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Abstract: The complex and extensive mechanism of landslides and their direct connection to climate
change have turned these hazards into critical events on a global scale, which can have significant
negative influences on the long-term sustainable development of nations. Taiwan experiences
numerous landslides on different scales almost every year. However, Typhoon Morakot (2009), with
large-scale landslides that trapped people, demonstrated the importance of an early warning system.
The absence of an effective warning system for landslides along with the impossibility of its accurate
monitoring highlighted the necessity of landslide rainfall threshold prediction. Accordingly, the
prediction of the landslide rainfall threshold as an early warning system could be an effective tool
with which to develop an emergency evacuation protocol. The purpose of this study is to present the
capability of the deep learning algorithm to determine the distribution of landslide rainfall thresholds
in a potential large-scale landslide area and to assess the distribution of recurrence intervals using
probability density functions, as well as to assist decision makers in early responses to landslides
and reduce the risk of large-scale landslides. Therefore, the algorithm was developed for one of the
potential large-scale landslide areas (the Alishan D098 sub-basin), Taiwan, which is classified as a
Type II Landslide Priority Area. The historical landslide data, maximum daily rainfall, 11 topographic
factors from 2004 to 2017, and the Keras application programming interface (API) python library were
used to develop two deep learning models for landslide susceptibility classification and landslide
rainfall threshold regression. The predicted result shows the lowest landslide rainfall threshold is
located primarily in the northeastern downstream of the Alishan catchment, which poses an extreme
risk to the residential area located upstream of the landslide area, particularly if large-scale landslides
were to be triggered upstream of Alishan. The landslide rainfall threshold under controlled conditions
was estimated at 780 mm/day (20-year recurrence interval), or 820 mm/day (25-year recurrence
interval). Since the frequency of extreme rainfall events caused by climate change is expected to rise
in the future, the overall landslide rainfall threshold was considered 980 mm/day for the entire area.

Keywords: deep learning; rainfall-induced landslide; sediment disaster; Keras; multilayer perceptron;
hyperparameter tuning; mountain disaster risk reduction

1. Introduction

Landslides are natural hazards that cause loss of life and heavy financial and economic
damage to residential areas all over the world. Therefore, investigating the effective
factors of landslides for planning and providing management solutions in sensitive areas is
essential.

Landslides generally occur under the influence of physical, human, and climatic fac-
tors [1]. Among all factors, intense rainfall is highly significant [2], and is thus considered
a crucial factor in the implementation of early warning systems for landslides [3]. For-
mulation approaches used for the landslide rainfall threshold are mainly divided into the
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empirical and the deterministic approaches. The empirical approach generally is defined
based on empirical formulae proposed in previous studies [4,5]. Since empirical formulae
are provided for a specific study area, their application is constrained to areas with similar
characteristics and properties. In addition, landslide precipitation threshold prediction
through empirical formulae with insufficient raw data leads to unreliable results with
larger confidence prediction intervals. On the other hand, the deterministic approach has
mainly been presented by models, such as slope stability models or artificial intelligence
models [3,6–8].

The main point of these models is to require sufficient physical parameters or factors to
analyze and obtain optimized results; otherwise, despite multiple analyses at various time
points, the result will be suboptimal. The most important challenge in landslide prediction
through statistical-based methods is access to the location and date of landslides, factors of
landslide occurrence, and controlling factors such as topography, geology, soil, and land
cover [9].

The topography of the watershed is diverse, complex, and heterogeneous, and these
different factors establish different conditions for landslide occurrence. Geology, topogra-
phy, and soil type are requisite factors for formulating the landslide rainfall threshold [4].
Research has shown that high-risk landslide areas are mainly located within high altitudes,
steep slopes, high curvature, barren lands, loose geology or lithology, and near river sys-
tems or roadsides [10–12]. In order to predict high-risk landslide areas, first, the landslide
precipitation for the entire area should be determined, which is difficult when there is
insufficient information.

