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Abstract: The hydrological impact of large-scale forest fires in a large basin is investigated on both a
daily and an hourly basis. A basin of 877 km2 was chosen, with 37% of its area having been burnt
in the summer of 2007. Five models are employed, namely SWAT (semi-distributed), GR4J, GR5J,
and GR6J (lumped) for the daily time step, and HEC-HMS (semi-distributed) for the hourly time
step. As SWAT and HEC-HMS implement the SCS-CN method, the change in the Curve Number
(CN) from pre-fire to post-fire conditions is estimated along with the post-fire trend of CN for both
time steps. Regarding the daily time step, a 20% post-fire increase in CN proved necessary for the
accurate streamflow prediction, whereas ignoring this led to an underestimation of 22% on average.
On an hourly time basis, CN was 95 for burnt areas after the fire, with a mildly decreasing trend
after the third year and still above 90 until the fifth year. When neglecting this, peak flow is seriously
underestimated (35–70%). The post-fire trend lines of CN for the two-time steps showed statistically
equal slopes. Finally, GR models accurately predicted runoff while constraining one model parameter,
which proved useful for the realistic prediction of other variables.

Keywords: forest fires; SWAT; HEC-HMS; Curve Number; floods; GR model suite

1. Introduction

The effects on hydrological processes of forest fires have been studied by many re-
searchers for more than fifty years since the appearance of work by Rycroft [1] and Col-
man [2]. It is known that of all the components of the water cycle, runoff, infiltration,
evapotranspiration, and erosion are those that are most influenced by forest fires. The
vast majority of relevant studies examine the fire effects on small basins (smaller than
50 km2) [3–8], as systematic measurements from large basins are rarely acquired for both
the pre-fire and post-fire periods [9–11]. The common method to deal with the assessment
of the impact of forest fires is the well-known paired catchment method for response to
fires [4,11–17]. In that method, two similar basins are used, one burnt and the other un-
burnt, in order to compare the results before and after a forest fire, either a wildfire or a
prescribed one. However, test basins are usually of a small size [13,18,19]. In some studies,
owing to the lack of data for the pre-fire period, gauges were established after the fires in
both burnt and unburnt areas, which enabled comparisons of the basin response [18]. Of
course, this is a variant of the paired catchment approach. Some other researchers chose to
relate rainfall intensity to peak discharge data from detailed measurements in a multi-year
post-fire period (e.g., [9]). Again, burnt areas are generally small.

An alternative approach to studying the effects of large-scale forest fires is to use
hydrological models in order to simulate post-fire basin responses to real or hypothetical
fires [3,20–22]. This becomes the only alternative when dealing with the impact of other
factors acting simultaneously with fires, e.g., climate change [23].

Regarding the timescale, knowledge about the impact of fires on daily streamflow is
quite limited [3,8,21], while fire effects on peak flows have not yet been studied extensively
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in large basins. Thus, the main objective of this study is to enhance the existing knowledge
regarding the impact of fires on streamflow in large basins, both on a daily and sub-daily
timescale and their possible interconnection. By adopting the approach of the use of
hydrological models, the aforementioned impact of fires is translated into model parameter
changes that are required for the reproduction of observed post-fire flows. This inevitably
relates results to a specific model. In this work, we try to avoid using only one specific
model, as will be explained next.

The most common method used within the frame of the adopted approach is the SCS
Curve Number method [6,24–29], as this is quite simple and can simulate the effect of
land use change (see description in Section 2.2). However, there is no universally accepted
approach for the selection of a Curve Number (CN) for burnt areas. In the above-mentioned
studies, the researchers estimated the values of CN for post-fire conditions. In particular,
Cydzik and Hogue [26] estimated the post-fire CN for a small basin (51 km2) in California
using HEC-HMS. Papathanasiou et al. [28] estimated the post-fire CN for three fire scenarios
and a real fire event in a basin with an area of 127 km2, whereas McLin [30] estimated CN
using HEC-HMS for a burnt area of 174 km2 in Los Alamos. Havel et al. [31] used SWAT to
estimate the changes in total annual volume for runoff and other hydrological variables
and, then, they correlated the magnitude of changes with the percentage of burnt area. To
this end, those authors used multiple sub-catchments with areas ranging from 5 km2 to
270 km2. However, their study was based on data for only one year after the fire. Finally,
NRCS [32] provides guidance for selecting the values of CN for various classes of soil
burn severity.

Given the above, our first choice is the SCS-CN method, which by far consti-
tutes the most widely used method for estimating streamflow volume; besides, link-
ing the fire effect to only one parameter, such as CN, can hopefully minimize model
equifinality [33,34]. Despite the studies in which Curve Number is estimated for post-fire
flood events, insufficient knowledge exists regarding the values of CN for burnt areas
on the daily time step. Additionally, it is expected that CN is dependent on a timescale
through an unknown relationship. In this work, we employ two models that incorporate
the SCS-CN method, namely SWAT [35–37] for the daily time step and HEC-HMS for the
hourly time step. The assets of these two models are that they have been extensively used
to simulate land use changes and the hydrological impact of fires, e.g., [6,24–26,28,38–44].

Although the SCS-CN method has been extensively employed as mentioned above,
we believe that using a single model may provide a partial view of the fire effect on rates of
total flow and other hydrological variables, such as percolation and evapotranspiration. To
remedy this, we adopt the multi-model approach that has emerged in the last two decades.
For example, Goswami et al. [45] in their work on regionalisation for flow prediction in
ungauged basins provide an excellent summary of the arguments for using a multi-model
approach, which are valid also for our work. Specifically, in that paper it is stated that “it
is recognised that (i) the plurality of models and modelling approaches may be valid for
the same catchment and application [46], (ii) each model has its inherent strengths and
weaknesses, (iii) each makes use of different information, processing different forms of
knowledge, and (iv) it is possible to use a number of models simultaneously whereby the
strengths of individual models are pooled and perceptible weaknesses de-emphasised to
produce a consensus output.”

In this vein, in addition to SWAT and HEC-HMS, we also use three lumped models
from the Suite of GR hydrological models for precipitation-runoff modelling. These models
are selected with the purpose for covering a wide spectrum of model structures, given that
GR models are radically different from those that are based on the SCS-CN method.

All selected models are of the conceptual type. While models incorporating knowledge
on the physics of fire effects on catchments, e.g., the Macaque models [44,47] are intuitively
more attractive. In this work we preferred models of wide use that have been implemented
within well-tested computer packages. Regarding to data requirements, although a number
of recent studies make use of remote sensing products [48–50], in this work we use typical
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data sets for hydrological variables and geospatial information. This precluded the use of
fully distributed models, which would be much more flexible in describing spatial variation
of fire effect through using spatially variable model parameters. Thus, semi-distributed
and lumped models remain the only alternatives.

To sum up, our first research question is how forest fires affect the hydrological
variables for large basins, with regard to both measured (daily, monthly, and annual runoff
volume, peak discharge, flood volume) and unmeasured variables (e.g., event-based, daily,
monthly, and annual volume of percolation) for different timescales. This question has
two facets: the temporal variation of the above quantities in the post-fire period, and the
connection of model parameters between timescales. A second question to be addressed
relates to differences between the semi-distributed and lumped modelling approaches with
regard to issues in the first question.

2. Materials and Methods
2.1. Hydrological Modelling
2.1.1. The Soil and Water Assessment Tool (SWAT)

The Soil and Water Assessment Tool (SWAT) was developed by Arnold for the USDA
Agricultural Research Service (ARS) in order to predict the impact of land management
practices on water, sediment and agricultural chemical yields in large complex watersheds
with varying soils, land uses and management conditions over long periods of time [37].
SWAT is a semi-distributed model which divides the studied basin into hydrologically ho-
mogeneous spatial units named hydrological response units (HRUs) based on information
about land use, soils and ground slope. The water cycle is simulated by SWAT using the
following water balance equation [37]

SWt = SW0 +
t

∑
i=1

(
Rday −Qsurf − Ea − wseep −Qgw

)
(1)

where SWt is the final soil water content (mm H2O), SW0 is the initial soil water content
on day i (mm H20), t is time (days), Rday is the amount of precipitation on day i (mm
H2O), Qsurf is the amount of surface runoff on day i (mm H2O), Eα is the amount of
evapotranspiration on day i (mm H2O), wseep is the amount of water entering the vadose
zone from the soil profile on day i (mm H2O), and Qgw is the amount of return flow on day
i (mm H2O) [37].

The data required by the model are the digital elevation model (DEM) in grid format,
and the land use and soil type, also in grid format. In addition, the model needs the daily
precipitation at a number of gauges and the mean daily air temperature in order to estimate
the potential evapotranspiration.

2.1.2. HEC-HMS

The model HEC-HMS was developed by the US Army Corps of Engineers to simulate
the precipitation-runoff processes in dendritic watershed systems [51]. Regarding the
data requirements, HEC-HMS makes use of the geomorphometric characteristics of the
test basin. These can be extracted using the tool HEC GeoHMS, which is an extension
toolbox of ArcGIS. Furthermore, the spatially averaged precipitation is used in a semi-
distributed spatial context, whereas the user can choose a method for simulating losses,
a transform method to convert the excess rainfall to direct runoff and a method for flow
routing. Additionally, the user can specify a baseflow method.

