data distribution pattern [82].

When carrying out the bootstrap method, the optimal set of residual values ∆̃i from
step 3 is resampled with replacement to obtain a new set of residual value ∆i

∗. With the
rearrangement of Equation (9), the observation value can be described as Equation (11).
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Therefore, with the optimized prediction value p̃i and the bootstrapped residual value ∆i
∗,

the new observation value oi
∗ can be obtained as Equation (12).

∆i = 1− pi
oi
⇒ oi =

pi
1− ∆i

, i = 1 · · · n (11)

oi
∗ =

p̃i

1− ∆i
∗ , i = 1 · · · n (12)

Step 5. Solver

This step is essentially the same as step 2, and the main difference is that the new
observation value oi

∗ from step 4 will be used for optimization.

Step 6. SSE convergence

This step is the same as step 3. Different SSEs are solved repeatedly through iterative
optimization, and new optimized coefficients ãj, b̃j, c̃j, d̃j, ẽj are obtained for j-th
calculation of the bootstrap method.

Step 7. Cumulative coefficient statistics

In this step, the cumulative coefficient of variation (CV) for each optimized coefficient
is defined as Equation (13).

CVj =
σ1∼j

µ1∼j
, j = 1 · · · , (13)

where:

CVj is coefficient of variation of the specific coefficient from the 1st to the j-th bootstrap
resampling [],
σ1∼j is the standard deviation of the specific coefficient from the 1st to the j-th bootstrap
resampling [],
µ1∼j is the average value of the specific coefficient from the 1st to the j-th bootstrap resam-
pling [].

Step 8. Statistics converged

The variation value ∆CV is defined as the absolute value of the difference between
two consecutive CV values shown in Equation (14) and it can be used to gauge the trend
asymptotically stable solution. The convergence criterion for ∆CV is set to be 0.0001 and
steps 4 to 8 are repeated m times until the ∆CV is converged. In the bootstrap procedure, m
is the total times of resampling and is not a preset number but can only be determined by
the convergence in this step.

∆CVj =
∣∣CVj − CVj−1

∣∣, j = 2 · · ·m (14)

Step 9. Coefficient statistical analysis

After the iterative outcomes converge to stability, the statistical analysis of ãj, b̃j, c̃j, d̃j, ẽj

is performed to obtain the maximum value, minimum value, average value, mode value,
and statistical values of 40% and 60% confidence intervals of each coefficient.

Step 10. Outcome estimation

With the nonlinear relationship of D from the previous step, the new predicted D
can be calculated with the existing LSL data. By comparing the calculated values with the
existing data, the prediction ability of each nonlinear relationship of D can be estimated.

4. Results

Through the data preparation steps in Sections 3.1–3.3, all the data were analyzed
according to Sections 3.4 and 3.5, and the results are described in the following sections.
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4.1. Linear Regression Analysis Results

With a linear relationship between dimensionless (R/D) and dimensionless (φ/θ)
according to Equation (3), the regression results are illustrated as Figure 4. In the figure,
the black dots are the 28 known occurrence time cases, the red line is the regression trend
line of Equation (15), and the green and purple dotted lines are the upper and the lower
boundary lines of Equations (16) and (17), respectively.

Trend line :
R
D

= 0.1347× φ

θ
− 0.0281, R2 = 0.55 (15)

Upper boundary line :
R
D

= 0.1347× φ

θ
+ 0.0032 (16)

Lower boundary line :
R
D

= 0.1347× φ

θ
− 0.0543 (17)
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In order to examine whether the relationship of Equation (15) is reasonable, this study
collected data according to the procedures of Sections 3.1–3.3 for the 79 occurrence-time-
unknown cases and 149 potential areas delineated by the Soil and Water Conservation
Bureau (SWCB). Since there is no information about the time of landslide for these two types
of cases, the effective cumulative rainfall is evaluated alternatively. The total accumulated
rainfall values of the corresponding events were used for the 79 occurrence-time-unknown
cases, and the maximum total accumulated rainfall recorded over the years was taken
for the 149 potential areas. After calculating the two dimensionless quantities, the results
were superimposed with the trend line and the boundary lines from Figure 5 to display in
Figures 6 and 7.
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In Figure 5, almost all cases are above the trend line, and only one case falls between
the trend line and the lower boundary line. Since the total rainfall should cap the actual
effective cumulative rainfall, it is reasonably expected that most of the data (if not all) are
above the trend line.

Among the 149 records in Figure 8, 67 records are located below the lower boundary
line (45%), 112 below the trend line (75%), 135 below the upper boundary line (91%), and
14 above the upper boundary line (9%).
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Figure 7. Dimensionless factor relationship of potential LSL area.