Deep learning has evolved gradually in recent years as a result of technological ad-
vances in software and hardware computer equipment, such as the advent of tensor and
graphics processing units (TPUs and GPUs). Moreover, as landslide control factors limit the
capability of traditional machine learning methods [13], deep learning can be a wiser choice
due to some of its advantages, including: (i) its capability to be used in multiple fields;
(ii) ability to extract inherent and deep features easily; (iii) ability to distinguish effective
information and obtain optimal parameters to construct models (iv) without requiring prior
knowledge or hypotheses [14]; and (v) capability of accepting a higher sample size without
manually constructing and (vi) selecting feature layers [15]. Various studies have applied
deep learning techniques for landslide analysis [16–18], landslide susceptibility analy-
sis [19–22], and landslide displacement predictions [23,24], and have proved the accuracy
of these methods compared to traditional methods. Similarly, traditional machine learning
methods compared to empirical approaches and physical modeling have provided highly
efficient and accurate landslide disaster warning models [25]. Multiple studies employed
precipitation data and artificial intelligence methods to develop landslide displacement
prediction methods [1–3,5–9,13–15,26–33].

Recent studies attempted to enhance the reliability of landslide displacement predic-
tion models through machine learning algorithms [26,27].

Although landslides in Taiwan have been studied for a long time, landslide hazards
came into prominence in 2009 coincidentally with Typhoon Morakot, which trapped
people. Due to the large population of Taiwan compared to the area of the country,
concern was raised about potential property damage and fatalities in residential areas.
On the other hand, the lack of landslide prediction and warning systems adds to this
concern. Therefore, this paper attempts to assist responsible authorities in taking emergency
evacuation decisions by introducing a model of estimation of the landslide rainfall threshold.
This study combined the advantages of empirical approaches (with sufficient raw data) and
deterministic approaches (with high resolution and high accuracy); in addition, we used
a deep learning model to establish the landslide susceptibility and the landslide rainfall
threshold map of potential large-scale landslide area for Alishan D098. To indicate the
range with a “highly landslide potential and lower rainfall threshold”, the critical rainfall
threshold should be considered in landslide susceptibility. Therefore, the prediction results
of the two models were multiplied to obtain the revised landslide rainfall threshold. The
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deep learning model parameters were chosen through hyperparameter tuning with a Keras
tuner to probe and choose the model with the highest score (low validation loss score).
Missing values were interpolated on the basis of historical landslide data. Figure 1 shows
the workflow of this study.

Figure 1. Study workflow for the prediction model.

2. Study Area

The study area was Alishan D098 (Figure 1) in southwestern Taiwan, which is known
as the Laitou Landslide Area, located upstream of the Tsengwen Reservoir Watershed. It
serves as a reference area for potential large-scale landslide areas affecting Gongxin Village,
Fanlu Township, and Shanmei Village in Chiayi County’s Alishan Township (Figure 2a).
The potential area is approximately 42.9 hectares, with a downstream influence area of
74.2 hectares; landslide occurrence along the river is the debris flow type [34,35]. The
geological formation is primarily Changchihkeng, which consists of sandstone and sand-
shale interbedding lithology, and the Laitou Fault runs through this area from the northwest
to southeast, resulting in relatively fragmented geology [36].
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Figure 2. (a) Location of the influence area of Alishan D098; (b) the historical landslide areas by years.

Landslides have previously occurred in the northeast of Alishan D098, trapping ten
residents during Typhoon Morakot in 2009 [37]. The recent multiphase regulation [38] has
stabilized this area. The Soil and Water Conservation Bureau classified the area as a Type II
Landslide Priority Area, which can be described by potential large-scale landslide objects
without overlapping with existing debris-flow-protected targets [35].

3. Materials and Methods
3.1. Data Collection

Historical landslide datasets, including the Taiwan Satellite Interpretation Landslide
Map provided by the Council of Agriculture (COA) from 2003 to 2017, and the Historical
Landslide Catalog, provided by the Central Geological Survey (CGS) from 2003 to 2010,
with all polygon vector data types, were used in this study. First, the landslide area was
analyzed in 2003 and 2004. To obtain the overlapping area, the Intersect tool (ArcGIS 10.8)
was employed afterward, and the overlapping area in 2004 was eliminated by the Erase
tool to establish the new landslide area for the same year. The process was repeated year
after year to generate all vector data of landslide areas from 2004 to 2017. After that, we
converted it to grid data with the same resolution as the DEM (5 × 5 m) to obtain point
data and finally created new landslide grid points.