2.1.3. SCS-CN Method

The SCS-CN method is used in order to estimate the direct surface runoff as

Q =


(P− Ia)

2

P− Ia + S
P > Ia

0 P ≤ Ia

(2)
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where Q is the cumulative direct runoff depth (mm), P is the cumulative rainfall depth
from the beginning of the studied storm (mm), S is the potential maximum retention (mm),
and Ia denotes the initial abstractions before ponding (mm). The quantity S is estimated
from a dimensionless parameter, the Curve Number or CN, as

S = 254
(

100
CN
− 1
)

(3)

The Curve Number takes values from 0, when S→∞, to 100, when S = 0. In general,
this method is widely used because the required input is readily available, and the approach
allows linkages among CN and soil type, land use, and management practices [42]. Addi-
tionally, the fact that this approach is implemented within many hydrological computer
packages makes it very convenient, as it can be used by modellers in different regions of
the world through applying values for the parameters that correspond to the land use and
soil type of the studied area.

As mentioned in the Introduction, the reason for selecting models that implement the
SCS-CN method is the wide application of the latter in runoff prediction after forest fires
(e.g., [26,28,31,39]). However, it is known that after a wildfire, the intense heating of soil
leads to the creation of a hydrophobic soil layer which repels water, causes a decrease in
infiltration rate and enhances runoff [52]. Given the absence of measurements indicating
the creation of a hydrophobic soil layer and the inability of widely used models to simulate
hydrophobicity directly, it is assumed that the SCS-CN method is able to take into account
hydrophobicity indirectly by changing the value of Curve Number. It goes without saying
that changes in CN reflect the overall effect of changes in various hydrological processes.

2.1.4. Suite of GR Hydrological Models

The Suite of GR Hydrological Models is a free package that encompasses six lumped
conceptual rainfall-runoff models for four different timescales, namely hourly (GR4H),
daily (GR4J, GR5J and GR6J), monthly (GR2M) and annual (GR1A). The number in the
name of each model denotes the number of model parameters. In this study, we use
only the three daily hydrological models to examine their behaviour and limitations in
presence of changes due to forest fires and compare results with those obtained through
other models (in our case, SWAT). The first four parameters of the selected GR models are
common to all of them and include the following: the maximum capacity of the runoff
production store (mm) (X1), the groundwater exchange coefficient (mm) (X2), the one day
ahead maximum capacity of the routing store (mm) (X3), and the time base of the unit
hydrograph (days) (X4). The additional parameter for GR5J is the inter-catchment exchange
threshold (dimensionless) (X5) and, for GR6J, the coefficient for emptying exponential store
(mm) (X6).

A detailed description can be found in [53–55] for GR4J, GR5J, and GR6J, respectively.
The inputs for the models are the daily values of precipitation, potential evapotranspiration,
minimum and maximum daily air temperature and observed runoff. Although the models
produce outputs for all basic hydrological processes, in this study we use only the results
for simulated discharge, actual evapotranspiration and percolation.

2.2. The Testing Framework

A testing framework is set up which comprises the following steps: (1) the SWAT
model and models of the Suite of GR hydrological models are calibrated and verified based
on existing daily hydrological data for the pre-fire period; (2) the SWAT model is applied
using data for the post-fire period by changing the Curve Number in the burnt areas with
the purpose to capture changes in the hydrological regime after the fire; (3) each one of
the models of the GR Suite of hydrological models is applied for the post-fire period using
parameters from the pre-fire period and parameter sets obtained from post-fire data on
a year-by-year basis; then the results are compared to those of SWAT; different post-fire
calibrations are attempted which are further commented at the end of this subsection;
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(4) the HEC-HMS is calibrated and verified based on four flood events occurred in the
pre-fire period; (5) then, four flood events having occurred in the post-fire period are used
in order to estimate the change of Curve Number in burnt areas for each event separately,
which reveals also the Curve Number temporal evolution. Steps 2 and 3 will help us
identify how forest fires affect the hydrological variables, both measured (daily, monthly,
and annual runoff volume) and unmeasured ones. Step 4 will help us identify the impacts
of forest fires at the hourly time step focusing on peaks, flood volumes and infiltration.
The temporal variability of the quantities of interest is investigated in Steps 2 and 4. The
Nash–Sutcliffe Efficiency, or NSE [56] is employed as an indicator of model performance.

In some cases, Curve Number under normal antecedent moisture conditions, de-
noted as CNII, needs to be converted into an increased value for wet antecedent moisture
conditions, denoted as CNIII, through the following empirical relationship [57].

CNIII =
23CNII

(10 + 0.13CNII)
(4)

With regard to the post-fire calibration of GR models on a year-by-year basis (Step 3),
an attempt is made to exploit the correspondence of model parameters to physics, even if
this correspondence is a very loose one. In preliminary tests, we considered that only the
runoff production mechanism is affected by the fire, which dictates that only parameter
X1 is influenced. By optimizing X1 while keeping all other parameters to their pre-fire
values led to very poor performance of models. As a result, this type of calibrations was
abandoned. On the other end of the spectrum, all parameters are simultaneously optimized
using default parameter ranges. This type of calibration is named “unconstrained X1”.
Then, the pre-fire value of X1 is used as the upper bound of X1, while all other parameters
are optimized as previously, which is termed as “constrained X1” calibration. This can
potentially keep the basin water storage in post-fire period below its pre-fire values, as
expected in reality.

With regard to the hourly time for the post-fire period (Step 5 above) we first compared
observed hydrographs and hydrographs simulated through HEC-HMS as the latter was
constructed for the pre-fire period. Then, we changed the Curve Number in order to
find the value that best reproduces the observed flood peak discharge. When using the
hourly time step, the basin was not subdivided neither into HRUs, nor into sub-basins. By
assuming that the change in CN is due only to the change in CN of burnt areas, the latter
being denoted as CNIIBurnt, one can write

CNIIBurnt =
CNIIPostFire −CNIIPreFirePUA

PBA
(5)

where PUA is the percentage of unburnt area (63.3%), PBA is the percentage of burnt
area (36.7%), CNIIPreFire is 68.6 and CNIIPostFire is the value of CNII for the entire basin for
post-fire conditions.

Finally, a threshold of CNIIburnt was considered which was set equal to 95.

2.3. Description of the Study Area

The Alpheios river is the most important river of the Peloponnesus region in Greece,
South-eastern Europe. The climate of the river basin is Mediterranean with wet winters and
hot and dry summers. The total annual precipitation on the catchment is approximately
1067 mm. The total length of the river main reach is more than 110 km.

In summer 2007, large-scale forest fires broke out in many regions of Greece. The
region which was most severely affected was Southern and Western Peloponnese. In these
fires, 67 people lost their lives (49 in the region of Peloponnese), whereas the total burnt area
was more than 2700 km2 (approximately 1800 km2 in the region of Peloponnese). Forests
were affected more than any other land use category. Additionally, it is estimated that
approximately 300 km2 of the burnt areas were within the Natura 2000 area [58]. Natura
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2000 is known to be a network to protect biodiversity in the European Union and ensure
the long-term survival of Europe’s most valuable and threatened species and habitats.

In this study, we examine the hydrological response of the sub-basin upstream of the
Karytaina Bridge (37.479448◦ N, 22.049843◦ E). The examined river reach is the main one of
the Alpheios river. The surface area of the basin is 877 km2, its ground elevation ranges
from 272 m to 1878 m with a mean value of 762 m and the length of the main channel is
equal to 35.5 km. Information on ground elevation is shown in Figure 1a.
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2.4. Data Used

Regarding precipitation, data for the period from 1990–1991 to 2012–2013 are available
for 14 stations within and around the basin at the daily time step, and 5 stations at the hourly
time step. The double mass curve method is used to verify the statistical homogeneity of
annual precipitation depths. Furthermore, a cross correlation test is employed to examine
if the stations, especially those outside of the basin, show similar precipitation patterns.
This test is necessary because the use of the Thiessen polygon method in the mountainous
terrain and microclimatic conditions of the region could severely affect the accuracy of
the spatially averaged precipitation depths. Parallel to the Thiessen polygon method, a
correction for elevation differences is applied. The rainfall lapse rate is estimated through
regressing mean annual precipitation depth on ground elevation for 11 stations. This was
found equal to 43.9 mm/100 m. Owing to missing data for some stations, the effective
number of stations used to extract the daily time series of precipitation fluctuated between
six and twelve.
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Potential evapotranspiration is estimated using the Hargreaves method [59]. For this
maximum and minimum air temperature data are extracted from two stations (Mornos
Dam for the period from October 1990 to September 2002 and Megalopolis from October
2002 to December 2013). The first one of these stations is away from the study basin, but
this was the only resort, since there are not air temperature gauges in the area that could
cover the period required. The reduction of air temperature with respect to the mean basin
elevation is estimated using the values given by Giandotti for Mediterranean catchments
South of the 45th parallel. The average daily temperature T is estimated as:

T =
Tmax + Tmin

2
(6)

where Tmax and Tmin is the maximum and minimum air temperature respectively.
For the study of the effects of fires on flood discharge, the available data included

only one hourly stage time series at the basin outlet, Karytaina Bridge, and hourly rainfall
depths from 5 stations within and around the basin for the most significant flood events
occurred in the period from 2000 to 2013. Since the lack of precipitation data was frequent,
only the events with at least two rain gauges without gaps were considered. The Thiessen
polygon method was applied in order to estimate the spatially averaged rainfall. The stages
were converted into discharges using the rating curves constructed within the frame of this
study.