To be conservative, the lower boundary line (the purple dotted line in Figure 9) of the
occurrence rainfall is suggested to be the management value for LSL evacuation and refuge.

4.2. Nonlinear Regression Analysis Results

In this study, the Analysis ToolPak of Microsoft Excel® was used to perform the non-
linear fit analysis between the predictions and the observations according to Equation (8).
The results are shown in Table 4 and Figure 8. From the value of R square and the adjusted
R square, it was found that Equation (8) has a good degree of model fit, and F is very
different from the significance F (last two columns of ANOVA). This indicates that each
parameter has large differences between groups, and small differences within groups. From
the results in Figure 8b, it was found that the predicted value and the observed value have
similar trends, and the function described by Equation (8) is reasonable.

Table 4. Result of complex data analysis.

Regression Statistics

Multiple R 0.9569
R Square 0.9157
Adjusted R Square 0.9052
Standard Error 2.8447
Observations 28

ANOVA

df SS MS F Significance F

Regression 3 2109.4427 703.1476 86.8894 4.9903 × 10−13

Residual 24 194.2187 8.0924
Total 27 2303.6614

Coefficients Standard
Error t-Test p-value Lower 95% Upper 95%

Intercept 66.7058 6.1858 10.7838 1.10 × 10−10 53.9390 79.4725
R(m) −2.2273 2.8034 −0.7945 0.4347 −8.0133 3.5587
θ(degree) 0.0043 0.1279 0.0334 0.9737 −0.2597 0.2682
φ(degree) −2.2251 0.1456 −15.2793 7.26 × 10−14 −2.5257 −1.9246
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Figure 8. The results of the fit analysis between the nonlinear predicted value and the observed value,
where (a) is the residual of each parameter, (b) is the sample regression line of each parameter, and
(c) is the normal probability. D is the thickness of the sliding soil layer, R is the landslide triggering
rainfall, θ is the slope of sliding surface, and φ is the equivalent friction angle.
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Figure 9. Comparison between predicted and estimated values of collapse thickness in 149 potential
LSL areas.

After confirming that Equation (8) was reasonable, the nonlinear regression analysis
according to the procedures in Figure 5 was performed. With 5000 iterations of calculation,
it was found that the variation of the CV of each coefficient is approaching asymptotic
stability as the number of iterations increases. The optimized coefficients of each group
were obtained from the statistics in Table 5. Through the results in Table 5, the statistical
values of each coefficient were substituted into Equation (8) to calculate the predicted value.
The predicted values were compared with the observed values of 28 occurrence-time-
known cases and 79 occurrence-time-unknown cases. The results of landslide thickness
difference ∆D are shown in Tables 6 and 7.

Table 5. Statistics of nonlinear regression coefficients.

Parameter Max Min Mean Median 40% 60%

a 24,469.2875 648.5690 6095.1517 4438.0571 3576.8579 5539.8139
b −0.0229 −0.3621 −0.1647 −0.1604 −0.1744 −0.1460
c 0.1614 −0.4220 −0.1339 −0.1298 −0.1492 −0.1089
d 2.4898 0.8831 1.6260 1.6288 1.5488 1.7067
e 5.0123 −22.1158 −4.4903 −3.5814 −4.7650 −2.5826

Table 6. The landslide thickness of the prediction minus the observation for 28 occurrence-time-
known cases. (Unit: m, % relative to the observation).

∆Dmax ∆Dmin ∆Dmean ∆Dmedian ∆D40% ∆D60%

Standard deviation 9.18 (15%) 6.85 (35%) 3.52 (9%) 1.38 (6%) 1.65 (6%) 1.77 (7%)
Mean of absolute values 15.03 (72%) 31.00 (167%) 8.03 (41%) 1.07 (5%) 2.20 (11%) 2.87 (15%)

Maximum value 42.61 (99%) −23.20 (−117%) 16.15 (55%) 2.38 (12%) 0.02 (0%) 6.63 (26%)
Mean value 15.03 (72%) −31.00 (−167%) 8.03 (41%) 0.16 (1%) −2.20 (−11%) 2.82 (15%)

Median value 11.38 (76%) −28.18 (−163%) 6.94 (43%) 0.45 (3%) −1.85 (−10%) 2.84 (17%)
Minimum value 6.38 (37%) −50.56 (−231%) 3.69 (21%) −4.00 (−13%) −7.11 (−23%) −0.36 (−2%)
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Table 7. The landslide thickness of the prediction minus the observation for 79 occurrence-time-
unknown cases. (Unit: m, % relative to the observation).