The analysis result shows the new landslide grid points in Alishan D098 and its
influence area were calculated at about 7000 grid points, which is considered insufficient.
As a result, new landslide grid points in the sub-basin where the influence area is located
were added to augment the dataset (Figure 3a). The bar chart illustrates new landslide grid
points in the sub-basin (Figure 3b) from 2004 to 2017, with a total of 36,369 grid points. The
highest frequency occurred in 2009, with 23,806 grid points (equivalent to an increase of
59.5 hectares of new landslide area) in the basin as a result of Typhoon Morakot’s heavy
rainfall. In 2004, 2008, and 2011, there were no landslide increases. Moreover, a significant
decline in landslide occurrence has been observed since 2013.
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Figure 3. (a) The new landslide distribution; (b) the number of grid points by year in the sub-basin.

Based on literature research [18,22,39–42], 11 topographic factors were chosen (Table 1).
The annual maximum daily rainfall (MDR) was collected from local rain gauge stations
around Tsengwen Reservoir Watershed by the Central Weather Bureau (CWB) from 2004
to 2017 and was interpolated using inverse distance weighted (IDW) for conversion into
spatial distribution grids (Figure 4a). The values extracted by the Point tool were used
to match newly acquired landslide grid points from these grids with the corresponding
topographic factors and the MDR. Figures 4b and 5 depict the spatial distribution of 11
topographic factors and the MDR in the sub-basin.

Repeated points in the new landslide grid points dataset represented the landslides
that occurred more than once during or after the recovery period due to topography with a
high landslide risk. Given that the high-landslide-susceptibility area requires a lower land-
slide rainfall threshold, the year with the lowest MDR was retained when the grid point was
repeated. After filtering, 5243 repeated points were reduced to 31,126 non-repeated points.

The grid points in the sub-basin were used as training and testing datasets for the deep
learning models of landslide susceptibility classification and rainfall threshold regression.

The former was the input feature for both the landslide and non-landslide grid points,
with the non-landslide grid points having the same count as the landslide grid points
chosen at random for dataset balance; the latter was only used for the landslide grid points
because the rainfall for the non-trigger landslide was unknown.

Figure 4. Spatial distribution of maximum daily rainfall in 2009. (a) Tsengwen Reservoir Watershed;
(b) sub-basin where the study area is located.
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Figure 5. Topographic factors: (a) elevation; (b) slope; (c) aspect; (d) plan curvature; (e) profile
curvature; (f) Topographic Wetness Index (TWI); (g) Stream Power Index (SPI); (h) distance from
fault; (i) distance from river; (j) distance from road; (k) lithology. 1. Thick-bedded massive sandstone
and argillaceous sandstone; 2. sandstone and sand-shale interbedding; 3. bodies of water; 4. massive
shale, occasionally with thin-bedded siltstone; 5. siltstone and shale thin interbedding.
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Table 1. The information about factors selected in the study.

Topography Factors Data Source Data Type Value Range

Elevation DEM Continuous 384.70–1238.10
Slope DEM Continuous 0.00–64.89

Aspect DEM Continuous −1.00–360.00
Plan curvature DEM Continuous −27.07–25.72

Profile curvature DEM Continuous −31.32–30.42
Topographic Wetness Index (TWI) DEM Continuous 2.65–20.51

Stream Power Index (SPI) DEM Continuous 0–4,388,483
Distance to fault CGS Continuous 0.00–1646.15
Distance to river DEM Continuous 0.00–680.66
Distance to road OpenStreetMap Continuous 0.00–610.98