It should be noted that no significant hydraulic works have been constructed in the
test basin. Additionally, due to the use of a rather short data record, the influence of climate
change can be considered of minor importance compared to the fire effect. As a result, in
this work the separation of the effects of various factors from the fire effect is not considered
necessary and is ignored.

The land use data are extracted from maps 1:100,000 of the Corine 2000 project. The
main land uses are the cultivated areas and forest areas (deciduous, evergreen and scle-
rophyllous vegetation) with percentages of area equal to 27.34% and 22.8%, respectively
(Figure 1b). Finally, regarding the soil data, the hydro soil map of Greece is used which was
developed by the former Hellenic Ministry of Development (Figure 1c). The most prevalent
soil type is karstic formations with high values of permeability (39.1% of area) and flysch
(29%) which is impermeable. Table 1 presents all the types of soil in the basin with their
corresponding hydrologic soil groups and percentages of area within the basin.

Table 1. Soil categories and hydrologic soil groups in the study basin.

Soil Type Hydrologic Soil Group Percentage of Area (%)

Karstic formations A 39.1
Limited growth limestone B 6.8

Flysch D 29.1
Metamorphic rocks C 2.0

Granular non-alluvial deposits B 10.4
Coarse and fine-grained deposits

of pebbles, gravel and sand B 12.6

3. Results
3.1. Modelling of Daily Streamflow
3.1.1. SWAT—Pre-Fire Period

As mentioned in Section 2, the SWAT model is applied in order to identify differences
in the hydrological response of the test basin between the pre-fire and post-fire period.
SWAT is calibrated and verified in the pre-fire conditions and then, the knowledge about the
basin is used to capture the post-fire regime by modifying only the infiltration mechanism
through changing the Curve Number of the SCS method in particular. The aim of this
process is to identify how forest fires affect the hydrological variables, both measured (daily,
monthly, and annual runoff volume) and unmeasured ones (annual volume of infiltration).
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The following assumptions are made: (i) the basin is not subdivided into sub-basins but
only into 54 HRUs (see description in Section 2.2) using land use, soil type and ground slope
as determinants with a threshold of 5% for the percentage of area for each determinant;
(ii) the simulation time step is one day.

The model is calibrated manually based on mean daily discharge rates for a five-year
period (1991–92 to 1996–97). It is noted that the observed daily discharge is obtained
through averaging sub-daily values. This was performed by the hydrology section of
Public Power Corporation of Greece employing water levels at the two-hour time step
converted into discharges using rating curves. The first hydrological year in the data set is
used to “warm up” the model. The verification process is based on daily discharge data
obtained both from sub-daily values for a four-year period (1997–98 to 2000–01) and stage
measurements for the period from 2001–02 to 6/2007. More specifically, for the latter period,
instantaneous stage measurements are available, usually in the morning, with a frequency
of three measurements per week on average. The stages are converted into discharges via
rating curves, which were constructed based on 136 pairs of hydrometric measurements.
The Nash-Sutcliffe efficiency is found equal to 0.61 in calibration and 0.71 in verification
with model prediction errors (or differences between observed and simulated discharge)
depicted in Figures 2a and 2b respectively.
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In Table 2, we present the values of Curve Number for normal antecedent moisture
conditions (denoted as CNII) for the pre-fire conditions. It should be noted that there are
no instances of hydrologic soil type C because there is no such soil type in the basin.
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Table 2. The values of CNII obtained through the calibration process of SWAT.

SWAT Land Use Land Use Hydrologic Soil Group

A B C D

PAST Pasture 33 50 - 71
UIDU Urban Industrial 71 78 - 89
AGRL Generic agriculture 38 63 - 74
FRSD Deciduous Forest 28 50 - 71
FRSE Evergreen Forest 28 50 - 71
FRST Mixed Forest 28 50 - 71

RNGE Grasslands/Herbaceous 38 61 - 76

Burnt areas 36.3 59.7 - 72.8

3.1.2. SWAT—Post Fire Period

In order to identify the effect of forest fire on the basin hydrologic regime, it is assumed
that only the Curve Number in burnt areas changed after the fire. All the other parameters
are assumed to remain unchanged. In general, after the fire, land use in burnt areas is
changed from forest areas to some new form of area. Fire severity determines the degree of
change, which is usually not homogeneous within a catchment. There are remote sensing
methods to identify fire severity [60–62], but these were not used in this study. It is assumed
that a new land use appears which is termed “burnt areas” and has new characteristics
that differ from those of the previous land use but are the same for the same soil type. The
new land use is related to a new value for CN. Given that we aim to identify the impact of
fires on infiltration for which the SCS-CN method is commonly used, we consider that the
above assumption is reasonable.

After the calibration and verification of the model, all the burnt areas are homogenised
by adopting a weighted average of the Curve Number for all land uses per soil type for
technical reasons. This complies with the above-mentioned assumption about homoge-
neous fire severity. The average CN can give an idea of the average change in CN in the
entire burnt area. In this case, for burnt areas, no distinction of CN is created between land
uses, but the values of CN are different for each soil type (Table 2).

By considering the above assumptions regarding CN, we performed two sets of
calculations. First, for each hydrological year after the fire, we estimated the differences
between the observed and simulated mean annual flow rates by ignoring the change in
CN due to fire; the temporal evolution of fire effects is assessed using the Nash–Sutcliffe
efficiency per year of the post-fire period. The results confirmed the existing knowledge of
the effects of fires. Specifically, by excluding the first year after the fire, the model is found
to systematically underestimate the mean annual discharges by 5–22%. Additionally, from
Table 3 (fifth column), it is found that ignoring the change in CN due to fire leads to very
low values of NSE for the first few years after the fire, while this is gradually improving
with time. The weighted average value of CN for the burnt areas was 57.6 in the pre-fire
period.

Table 3. Results of post-fire modelling using SWAT.

Hydrological
Year

Annual Mean of
Daily Observed
Flow Rate (m3/s)

Annual Mean of
Daily Simulated
Flow Rate (m3/s)

Percentage Error
in Annual Mean
of Mean Daily
Flow Rate (%)

Post Fire NSE Change of CNII (%) New * NSE

2007–08 1.39 2.56 81.36 0.429 - -
2008–09 8.22 6.58 −21.94 0.420 19.77 0.507
2009–10 8.86 8.65 −5.98 0.423 0.00 0.423
2010–11 5.14 5.08 −5.27 0.710 9.10 0.728
2011–12 9.21 8.17 −15.33 0.779 9.07 0.798
2012–13 15.55 13.60 −15.82 0.681 9.21 0.690

Note: * After adjustment taking into consideration the change in CN due to fire.
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In the second set of calculations, we varied the Curve Number of the burnt areas
under normal antecedent moisture conditions (II), i.e., CNIIburnt, with the sole purpose of
increasing NSE for each hydrological year. As shown in Table 3, the sixth column, after
the fire there is an abrupt increase in CNIIburnt but, thereafter, a gradual decrease follows.
Even though the improvement in efficiency is not significant, it seems that an increase in
the Curve Number could help better simulate the observed values. The temporal change
in CNIIburnt expressed as a percentage of the pre-fire CNII of the same areas is shown in
Figure 3. For the first year after the fire, the change was unexpectedly low (5%), while
for the third year, this was absolutely unrealistic (−30%). Both estimates correspond to
low NSE values and are therefore unreliable. By omitting the first and third years, a linear
falling trend in the change in CNIIburnt is found (Figure 3). The rate of fall per year is
approximately 2.7%. With regard to the CN changes for the first and third years that are
against theory [63], the available information does not allow a safe explanation, but unusual
model inputs constitute the most probable cause. It is noteworthy that the first year was
very dry. However, the general picture shows an abruptly increased runoff after the fire
and then a gradual decrease with time.
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3.1.3. Suite of GR Hydrological Models

Three models with different numbers of parameters were used to identify the capability
of lumped conceptual models. Maximizing the runoff prediction accuracy was the basis for
model construction, while model output variables, such as actual evapotranspiration and
percolation, were also examined. The models were calibrated and verified using the same
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general procedure and performance criterion as in the case of SWAT. The only difference
is that, unlike SWAT, these models were calibrated automatically using the Irstea-HBAN
procedure [64]. For the pre-fire period, the values of NSE for the calibration of GR4J, GR5J,
and GE6J were 0.80, 0.79, and 0.82, respectively. The values for verification were 0.74, 0.69,
and 0.78, respectively.