∆Dmax ∆Dmin ∆Dmean ∆Dmedian ∆D40% ∆D60%

Standard deviation 1.42 (4%) 1.60 (20%) 1.20 (8%) 0.65 (5%) 0.69 (6%) 0.67 (5%)
Mean of absolute values 9.26 (75%) 26.47 (216%) 4.39 (35%) 0.63 (5%) 2.13 (17%) 1.48 (12%)

Maximum value 16.21 (83%) −22.69 (−150%) 8.71 (61%) 1.62 (15%) 0.13 (1%) 3.36 (30%)
Mean value 9.26 (75%) −26.47 (−216%) 4.39 (35%) −0.39 (−3%) −2.13 (−17%) 1.48 (12%)

Median value 8.81 (75%) −26.41 (−219%) 4.19 (35%) −0.43 (−3%) −2.17 (−18%) 1.42 (12%)
Minimum value 7.46 (62%) −32.25 (−254%) 1.85 (17%) −1.72 (−16%) −3.55 (−32%) 0.02 (0%)

From Tables 6 and 7, Equation (18) was obtained by substituting the median value
of each coefficient into Equation (8) which has a relatively good predictive ability in
both cases with or without known occurrence time. Assuming a normal distribution of
Equation (8), the upper and lower boundaries of the 99.7% range covered by three standard
deviations were used. The lower boundary illustrated in Equation (19) was obtained
by the 40th percentile values of each coefficient, and the upper boundary illustrated in
Equation (20) was obtained by the 60th percentile value of each coefficient.

Trend line : DTL =
4438.0571× R−0.1604 × θ−0.1298

φ1.6288 − 3.5814 (18)

Upper boundary line : DLB =
3576.8579× R−0.1744 × θ−0.1492

φ1.5488 − 4.7650 (19)

Lower boundary line : DUB =
5539.8139× R−0.1460 × θ−0.1089

φ1.7067 − 2.5826 (20)

To better illustrate the data distribution for the 149 potential LSL areas, the trend line
and the boundary lines were transformed and normalized. The results from Equation (18)
were set as the zero-reference line, and those from Equations (19) and (20) were scaled to be
+100% (upper boundary) and −100% (lower boundary), respectively. The three lines of the
149 observation data are plotted in Figure 9. Of the 149 records, 83 records (56%) are below
the lower boundary line, 115 records (77%) below the trend line, and all 149 records (100%)
are below the upper boundary line.

5. Discussion

According to the aforementioned information and results, some issues are discussed
in the following sections.

5.1. Prediction Ability

In order to directly compare the predictive capabilities (rainfall is the key indicator
for early warning systems) of the results from linear regression analysis and nonlinear
regression analysis, Equations (15) to (20) can be rewritten with R as the dependent variable
as Equations (21) to (26).

RLT = D× (0.1347× φ

θ
− 0.0281), (21)

RLU = D× (0.1347× φ

θ
+ 0.0032), (22)

RLL = D× (0.1347× φ

θ
− 0.0543), (23)

RNT =

[
(D + 3.5814)× φ1.6288

4438.0571× θ−0.1298

] 1
−0.1604

, (24)
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RNU =

[
(D + 2.5826)× φ1.7067

5539.8139× θ−0.1089

] 1
−0.1460

, (25)

RNL =

[
(D + 4.7650)× φ1.5488

3576.8579× θ−0.1492

] 1
−0.1744

, (26)

where:

RLT is the predicted rainfall by the linear regression trend line (m),
RLU is the predicted rainfall by the linear regression upper boundary line (m),
RLL is the predicted rainfall by the linear regression lower boundary line (m),
RNT is the predicted rainfall by the nonlinear regression trend line (m),
RNU is the predicted rainfall by the nonlinear regression upper boundary line (m),
RNL is the predicted rainfall by the nonlinear regression lower boundary line (m).

With the 79 occurrence-time-unknown cases and the 149 potential areas, the predicted
rainfalls were calculated by Equations (21) to (26), the trend lines and boundary lines were
transformed and scaled to be 0% and ±100%, similar to Figure 9, and the results are shown
in Figures 10–13.
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In Figure 10 (the linear regression analysis results of 79 occurrence-time-unknown
cases), all observed rainfall data are greater than the predictive ones, indicating no Type-II
error (false negative).

In Figure 11, there are Type-I errors (false positives). Among the 149 cases, 12 (about
8%) are above the upper boundary of the predictive rainfall but no landslide occurred. For
the results of the nonlinear regression analysis in Figure 12, there is one case (about 1%)
below the lower boundary of the predictive rainfall, which is a Type-II error. According to
the results in Figure 13, all of the 149 cases are below the upper boundary of the predictive
rainfall, which means no Type-I error.