Lithology CGS Categorical n/a

3.2. Preprocess

Preprocessing of new landslide grid points was required before model training. Only
11 topography factors were left to be assigned as input features, and the new landslide
year of occurrence was considered as the label. The scikit-learn MinMaxScaler function
was applied for feature standardization [43], which scaled all input features into a range
of 0 to 1. The transformation serves two purposes: the first is to allow the optimization
function to converge earlier during iteration, improving model accuracy, and the second is
to combine the landslide susceptibility and rainfall threshold regression models, correcting
the rainfall threshold once the model prediction is complete. The label was one-hot-encoded
for the landslide susceptibility model. To give the lower MDR a large-scale value after
transformation in the rainfall threshold regression model, first, the multiplicative inverse
of the original MDR was used, and then the reciprocal of the MDR was scaled to a range
from 0 to 1 with MinMaxScaler. Therefore:

MDRiscaled =
MDRi −MDRmin

MDRmax −MDRmin
(1-1)

MDRi =
1

MDRi
(1-2)

3.3. Multicollinearity Analysis

The variance inflation factor (VIF) is the ratio of the overall model variance to the
variance of a single independent variable model. It is used to determine variable multi-
collinearity. The VIF formula is shown below [44]:

VIFi =
1

Tolerance
=

1
1− Ri

2 (2)

where Ri
2 is the coefficient of multiple determination of regression i.

Although the VIF threshold is still controversial, there is agreement on the maximum
threshold. If the VIF of a factor exceeds 10.0 (or tolerance is less than 0.1), it is described as
higher multicollinearity, which may have a negative impact on predictive power in multiple
regression models [44,45]. The statsmodels was used to calculate the VIF [46]. In this study,
the VIF threshold was set to 5 based on previous study recommendations [19–21] and
considered the condition that exceeding values would be excluded and then reanalyzed
until the VIF of all features showed a value of less than 5.

3.4. The Framework of Deep Learning Model

Deep learning is an artificial neural network (ANN) architecture with multiple and
continuous layers between the input and output layers, with the number of layers increas-
ing the model’s depth. The weight values stored in the layers are interacted with and
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transformed in this model to determine the rules via the connection of neurons between
layers. The predicted values are expected to match the true values.

Keras API is a Python deep learning library for high-level neural network program-
ming, similar to TensorFlow and PyTorch. However, Keras API can build deep learning
models faster and easier [47]. Hale [48] evaluated 11 popular deep learning applications
based on usage, interest, and popularity. TensorFlow, Keras, PyTorch, Caffe, and Theano
topped the preference list, with Keras being preferred most by deep learning novices. Ac-
cording to a Kaggle survey of data scientists and machine learning engineers, Scikit-learn
is the most popular machine and deep learning library, followed by Tensorflow and Keras
API [49].

The multilayer perceptron (MLP) in Keras API was used to build the deep learning
model in this study. MLP architecture is shown in Figure 6. Moreover, the dropout layer
was added after each hidden layer to reduce the model’s overfitting problem; the input
value for the dropout layer indicates that the ratio of neurons will not be used in this layer.
The normalized exponential function (Softmax), Softplus, Softsign, rectified linear unit
(ReLU), hyperbolic tangent (tanh), sigmoid, and exponential are some activation functions
provided by Keras API [47]. As a result, different activation functions are appropriate for
various layers and purposes. The ReLU function was used for each hidden layer, and the
Softmax function was employed for the output layer of the landslide susceptibility model.
However, the regression model is usually not required to set the activation function of the
output layer, with the output value expected to be between 0 and 1; therefore, Sigmoid was
used for the rainfall threshold regression model’s output layer. The ReLU, Softmax, and
Sigmoid function formulae are as follows:

So f tmax(x) =
ezj

∑K
K=1 ezk

f or j = 1, . . . K (3)

ReLU(x) = max(0, x) (4)

Sigmoid(x) =
1

1 + e−x (5)

where zj is the raw output value of the layer j, and K is the total number of labels. The total
percent of the output value in the classification model must be equal to 1.