Concerning the post-fire period, model calibration on a year-by-year basis, first the
“unconstrained X1” calibrations are performed. High values of NSE were obtained for
all models (Table 4), whereas models with pre-fire parameters gave medium to poor
NSE. Figure 4 depicts the comparison of water cycle components for each of the three
GR models and SWAT using pre-fire parameters and parameters obtained using post-fire
data. For SWAT, some years with poor model performance were omitted, as mentioned in
Section 3.1.2. As revealed in Figure 4a, there were no large deviations between model runoff
predictions. Specifically, all GR models show the same pattern, as pre-fire-based model
predictions are consistently above or below post-fire-based model predictions. In general,
GR models calibrated for post-fire years predict higher runoff (up to 50%) compared to the
predictions of models based on pre-fire years, which is consistent with what is theoretically
expected. Yet, for the first year after the fire, which is particularly dry, post-fire-based runoff
predictions are approximately 30% lower than those predicted with pre-fire-based models.
This shows the high complexity of the studied phenomena and the difficulty in accurately
modelling them.

Table 4. Comparison of NSE values for pre-fire and post-fire period using the GR models.

Year GR4J GR5J GR6J

NSE
Pre-Fire *

NSE
Post-Fire **

NSE
Post-Fire ***

NSE
Pre-Fire *

NSE
Post-Fire **

NSE
Post-Fire ***

NSE
Pre-Fire *

NSE
Post-Fire **

NSE
Post-Fire ***

2007–2008 0.76 0.94 0.93 0.68 0.93 0.93 0.83 0.84 0.84
2008–2009 0.69 0.82 0.81 0.68 0.78 0.78 0.67 0.83 0.83
2009–2010 0.76 0.83 0.83 0.68 0.81 0.81 0.78 0.85 0.85
2010–2011 0.89 0.90 0.90 0.88 0.89 0.88 0.87 0.92 0.91
2011–2012 0.88 0.90 0.88 0.86 0.89 0.87 0.89 0.85 0.85
2012–2013 0.69 0.78 0.74 0.62 0.78 0.72 0.74 0.79 0.75

Notes: *: parameters obtained through calibration for the pre-fire period. **: parameters obtained through
calibration for the post-fire period (unconstrained X1). ***: parameters obtained through calibration for the
post-fire period (constrained X1).

Considering the actual evapotranspiration (Figure 4b), there were two findings. Firstly,
for SWAT models, results were very similar between pre-fire and post-fire conditions, which
indicates that our choice to change only the Curve Number does not affect evapotranspira-
tion, although some decrease is normally expected. The second finding was that the results
of the GR models and pre-fire conditions were consistent with regard to their magnitude.
However, when the models were calibrated for the post-fire conditions, a high variability of
results rose, which implies that models compensate for the new hydrologic conditions by
changing the evapotranspiration along with other variables, without faithfully reproducing
real phenomena.

Finally, regarding the percolation (Figure 4c), SWAT predicts decreased values, which
is consistent with most studies found in the literature and is theoretically expected from the
model structure. GR models predict the same annual volumes for pre-fire-based parameters.
However, for post-fire-based models, the percolation volumes are inconsistent: the GR6J
model correctly predicts lower percolation for all the years after the fire, whereas GR5J
predicts lower percolation for two years only and GR4J for one.

The above inconsistencies led us to resort to the “constrained X1” calibration described
in Section 2.2. With the exception of the first year after the fire, using this approach, all
models predicted higher simulated runoffs for all the remaining post-fire years as expected
(Figure 5a). The value of the NSE (Table 4) was high for all models and practically the
same as in the case of “unconstrained X1”. With regard to actual evapotranspiration and
percolation, the “constrained X1” post-fire calibration removed inconsistencies (Figure 5b,c).
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3.2. Modelling of Flood Events
3.2.1. General

Prior to using HEC-HMS, the time lag, tlag, was estimated as the time interval that
maximises the cross-correlation coefficient between rainfall and streamflow series. This
quantity is meant to characterise the basin’s response time. The results are shown in Table 5,
where we observe that, although tlag before the fire exceeded 10 h for all studied events,
the first year after the fire it was diminished to 8 h. However, after the second year, tlag



Water 2022, 14, 3348 14 of 25

rose again and returned to values similar to those of the pre-fire period. Additionally, we
compared the maximum values of the 12 h (Figure 6a) and 24 h rainfall depth (Figure 5b),
as obtained from the observed hyetograph, with the maximum observed discharge for each
flood event. As expected, events in the post-fire period showed a higher flood peak for
the same amount of maximum rainfall. This is revealed by the increasing linear trends
presented in Figure 6a,b. It is worth mentioning that the greater the maximum rainfall
is, the greater the divergence of flood peaks appears to be between the pre-fire and the
post-fire period. The coefficient of determination (R2) was high and statistically significant
at the 5% significance level for all linear trend lines fitted. Specifically, for the case with
24 h maximum precipitation, the p-values were 0.00438 and 0.02996 for the pre-fire and
post-fire periods, respectively. The corresponding p-values for the case with 12 h maximum
precipitation were 0.047 and 0.008517.

Table 5. Comparison of time lag, tlag, for pre- and post-fire flood events.

Flood Event Time lag
tlag (h)

Correlation
Coefficient Flood Event Time lag

tlag (h)
Correlation
Coefficient

Post-fire Pre-fire
2012–2013 11 0.625 2005–06 10 0.656
2011–2012 24 0.645 2004–05 14 0.656
2010–2011 11 0.782 2003–04 9 0.768
2009–2010 12 0.488 2002–03 11 0.783
2008–2009 8 0.719 2000–01 12 0.645
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3.2.2. Calibration and Verification of the Model in Pre-Fire Conditions

The model HEC-HMS mentioned in the introduction and described in Section 2.1.2
was applied to the data at the hourly time step for the pre-fire period. Before using the
model, it was necessary to perform a geomorphological analysis aimed at extracting the
necessary information for the model setup. This was implemented using the toolbox HEC-
GeoHMS. A Digital Elevation Model (DEM) was used, which had a pixel size of 5.5 m. The
DEM was supplied by the National Cadastre and Mapping Agency S.A. of Greece and the
geodetic reference system was the European Terrestrial Reference System 1989 (ETRS89),
which was converted into the Greek Geodetic Reference System ′87 (GGRS87).

For the calibration and verification of the model, four flood events were used, two of
which served for the calibration (2000–01, 2003–04) and two for the verification
(2002–03, 2004–05). The SCS-CN method was used as the loss method in all cases. The
only parameters that were involved in calibration were the Curve Number, the lag time,
and the recession constant of baseflow. Since the aim of this part of the study was to focus
on peak flows, the calibration was based on the minimization of the difference between
the simulated and observed peak flow rates. In Figure 7, we present the simulated and
observed discharge hydrographs for all four events examined. The Curve Number was
estimated to be equal to 68.6, the lag time was 600 min (i.e., 10 h), and the recession constant
was equal to 0.7. As shown in Table 6, the error in peak flow rate is quite small for the
verification period, whereas the flood volume is also well simulated.
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Table 6. Errors in simulated flood peak flow and flood volume (HEC-HMS model).

Quantity Calibration Events

2000–2001 2003–2004

Observed Simulated Error (%) Observed Simulated Error
(%)

Peak flow
(m3/s) 80.4 79.3 1.4 137.8 127.1 7.8

Volume (m3) 5267.1 6450.7 −22.5 11,223.5 10,392.5 7.4

Verification Events

2002–2003 2004–2005

Observed Simulated Error (%) Observed Simulated Error
(%)

Peak flow
(m3/s) 463.4 474.5 −2.4 209.1 202.7 3.1

Volume (m3) 35,239.9 40,823.8 −15.8 24,311.1 24,247.6 0.3

3.2.3. On Floods in Post-Fire Conditions
Flood Event in November 2007

In 2007, a major flood occurred for which the only information, apart from hourly
precipitation, was the maximum flood stage obtained from the flood trail. This was equal to
10.24 m above the riverbed. The peak discharge was estimated using the rating curve, but
the highest measured discharge corresponded to a stage of 5 m. Therefore, the estimated
discharge is unknown, which is most probably the reason why the model underestimates
the estimated discharge by approximately 10% (Table 7). The flood volume is not presented
here, as there was no full discharge hydrograph available.

Table 7. Comparison of the observed and simulated peak flow and flood volume for different values
of the Curve Number for four flood events (HEC-HMS model).