In summary, based on the limited data used in this study, there is no Type-II error from
linear regression and no Type-I error from nonlinear regression. If different situations occur
in the future, the new data should be updated and included for improving risk probability
assessment.
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Figure 12. Prediction of rainfall distribution by nonlinear analysis of 79 LSL cases.

With Equations (21) to (26) for the 28 occurrence-time-known cases, the predicted
rainfalls were compared with the observed triggering rainfalls, and error sums of squares
and the root mean square errors are shown in Table 8. By examining the error sum results,
the nonlinear trend (RNT) has the best predictive capacity. Following the same procedures,
79 occurrence-time-unknown cases and 149 potential areas were evaluated and the results
are shown in Tables 9 and 10. It is also found that the nonlinear trend line has the best
predictive capacity. Nevertheless, the conservative lower boundary value should be used
regarding the evacuation management value of the early warning operation. From the
comparison of the error sums in Tables 8 and 9, the estimates by the lower boundary line of
nonlinear analysis do provide better predictions.



Water 2022, 14, 3358 19 of 23

Water 2022, 14, x FOR PEER REVIEW 19 of 24 
 

 

Figure 12. Prediction of rainfall distribution by nonlinear analysis of 79 LSL cases. 

 
Figure 13. Prediction of rainfall distribution by nonlinear analysis of 149 LSL potential areas. 

In summary, based on the limited data used in this study, there is no Type-II error 
from linear regression and no Type-I error from nonlinear regression. If different situa-
tions occur in the future, the new data should be updated and included for improving risk 
probability assessment. 

With Equations (21) to (26) for the 28 occurrence-time-known cases, the predicted 
rainfalls were compared with the observed triggering rainfalls, and error sums of squares 
and the root mean square errors are shown in Table 8. By examining the error sum results, 
the nonlinear trend (𝑅 ) has the best predictive capacity. Following the same procedures, 
79 occurrence-time-unknown cases and 149 potential areas were evaluated and the results 
are shown in Tables 9 and 10. It is also found that the nonlinear trend line has the best 
predictive capacity. Nevertheless, the conservative lower boundary value should be used 
regarding the evacuation management value of the early warning operation. From the 
comparison of the error sums in Tables 8 and 9, the estimates by the lower boundary line 
of nonlinear analysis do provide better predictions. 

Table 8. Statistics of rainfall predictions for 28 occurrence-time-known LSL cases. 

 𝑹 𝑹𝑳𝑻 𝑹𝑳𝑳 𝑹𝑳𝑼 𝑹𝑵𝑻 𝑹𝑵𝑳 𝑹𝑵𝑼 
Maximum value (mm) 1271.3 1599.1 1147.8 2554.0 1425.8 804.3 3069.4
Minimum value (mm) 501.6 571.4 −198.5 955.9 277.0 178.7 507.4
Error sum of squares (m2) 2.3922 9.0971 19.3008 2.1096 4.3647 55.0174
Normalized error sum of 
squares 

4.1646 9.9850 34.2229 3.2921 4.8297 70.8433

Standard deviation (mm) 297.7 580.5 845.5 279.5 402.1 1427.5
Normalized standard devia-
tion 0.3927 0.6081 1.1258 0.3492 0.4229 1.6198

Table 9. Statistics of rainfall predictions for 79 occurrence-time-unknown LSL cases. 

 𝑹 𝑹𝑳𝑻 𝑹𝑳𝑳 𝑹𝑳𝑼 𝑹𝑵𝑻 𝑹𝑵𝑳 𝑹𝑵𝑼 
Maximum value (mm) 1994.4 1544.9 1174.1 1987.9 1688.7 950.8 3589.9 
Minimum value (mm) 779.2 464.8 132.2 862.1 872.7 470.0 1966.4 
Error sum of squares (m2) 11.2251 26.5031 3.7198 4.1568 18.3132 40.8837 

Figure 13. Prediction of rainfall distribution by nonlinear analysis of 149 LSL potential areas.

Table 8. Statistics of rainfall predictions for 28 occurrence-time-known LSL cases.

R RLT RLL RLU RNT RNL RNU

Maximum value (mm) 1271.3 1599.1 1147.8 2554.0 1425.8 804.3 3069.4
Minimum value (mm) 501.6 571.4 −198.5 955.9 277.0 178.7 507.4
Error sum of squares (m2) 2.3922 9.0971 19.3008 2.1096 4.3647 55.0174
Normalized error sum of squares 4.1646 9.9850 34.2229 3.2921 4.8297 70.8433
Standard deviation (mm) 297.7 580.5 845.5 279.5 402.1 1427.5
Normalized standard deviation 0.3927 0.6081 1.1258 0.3492 0.4229 1.6198

Table 9. Statistics of rainfall predictions for 79 occurrence-time-unknown LSL cases.