November
2007 Observed

Simulated with
CNIIPreFire = 68.6

(Error %)

Simulated with
CNIIburnt = 95

(Error %)

9 January
2009–18

January 2009
Observed

Simulated with
CNIIPreFire = 68.6

(Error %)

Simulated with
CNIIburnt = 95

(Error %)

Peak flow
(m3/s) 633.7 334.8 (47.2) 566.2 (10.7) Peak flow

(m3/s) 225.1 144.3 (35.9) 225.7 (−0.2)

Volume (m3) - - - Volume (m3) 14,332.2 13,780.4 (3.9) 21,197.5
(−47.9)

14 October
2009–17

October 2009
Observed

Simulated with
CNIIPreFire = 68.6

(Error %)

Simulated with
CNIIburnt = 95

(Error %)

5 February
2012–10

February 2012
Observed

Simulated with
CNIIPreFire = 68.6

(Error %)

Simulated with
CNIIburnt = 95

(Error %)

Peak flow
(m3/s) 170.5 51.1 (70) 133.7 (21.6) Peak flow

(m3/s) 197.6 124.4 (37) 197.6 (0.0)

Volume (m3) 4262.6 2817.5 (33.9) 7651.8 (−79.5) Volume (m3) 21,104.7 14,323.9 (32.1) 23,159.5 (−9.7)

Flood Event in 9 January 2009–18 January 2009

The cumulative precipitation of the five-day period preceding this event was 32.7 mm.
According to the SCS-CN method, the CNIII, i.e., CN for wet antecedent moisture conditions,
had to be used, which was estimated at 83.4 for the pre-fire period through converting the
value of CNII (68.6) into CNIII through Equation (4). For the post-fire period, CNIII was
found to be equal to 89.2 and can be converted into CNIIPostFire by inverting Equation (4).
Therefore, CNIIPostFire was found to be equal to 78.2 and CNIIBurnt was again equal to
95. In Figure 8a, we depict the simulated hydrographs for the post-fire flood event (for
various values of CN) compared to the respective measured ones. It appears that if it is
assumed that the hydrological regime did not change after the fire (i.e., CNII = 68.6 for
the entire basin), then the model underestimates the peak flow by approximately 36%
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(Table 7), despite the fact that the model could simulate the slopes of the rising and falling
limb of the observed hydrograph satisfactorily. Regarding the flood volume and taking
into consideration the change in the Curve Number, the model failed to reproduce it in a
satisfactory way because the base length of the simulated hydrograph was wider than that
of the observed hydrograph, which apparently helped reproduce the peak flow.
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Flood Event in 14 October 2009–17 October 2009

For this flood, the model failed to accurately simulate both the peak flow and flood
volume. More specifically, the model underestimated the peak flow by approximately
70%, but when the fire was taken into consideration, the underestimation was only 21.6%
(Table 7), although the CNIIBurnt took its maximum value, i.e., 95. From Figure 8b, it
becomes obvious that the model inaccurately simulated both the rising and falling limbs
of the hydrograph. The cause of this was probably because of an error in the hourly
precipitation data, as, for this event, there were only two stations with available data, and
one of them was lying outside of the basin.

Flood Event in 5 February 2012–10 February 2012

For the last flood event, the model underestimated the peak flow by 37%. However,
when the change in CNII in the burnt areas was taken into consideration, the percent relative
error became practically zero. By examining Figure 8c, HEC-HMS seems to describe very
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well the rising limb and accurately simulate the peak flow. The parameter CNIIBurnt was
equal to 90.4. It turns out that CN decreases after some years (here, five years), which is
most probably related to the development of the vegetation in the burnt area. As seen in
Table 7, for this event, the model could simulate the flood volume fairly well (relative error
−9.7%).

Finally, the modified values of the Curve Number were plotted against the date of the
occurrence of the related flood event. It appears that, after the third year, CNII began to
decrease at a slow rate. However, until the fifth year, the Curve Number still remained
above 90. A second-order polynomial fit to this trend is shown in Figure 9. It is noted that
all values of the Curve Number after the first year belong to the falling limb of the fitted
polynomial, as expected from the anticipated recovery of vegetation, and, in general, land
use changes after the fire.
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3.3. Comparing Results at the Two Timescales

This study showed that after the fire, the Curve Number of burnt areas increases
in both timescales. The magnitude of change is, however, different from one timescale
to another. This is because SWAT is a continuous-time model that modifies CN in dry
periods, whereas HEC-RAS is an event-based model that keeps CN constant in time.
Moreover, the inaccuracy in the representation of flood processes when using a daily time
step, superimposed on other sources of error, can justify the differences in CN values, at
least in part. Moreover, it appears that there is a high linear correlation between the CN
values on the two timescales. More specifically, after plotting the values of CNII for the
two timescales against time expressed in years after the fire and fitting a linear trend line,
the cross-correlation of the predicted values through these trend lines is found to be high.
The two linear trend lines shown in Figure 10 have slopes that are statistically significant
at approximately the 10% significance level. We adopted the 10% significance level, i.e.,
the maximum acceptable value, because of the high uncertainty of factors involved in
the analysis. Contrary to the absolute values of the two slopes, the slope difference is
statistically insignificant. This implies that the rate of decrease is statistically the same for
both timescales. Conversely, the intercepts of the two lines are significant at a very low
significance level (below 0.01) and the same holds for their difference. The latter implies a
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systematic deviation between the Curve Numbers for the two timescales, with the hourly
scale showing larger values by approximately 40%.
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4. Discussion

A large-scale forest fire affects many components of the water cycle, such as evap-
otranspiration, infiltration, and runoff. Furthermore, it changes the land use, increases
erosion, and can create a water-repellent soil layer. In recent years, the issue of change
has become of major importance for the hydrological sciences. The scientific initiative of
the International Association of Hydrological Sciences (IAHS) for the decade 2013–2022,
entitled “Panta Rhei-Everything Flows” [65], aims at making predictions of water resource
dynamics in a changing environment. The key questions are: (i) how we can identify
hydrological changes; (ii) what is the amount of data required for the identification of
the potential impact of catchment changes; (iii) is the use of models necessary for such
identification and, if so, what type of models are preferred.

It is widely accepted that all models suffer from various kinds of uncertainty, such as
data uncertainty, parameter estimation uncertainty, model structural uncertainty, and per-
ceptual model uncertainty [66]. Those uncertainties, superimposed on model equifinality,
create models that may not be able to inform us about a change. This has been expressed by
George Box [67] in his quote: “All models are wrong, but some models are useful”. There
are methodologies that employ only observed data to identify a change. These cannot,
however, identify the cause of change, nor can they help acquire in-depth knowledge about
the processes involved. Usually, the selection of a model is based on the goal of the study,
data availability, and prior experience with the use of a specific model.

In this study, after 2001, there were no observed daily discharges available, but only
measurements with a frequency of one every two or three days. This rendered the use of
models inevitable. We selected a wide spectrum of models, from semi-distributed (SWAT
and HEC-HMS) to lumped (GR4J, GR5J, and GR6J) and from models using the SCS-CN
method for the estimation of infiltration (SWAT and HEC-HMS) to simple conceptual
models with four to six parameters (GR models).

The comparison of our results with results from the literature reveals that our results
are consistent with most of the existing studies. Considering flood events at the hourly
time-step, Cydzik and Hogue [26] calculated the post-fire CN to be approximately 85 for
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the first year, while the pre-fire value was approximately 57. The CN almost reached its
pre-fire values after three years. Lag time decreased from 2 h to 1.5 h for the three years
after the fire. Papathanasiou et al. [28] found CN to increase for two sub-basins from 40
and 45 to 82 and 79, respectively. The lag time decreased for the first sub-basin from 2 h to
1.5 h, whereas in the other sub-basin, lag time was not affected. McLin et al. [30] found a
strong correlation between the relative increase in CN and the relative decrease in lag time
for the post-fire condition. The change for both variables was from 0 to 75%. The Burned
Area Emergency Rehabilitation team, BAER, [68] assigned CN values equal to 65, 85, and
90 for low, medium, and high severity burnt areas, respectively. For the daily time step,
Havel et al. [31] estimated the increase in CN to be approximately 5, 10, and 15 for low,
medium, and high-burnt severity.

With regard to the first research question set in the introduction, our modelling effort
using a variety of models revealed that the daily runoff volume and hourly peak discharge
are severely underestimated for the post-fire period if no model recalibration is performed.
The percent underestimation is in the order of more than 20% and 30% for the daily and
hourly timescales, respectively. The lack of measurements for other variables, such as
percolation, combined with the large scale of the fire phenomena and model equifinality,
prevented us from drawing safe conclusions about variables other than runoff. Regarding
the temporal evolution of model parameters in the post-fire period we recall that parameter
combinations that would allow for gradual runoff decrease were naturally expected. Indeed,
we have been able to verify such behaviour for SWAT and HEC-HMS, despite the high
complexity of hydrological processes due to the spatial extent of the study basin. Of course,
this was achieved through confining the recalibration parameter set to only one parameter,
i.e., the Curve Number. Moreover, the rate of post-fire fall of the Curve Number proved to
be independent of the timescale. This timescale invariance is certainly promising for future
modelling methodologies.

Regarding the second question, our search of the literature revealed that the existing
knowledge on fire effects in small basins is far from sufficient for the prediction of runoff in
large basins using semi-distributed hydrological models. For such a prediction, the small
test basin should be similar to the modelled unit of the semi-distributed model in many
respects, namely, its topography, soil, vegetation, climatology, burn severity, and fire extent,
to mention only a few. It goes without saying that the results from the experimental basins
would be more desirable than any model predictions. Unfortunately, experimental basins
are small in size, and their measurements are very unlikely to cover the whole spectrum
of the required information for a large basin. In the case of lumped models, it becomes
impracticable to exploit the above-mentioned idea of basin similarity, and, hence, the model
calibration exercise remains the only alternative. Some of our tests with lumped models
revealed some inconsistencies in the fire effect on processes other than runoff, the latter
being the only variable involved in model calibration and, consequently, being forced to be
consistent with measurements.

Although no wide consensus has been established with regard to the questions posed
in this work, we believe that there is a favorable perspective for this, which is justified by the
recent intensification of related research efforts worldwide (e.g., [69–72], to mention but a
few.) Additionally, one should not lose sight of the fact that many anthropogenic influences
act simultaneously (e.g., forest fires, deforestation, large-scale hydraulic works) and affect
the same hydrological variables by: (i) altering the rate of evaporation, (ii) modifying
the velocity and amount of overland flow, (iii) altering the amount of infiltration into the
ground, and (iv) affecting the amount of intercepted water [73].

The issue of the identification of the best model features remains open, and models
that are different from those used in this work would merit further study, e.g., Hydrologiska
Byråns Vattenavdelning (HBV) [74], SACRAMENTO [75], Australian Water Balance Model
(AWBM) [76], and Hydrological Model Focusing on Sub-Flows Variation (HMSV) [77]. On
top of that, the choice of model performance measure induces some uncertainty. In this
work, only NSE was employed, although other measures could also be used [78–80].
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5. Conclusions

In this paper, the hydrologic effects of a large-scale forest fire were investigated using
five models, namely SWAT, GR4J, GR5J, GR6J, and HEC-HMS. The use of the models
proved useful in extracting information that could not otherwise be extracted. With respect
to the spatial variability of modelled processes, the selected models cover a wide spectrum,
i.e., from lumped models of the GR model suite to semi-distributed models SWAT and
HEC-HMS. Regarding the mathematical representation of processes, SWAT and HEC-HMS
implement the SCS-CN method, whereas the GR Suite models employ a different modelling
approach. With regard to the employed time step, four models (SWAT, GR3J, GR4J, and
GR5J) used the daily time step, whereas HEC-HMS was run at the hourly time step.

The results of our investigation allow us to draw the following conclusions:

1. For both the daily and hourly time steps, there was a significant increase in the Curve
Number after the fire was found.

2. For daily streamflow, the SWAT model gave low values of the Nash–Sutcliffe efficiency
when applied to the post-fire period, after it had been calibrated and verified for the
pre-fire period. However, an increase in the Curve Number by approximately 20%
clearly improved the NSE for the post-fire period. The Curve Number showed a
decreasing trend with respect to time after the fire, which is consistent with the
presumed regeneration of the vegetation. It appeared that, when used without
recalibration after the fire, the SWAT model underestimates the daily streamflow by
approximately 22% on average.

3. For the hourly time step study using the HEC-HMS model, the threshold of the
Curve Number in burnt areas was set to 95. The results showed that for a period
of approximately three years after the fire, the Curve Number was still 95 in the
burnt areas during the flood events, with a slow decrease rate after the third year.
However, until the fifth year, the Curve Number still remained above 90. The model
underestimated the peak flow in the basin by 35–70% (60 m3/s to 300 m3/s in absolute
values), whereas the model proved capable of simulating the post-fire flood events in
a satisfactory way if the modeller has knowledge about the change in Curve Number
due to fire.

4. The linear trend lines of the Curve Number in burnt areas with respect to time for
the two-timescales show the same slope but different intercepts, with the latter being
larger for the hourly scale. This implies that the magnitude of the Curve Number
is systematically higher in the case of the hourly time step, but its rate of temporal
decrease is timescale-independent.

5. Past findings suggest that the hydrologic effects of a forest fire can be highly variable
and difficulties in the model were verified in this study; specifically, in the first
year after the fire, which was particularly dry, all models faced difficulties, which
revealed that a unique model structure, such as that of the selected models, may not
be sufficient.

6. The lumped models employed in this work for daily simulations (GR Suite) showed
very high performance with respect to the accuracy of prediction of the observed
streamflow. Their credibility in predicting post-fire hydrological variables other than
runoff was found to be considerably enhanced by employing parameter constraints
in calibration. In this work, the use of the pre-fire value of parameter X1 (runoff
production store capacity) as the upper bound in post-fire calibration proved par-
ticularly useful for a realistic simulation of internal model variables, such as actual
evapotranspiration and percolation.

Author Contributions: Conceptualization, I.N. and S.C.B.; methodology, I.N. and S.C.B.; software,
S.C.B.; validation, S.C.B. and I.N.; formal analysis, I.N. and S.C.B.; investigation, S.C.B.; data curation,
S.C.B.; writing—original draft preparation, S.C.B. and I.N.; writing—review and editing, I.N. and
S.C.B.; visualization, I.N. and S.C.B.; supervision, I.N. All authors have read and agreed to the
published version of the manuscript.



Water 2022, 14, 3348 22 of 25

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Hydrological and geospatial data are available on request from the
Public Power Corporation of Greece and the National Cadastre and Mapping Agency S.A. of Greece,
respectively.

Acknowledgments: The authors would like to express their gratitude to I. Kouvopoulos from the
Public Power Corporation of Greece, as well as other members of staff of the corporation, for their
kind supply of data for discharge and precipitation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rycroft, H.B. A Note on the Immediate Effects of Veldburning on Stormflow in a Jonkershoek Stream Catchment. J. S. Afr. For.

Assoc. 1947, 15, 80–88. [CrossRef]
2. Colman, C.A. Fire and water in southern California’s mountains. Calif. For. Range Exp. Stn. Misc. Pap. 1953, 3, 1–8.
3. Lavabre, J.; Torres, D.S.; Cernesson, F. Changes in the hydrological response of a small Mediterranean basin a year after a wildfire.

J. Hydrol. 1993, 142, 273–299. [CrossRef]
4. Townsend, S.A.; Douglas, M.M. The effect of three fire regimes on stream water quality, water yield and export coefficients in a

tropical savanna (northern Australia). J. Hydrol. 2000, 229, 118–137. [CrossRef]
5. Pierson, F.B.; Robichaud, P.R.; Spaeth, K.E. Spatial and temporal effects of wildfire on the hydrology of a steep rangeland

watershed. Hydrol. Process. 2001, 15, 2905–2916. [CrossRef]
6. Springer, E.P.; Hawkins, R.H. Curve number and peakflow responses following the Cerro Grande fire on a small watershed. In

Proceedings of the Watershed Management Conference “Managing Watersheds for Human and Natural Impacts Engineering,
Ecological and Economic Challenges”, Williamsburg, VA, USA, 19–22 July 2005.

7. Shakesby, R.A.; Doerr, S.H. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 2006, 74, 269–307. [CrossRef]
8. Lane, P.N.; Sheridan, G.J.; Noske, P.J. Changes in sediment loads and discharge from small mountain catchments following

wildfire in south eastern Australia. J. Hydrol. 2006, 331, 495–510. [CrossRef]
9. Moody, J.A.; Martin, D.A. Initial hydrologic and geomorphic response following a wildfire in the Colorado Front Range. Earth

Surf. Process. Landf. 2001, 26, 1049–1070. [CrossRef]
10. Moody, J.A.; Martin, D.A.; Haire, S.L.; Kinner, D.A. Linking runoff response to burn severity after a wildfire. Hydrol. Process. 2008,

22, 2063–2074. [CrossRef]
11. Stoof, C.R.; Vervoort, R.W.; Iwema, J.; van den Elsen, E.; Ferreira, A.J.D.; Ritsema, C.J. Hydrological response of a small catchment

burned by experimental fire. Hydrol. Earth Syst. Sci. 2012, 16, 267–285. [CrossRef]
12. Scott, D.F.; Van Wyk, D.B. The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment.

J. Hydrol. 1990, 121, 239–256. [CrossRef]
13. Scott, D.F. The hydrological effects of fire in South African mountain catchments. J. Hydrol. 1993, 150, 409–432. [CrossRef]
14. Soler, M.; Sala, M.; Gallart, F. Post fire evolution of runoff and erosion during an eighteen month period. Soil erosion and

degradation as a consequence of forest fires. In Soil Degradation and Desertification in Mediterranean Environments; Sala, M., Rubio,
J.L., Eds.; Geoforma Ediciones: Logroño, Spain, 1994; pp. 149–161.

15. Soto, B.; Basanta, R.; Benito, E.; Perez, R.; Diaz-Fierros, F. Runoff and erosion from burnt soils in northwest Spain. Soil Erosion
as a consequence of forest fires. In Soil Degradation and Desertification in Mediterranean Environments; Sala, M., Rubio, J.L., Eds.;
Geoforma Ediciones: Logroño, Spain, 1994; pp. 91–98.