R RLT RLL RLU RNT RNL RNU

Maximum value (mm) 1994.4 1544.9 1174.1 1987.9 1688.7 950.8 3589.9
Minimum value (mm) 779.2 464.8 132.2 862.1 872.7 470.0 1966.4
Error sum of squares (m2) 11.2251 26.5031 3.7198 4.1568 18.3132 40.8837
Normalized error sum of squares 4.5775 12.7829 1.9193 1.5839 7.6505 31.4102
Standard deviation (mm) 644.8 990.8 371.2 392.4 823.6 1230.5
Normalized standard deviation 0.4117 0.6881 0.2666 0.2422 0.5323 1.0786

Table 10. Statistics of rainfall predictions for 149 potential LSL areas.

R RLT RLL RLU RNT RNL RNU

Maximum value (mm) 2267.9 3016.4 2685.2 3412.0 2739.7 1575.6 5647.8
Minimum value (mm) 822.3 804.5 511.1 1037.4 1144.4 591.5 2583.9
Error sum of squares (m2) 10.0854 20.0943 8.5405 6.1552 23.6371 94.8223
Normalized error sum of squares 3.1882 5.8767 3.4506 2.3811 6.6163 44.9751
Standard deviation (mm) 611.2 862.7 562.4 477.5 935.7 1874.0
Normalized standard deviation 0.3436 0.4665 0.3575 0.2970 0.4950 1.2906

5.2. Limitations

In order to establish the specific relationship between LSLs and triggering rainfall for
the future LSL early warning predictions, this study collected LSL case data for modeling.
As aforementioned, under the situation that epistemic conditions of LSLs are insufficient,
coupled with the fact that LSL is not common, the data that can be collected are very
limited. Although the model verified the rationality, it does not mean this model could be
used directly in another region outside Taiwan, and those who want to apply this model
should follow the procedures mentioned in this study to retrieve the suitable parameters
before practice.
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5.3. Early Warning Application

When the evacuation of early warning systems is announced, it is important to take
into account not only the number of evacuees, the length of the evacuation route, and
the opening of evacuation shelters, but also the time required for the activation of the
evacuation mechanism, agency communication, evacuation notification and enforcement,
evacuation status confirmation, etc. It is recommended that the operation should be car-
ried out 3 to 6 h before the cumulative rainfall value reaches the evacuation management
value. For this reason, it is suggested to use the quantitative rainfall forecast of 3 to 6 h,
such as: ensemble model-based typhoon quantitative precipitation forecast (ETQPF) or
blended quantitative precipitation forecast (BQPF). When the forecast of accumulated rain-
fall reaches the critical value, the evacuation mechanism should be activated immediately
for an adequate response time.

6. Conclusions

When a large-scale landslide (LSL) disaster occurs, it could have a great impact on
people’s lives and properties. In response to the potential threat caused by LSLs, this
study collected most relevant data of LSL cases, analyzed them to quantify the relationship
between the LSL and the triggering rainfall, and proposed to apply this relationship to LSL
warning predictions.

The satellite imagery and additional information of landslides from 2004 to 2016 were
collected in this study. After screening of 43,519 landslide records, 107 newborn landslides
were selected for analysis, including 28 occurrence-time-known cases and 79 occurrence-
time-unknown cases. In addition, 149 potential LSL areas evaluated by the Soil and Water
Conservation Bureau (SWCB) were also used for improving the lower boundary line.

This study employs two methods of linear and nonlinear regression analysis to assess
the relationship between LSL and rainfall. The results show that there are 8% Type-I errors
(false positives) in the linear regression analysis, and 1% Type-II errors (false negatives)
in the nonlinear regression analysis. With the comparison of statistical indicators, the
trend line of nonlinear regression analysis shows better predictive power. Considering the
response time required for the early warning operation, it is suggested that the nonlinear
lower boundary line can be used as the evacuation and refuge management value. Com-
bined with the numerical rainfall forecast of 3 to 6 h, it can be applied to the evacuation
and refuge operations of LSLs.

LSL is not common, but always causes serious impacts. In this study, although a
reasonable model for Taiwan was successfully established through limited data, it does
not mean that it can be directly applied to other regions. In order to make this model more
widely used, testing through foreign cases and expanding the factors considered, such as:
geological type, slope aspect, water content, land use, NDVI, time error effect, etc., would
be the future topics for further understanding and applications of LSL-related issues.
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