16. Mayor, A.G.; Bautista, S.; Llovet, J.; Bellot, J. Post-fire hydrological and erosional responses of a Mediterranean landscape: Seven
years of catchment-scale dynamics. Catena 2007, 71, 68–75. [CrossRef]

17. Bart, R.; Hope, A. Streamflow response to fire in large catchments of a Mediterranean-climate region using paired-catchment
experiments. J. Hydrol. 2010, 388, 370–378. [CrossRef]

18. Inbar, M.; Tamir, M.; Wittenberg, L. Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area.
Geomorphol. 1998, 24, 17–33. [CrossRef]

19. Rulli, M.C.; Rosso, R. Hydrologic response of upland catchments to wildfires. Adv. Water Resour. 2007, 30, 2072–2086. [CrossRef]
20. Cerrelli, G.A. FIRE HYDRO, a simplified method for predicting peak discharges to assist in the design of flood protection

measures for western wildfires. In Proceedings of the Watershed Management Conference “Managing Watersheds for Human
and Natural Impacts Engineering, Ecological and Economic Challenges”, Williamsburg, VA, USA, 19–22 July 2005.

21. Feikema, P.M.; Sherwin, C.B.; Lane, P.N. Influence of climate, fire severity and forest mortality on predictions of long term
streamflow: Potential effect of the 2009 wildfire on Melbourne’s water supply catchments. J. Hydrol. 2013, 488, 1–16. [CrossRef]

http://doi.org/10.1080/03759873.1947.9630594
http://doi.org/10.1016/0022-1694(93)90014-Z
http://doi.org/10.1016/S0022-1694(00)00165-7
http://doi.org/10.1002/hyp.381
http://doi.org/10.1016/j.earscirev.2005.10.006
http://doi.org/10.1016/j.jhydrol.2006.05.035
http://doi.org/10.1002/esp.253
http://doi.org/10.1002/hyp.6806
http://doi.org/10.5194/hess-16-267-2012
http://doi.org/10.1016/0022-1694(90)90234-O
http://doi.org/10.1016/0022-1694(93)90119-T
http://doi.org/10.1016/j.catena.2006.10.006
http://doi.org/10.1016/j.jhydrol.2010.05.016
http://doi.org/10.1016/S0169-555X(97)00098-6
http://doi.org/10.1016/j.advwatres.2006.10.012
http://doi.org/10.1016/j.jhydrol.2013.02.001


Water 2022, 14, 3348 23 of 25

22. Batelis, S.C.; Nalbantis, I. Potential effects of forest fires on streamflow in the Enipeas river basin, Thessaly, Greece. Environ.
Process. 2014, 1, 73–85. [CrossRef]

23. Versini, P.A.; Velasco, M.; Cabello, A.; Sempere-Torres, D. Hydrological impact of forest fires and climate change in a Mediterranean
basin. Nat. Hazards 2013, 66, 609–628. [CrossRef]

24. Earles, T.A.; Wright, K.R.; Brown, C.; Langan, T.E. Los Alamos forest fire impact modelling. J. Am. Water Resour. Assoc. 2004, 40,
371–384. [CrossRef]

25. Goodrich, D.C.; Canfield, H.E.; Burns, I.S.; Semmens, D.J.; Miller, S.N.; Hernandez, M.; Levick, L.R.; Guertin, D.P.; Kepner, W.G.
Rapid post-fire hydrologic watershed assessment using the AGWA GIS-based hydrologic modeling tool. In Proceedings of
the Watershed Management Conference “Managing Watersheds for Human and Natural Impacts Engineering, Ecological and
Economic Challenges”, Williamsburg, VA, USA, 19–22 July 2005.

26. Cydzik, K.; Hogue, T.S. Modeling Postfire Response and Recovery using the Hydrologic Engineering Center Hydrologic Modeling
System (HEC-HMS). J. Am. Water Resour. Assoc. 2009, 45, 702–714. [CrossRef]

27. Nalbantis, I.; Lymperopoulos, S. Assessment of flood frequency after forest fires in small ungauged basins based on uncertain
measurements. Hydrol. Sci. J. 2012, 57, 52–72. [CrossRef]

28. Papathanasiou, C.; Alonistioti, D.; Kasella, A.; Makropoulos, C.; Mimikou, M. The impact of forest fires on the vulnerability of
peri-urban catchments to flood events (The case of the Eastern Attica Region). Glob. NEST 2012, 14, 294–302.

29. Papathanasiou, C.; Makropoulos, C.; Mimikou, M. Hydrological modelling for flood forecasting: Calibrating the post-fire initial
conditions. J. Hydrol. 2015, 529, 1838–1850. [CrossRef]

30. McLin, S.G.; Springer, E.P.; Lane, L.J. Predicting floodplain boundary changes following the Cerro Grande wildfire. Hydrol.
Process. 2001, 15, 2967–2980. [CrossRef]

31. Havel, A.; Tasdighi, A.; Arabi, M. Assessing the hydrologic response to wildfires in mountainous regions. Hydrol. Earth Syst. Sci.
2017, 22, 2527–2550. [CrossRef]

32. NRCS. Hydrologic Soil Cover Complexes. In National Engineering Manual; USDA Natural Resources Conservation Service; NRCS:
Washington, DC, USA, 2004; Chapter 9; p. 210-VI-NEH.

33. Bertalanffy Von, L. General Systems Theory; Braziller: New York, NY, USA, 1962.
34. Beven, K.J.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental

systems. J. Hydrol. 2001, 249, 11–29. [CrossRef]
35. Arnold, J.G.; Williams, J.R.; Srinivasan, R.; King, K.W. SWAT: Soil and Water Assessment Tool; US Department of Agriculture,

Agricultural Research Service: Temple, TX, USA, 1999.
36. Neitsch, S.L.; Arnold, J.G.; Williams, J.R. Soil and Water Assessment Tool User’s Manual; US Department of Agriculture, Agricultural

Research Service: Temple, TX, USA, 1999.
37. Neitsch, S.L.; Arnold, J.G.; Kiniry, G.R.; Williams, J.R. Soil and Water Assessment Theoretical Tool Documentation; US Department of

Agriculture, Agricultural Research Service: Temple, TX, USA, 2005.
38. Bladon, K.D.; Silins, U.; Emelko, M.B.; Flannigan, M.; Dupont, D.; Robinne, F.; Wang, X.; Parisien, M.A.; Stone, M.; Thompson,

D.K.; et al. Assessing the Impact of Active Land Management in Mitigating Wildfire Threat to Source Water Supply Quality; AGU Fall
Meeting Abstracts: Washington, DC, USA, 2014; Volume 1, p. 4.

39. Havel, A. Hydrologic and Hydraulic Response to Wildfires in the Upper Cache la Poudre Watershed Using a SWAT and HEC-RAS
Model Cascade. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2016.

40. Liu, J.; Paul, S.; Manguerra, H. ArcSWAT Modeling Analysis for Post-Wildfire Logging Impacts on Sediment and Water Yields at
Salmon-Challis National Forest, Idaho, USA. In Proceedings of the Watershed Management 2015 Symposium, Reston, VA, USA,
5–7 August 2015; pp. 240–250.

41. Narsimlu, B.; Gosain, A.K.; Chahar, B.R.; Singh, S.K.; Srivastava, P.K. SWAT model calibration and uncertainty analysis for
streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting. Environ. Process. 2015, 2, 79–95.
[CrossRef]

42. Putz, G.; Burke, J.M.; Smith, D.W.; Chanasyk, D.S.; Prepas, E.E.; Mapfumo, E. Modelling the effects of boreal forest landscape
management upon streamflow and water quality: Basic concepts and considerations. J. Environ. Eng. Sci. 2003, 2, S87–S101.
[CrossRef]

43. Stengel, V.G. Comparing Simulated Hydrologic Response Before and After the 2011 Bastrop Complex Wildfire. Ph.D. Thesis,
Texas State University, San Marcos, TX, USA, 2014.

44. Watson, F.G. Large Scale, Long Term, Physically Based Modelling of the Effects of Land Cover Change on Forest Water Yield.
Ph.D. Thesis, University of Melbourne, Melbourne, Australia, 1999.

45. Goswami, M.; O’Connor, K.M.; Bhattarai, K.P. Development of regionalisation procedures using a multi-model approach for flow
simulation in an ungauged catchment. J. Hydrol. 2007, 333, 517–531. [CrossRef]

46. Sivapalan, M.; Takeuchi, K.; Franks, S.W.; Gupta, V.K.; Karambiri, H.; Lakshmi, V.; Liang, X.; McDonnell, J.J.; Mendiondo, E.M.;
O’Connell, P.E.; et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the
hydrological sciences. Hydrol. Sci. J. 2003, 48, 857–880. [CrossRef]

http://doi.org/10.1007/s40710-014-0004-z
http://doi.org/10.1007/s11069-012-0503-z
http://doi.org/10.1111/j.1752-1688.2004.tb01036.x
http://doi.org/10.1111/j.1752-1688.2009.00317.x
http://doi.org/10.1080/02626667.2011.637041
http://doi.org/10.1016/j.jhydrol.2015.07.038
http://doi.org/10.1002/hyp.385
http://doi.org/10.5194/hess-22-2527-2018
http://doi.org/10.1016/S0022-1694(01)00421-8
http://doi.org/10.1007/s40710-015-0064-8
http://doi.org/10.1139/s03-032
http://doi.org/10.1016/j.jhydrol.2006.09.018
http://doi.org/10.1623/hysj.48.6.857.51421


Water 2022, 14, 3348 24 of 25

47. Watson, F.G.; Vertessy, R.A.; Grayson, R.B. Large-scale modelling of forest hydrological processes and their long-term effect on
water yield. Hydrol. Process. 1999, 13, 689–700. [CrossRef]

48. Lane, P.N.; Feikema, P.M.; Sherwin, C.B.; Peel, M.C.; Freebairn, A.C. Modelling the long term water yield impact of wildfire and
other forest disturbance in Eucalypt forests. Environ. Model. Softw. 2010, 25, 467–478. [CrossRef]

49. Zhou, Y.; Zhang, Y.; Vaze, J.; Lane, P.; Xu, S. Improving runoff estimates using remote sensing vegetation data for bushfire
impacted catchments. Agr. For. Meteorol. 2013, 182, 332–341. [CrossRef]

50. Zhou, Y.; Zhang, Y.; Vaze, J.; Lane, P.; Xu, S. Impact of bushfire and climate variability on streamflow from forested catchments in
southeast Australia. Hydrol. Sci. J. 2015, 60, 1340–1360. [CrossRef]

51. US Army Corps of Engineers Hydrologic Engineering Center. Hydrologic Modeling System. In HEC-HMS User’s Manual;
Hydrologic Engineering Center: Davis, CA, USA, 2015.

52. DeBano, L.F. The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 2000, 231,
195–206. [CrossRef]

53. Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279,
275–289. [CrossRef]

54. Le Moine, N. Le Bassin Versant de Surface vu Par le Souterrain: Une Voie D’amélioration des Performances et du Réalisme des
Modèles Pluie-débit? Ph.D. Thesis, University Paris 6, Paris, France, 2008.

55. Pushpalatha, R.; Perrin, C.; Le Moine, N.; Mathevet, T.; Andréassian, V. A downward structural sensitivity analysis of hydrological
models to improve low-flow simulation. J. Hydrol. 2011, 411, 66–76. [CrossRef]

56. Nash, J.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10,
282–290. [CrossRef]

57. Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988.
58. WWF. Ecological Assessment of the Wildfires of August 2007 in the Peloponnese; World Wide Fund: Greece, Athens, 2007.
59. Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from ambient air temperature. Am. Soc. Agric. Eng. 1985, 1,

96–99. [CrossRef]
60. Roy, D.P.; Boschetti, L.; Trigg, S.N. Remote sensing of fire severity: Assessing the performance of the normalized burn ratio. IEEE

Geosci. Remote Sens. Lett. 2006, 3, 112–116. [CrossRef]
61. Escuin, S.; Navarro, R.; Fernandez, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized

Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073. [CrossRef]
62. Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18,

116–126. [CrossRef]
63. Saxe, S.; Hogue, T.S.; Hay, L. Characterization and evaluation of controls on post-fire streamflow response across western US

watersheds. Hydrol. Earth Syst. Sci. 2018, 22, 1221–1237. [CrossRef]
64. Michel, C. Hydrologie appliquée aux petits bassins ruraux. In Hydrology Handbook; Cemagref: Anthony, France, 1991. (In French)
65. Montanari, A.; Young, G.; Savenije, H.H.G.; Hughes, D.; Wagener, T.; Ren, L.L.; Koutsoyiannis, D.; Cudennec, C.; Toth, E.;

Grimaldi, S.; et al. “Panta Rhei—Everything flows”: Change in hydrology and society—The IAHS scientific decade 2013–2022.
Hydrol. Sci. J. 2013, 58, 1256–1275. [CrossRef]

66. Wagener, T.; Gupta, H.V. Model identification for hydrological forecasting under uncertainty. Stoch. Environ. Res. Risk Assess.
2005, 19, 378–387. [CrossRef]

67. Box, G.E. Science and statistics. J. Am. Stat. Assoc. 1976, 71, 791–799. [CrossRef]
68. BAER. Burned Area Emergency Rehabilitation Plan for Cerro Grande Fire; US Forest Service: Los Alamos, NM, USA, 2000.
69. Fortesa, J.; Latron, J.; García-Comendador, J.; Tomàs-Burguera, M.; Company, J.; Calsamiglia, A.; Estrany, J. Multiple temporal

scales assessment in the hydrological response of small mediterranean-climate catchments. Water 2020, 12, 299. [CrossRef]
70. Cao, L.; Elliot, W.; Long, J.W. Spatial simulation of forest road effects on hydrology and soil erosion after a wildfire. Hydrol.

Process. 2021, 35, e14139. [CrossRef]
71. Balocchi, F.; Rivera, D.; Arumi, J.L.; Morgenstern, U.; White, D.A.; Silberstein, R.P.; Ramírez de Arellano, P. An Analysis of the

Effects of Large Wildfires on the Hydrology of Three Small Catchments in Central Chile Using Tritium-Based Measurements and
Hydrological Metrics. Hydrology 2022, 9, 45. [CrossRef]

72. Ruíz-García, V.H.; Borja de la Rosa, M.A.; Gómez-Díaz, J.D.; Asensio-Grima, C.; Matías-Ramos, M.; Monterroso-Rivas, A.I. Forest
Fires, Land Use Changes and Their Impact on Hydrological Balance in Temperate Forests of Central Mexico. Water 2022, 14, 383.
[CrossRef]

73. Onyutha, C.; Willems, P. Investigation of flow-rainfall co-variation for catchments selected based on the two main sources of
River Nile. Stoch. Environ. Res. Risk Assess. 2018, 32, 623–641. [CrossRef]

74. Bergström, S. Development and application of a conceptual runoff model for Scandinavian catchments. In SMHI RHO 7; SMHI:
Norrköping, Sweden, 1976.

75. Burnash, R.J.C. The NWS River forecast system-catchment modeling. In Computer Models of Watershed Hydrology; Singh, V.P., Ed.;
Water Resources Publications: Littleton, CO, USA, 1995; pp. 311–366.

76. Boughton, W. The Australian water balance model. Environ. Model. Softw. 2004, 19, 943–956. [CrossRef]
77. Onyutha, C. Hydrological Model Supported by a Step-Wise Calibration against Sub-Flows and Validation of Extreme Flow

Events. Water 2019, 11, 244. [CrossRef]

http://doi.org/10.1002/(SICI)1099-1085(19990415)13:5&lt;689::AID-HYP773&gt;3.0.CO;2-D
http://doi.org/10.1016/j.envsoft.2009.11.001
http://doi.org/10.1016/j.agrformet.2013.04.018
http://doi.org/10.1080/02626667.2014.961923
http://doi.org/10.1016/S0022-1694(00)00194-3
http://doi.org/10.1016/S0022-1694(03)00225-7
http://doi.org/10.1016/j.jhydrol.2011.09.034
http://doi.org/10.1016/0022-1694(70)90255-6
http://doi.org/10.13031/2013.26773
http://doi.org/10.1109/LGRS.2005.858485
http://doi.org/10.1080/01431160701281072
http://doi.org/10.1071/WF07049
http://doi.org/10.5194/hess-22-1221-2018
http://doi.org/10.1080/02626667.2013.809088
http://doi.org/10.1007/s00477-005-0006-5
http://doi.org/10.1080/01621459.1976.10480949
http://doi.org/10.3390/w12010299
http://doi.org/10.1002/hyp.14139
http://doi.org/10.3390/hydrology9030045
http://doi.org/10.3390/w14030383
http://doi.org/10.1007/s00477-017-1397-9
http://doi.org/10.1016/j.envsoft.2003.10.007
http://doi.org/10.3390/w11020244


Water 2022, 14, 3348 25 of 25

78. Waseem, M.; Mani, N.; Andiego, G.; Usman, M. A review of criteria of fit for hydrological models. Int. Res. J. Eng. Technol. (IRJET)
2017, 4, 1765–1772.

79. Althoff, D.; Rodrigues, L.N. Goodness-of-fit criteria for hydrological models: Model calibration and performance assessment.
J. Hydrol. 2021, 600, 126674. [CrossRef]

80. Onyutha, C. A hydrological model skill score and revised R-squared. Hydrol. Res. 2022, 53, 51–64. [CrossRef]

http://doi.org/10.1016/j.jhydrol.2021.126674
http://doi.org/10.2166/nh.2021.071

	Introduction 
	Materials and Methods 
	Hydrological Modelling 
	The Soil and Water Assessment Tool (SWAT) 
	HEC-HMS 
	SCS-CN Method 
	Suite of GR Hydrological Models 

	The Testing Framework 
	Description of the Study Area 
	Data Used 

	Results 
	Modelling of Daily Streamflow 
	SWAT—Pre-Fire Period 
	SWAT—Post Fire Period 
	Suite of GR Hydrological Models 

	Modelling of Flood Events 
	General 
	Calibration and Verification of the Model in Pre-Fire Conditions 
	On Floods in Post-Fire Conditions 

	Comparing Results at the Two Timescales 

	Discussion 
	Conclusions 
	References