Figure 6. The MLP model architecture.
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Stochastic Gradient Descent (SGD), Root Mean Square Propagation (RMSProp), and
Adaptive Moment Optimization (Adam) are among the Keras optimizer algorithms. Binary
cross-entropy loss (CE, also known as sigmoid cross-entropy loss), mean absolute error
(MAE), and mean squared error are among the loss functions (MSE). Setting Adam and
MSE as the optimization algorithm and loss function, respectively, yields the highest model
predictive accuracy [22]. Therefore, Adam and MSE were assigned to this study.

Adam is an SGD-based algorithm with the added benefits of AdaGrad and RMSProp.
It has high computational efficiency and low memory usage. Adam Optimizer’s algorithm
functions are as follows [50]:

m̂t =
β1·mt−1 + (1− β1)·gt

1− βt
1

(6-1)

v̂t =
β2·vt−1 + (1− β2)·gt

2

1− βt
2

(6-2)

wt = wt−1 −
α·m̂t√
v̂t + ε

(6-3)

where t is the timestep, m is the first moment vector, v is the second moment vector, gt is the
gradients with respect to the stochastic objective at t, wt is the resulting parameter, α is the
stepsize, β1, β2 are the exponential decay rates for the moment estimate, and ε is the value
that, to be prevented, must be divided by zero. The final parameter vector is returned when
wt is converged. The suitable parameters for Adam Optimizer are: α = 0.001; β1 = 0.9;
β2 = 0.999, and ε = 10−8.

Typically, the epoch is determined by training a model several times and selecting the
appropriate epochs from the results. If the epochs are too long or too short, it will result
in overfitting for the validation loss or underfitting for the training loss, and the model’s
performance will suffer as a result. To improve on this, we set the EarlyStopping function
to monitor the validation loss and stopped training if the validation loss was no longer
reduced after 10 consecutive training sessions.

3.5. Hyperparameter Tuning

Deep learning model parameters are typically chosen via manual selection based on
previous experiences and research, trial and error, grid search, and or random search meth-
ods. Although the babysitting and random search are simple and quick, these strategies
are not always the most appropriate combination. On the other hand, the grid search will
always obtain the best combination; however, it will be time-consuming to search in cases
with a large number of combinations. The current study used KerasTuner [51], a Keras
hyperparameter tuning library, to determine the parameter of each hyperparameter in the
model, such as the number of hidden layers, the neurons of each hidden layer, the dropout
rate of each dropout layer, and the stepsize (α) of the Adam Optimizer, in order to provide
the most suitable combination in a short period of time. In addition, the Hyperband Tuner
was selected to obtain the best model parameters. The range of hyperparameters for the
model defined in this study is listed in Table 2.

Table 2. The range of hyperparameters for the model defined.

Hyperparameters Type Defined Parameters

Counts of Hidden Layer Integer 2–10
Neurons of Hidden Layer Integer 4, 8, 12, . . . , 124, 128

Dropout Rate Real 0.00, 0.05, 0.10, . . . , 0.85, 0.90
Stepsize of Adam Optimizer Float 0.0001–0.1
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3.6. Model Evaluate

The model was tested on validation and test datasets to assess the model’s accuracy
after training. In this study, the accuracy of the landslide susceptibility model was evaluated
using a binary confusion matrix. The model performance evaluation metrics used the OA,
which is defined as the ratio of all true predicted data (TP + TN) to all data; precision, which
is defined as the ratio of true positive data predicted by the model (TP) to all true data
predicted by the model (TP + FP); and recall, which is defined as the ratio of true positive
data predicted by the model (TP) to all actual true data (TP + FN):

Overall Accuracy =
TP + TN

TP + FP + FN + TN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

In addition, some common indices for evaluation were selected, such as the F-score,
Cohen’s kappa coefficient (κ), and Matthews correlation coefficient (MCC). The F-score was
proposed by van Rijsbergen in 1979, and introduced by Chinchor [52] in 1992. The formula
of the F-score is the following:

Fβ score =
(

β2 + 1
)
·Precision·Recall

β2·Precision + Recall
(10)

where β is the relative importance of the precision and recall; if β = 1, the precision is as
important as the recall, meaning the F1 score, as well as the harmonic mean of the precision
and recall [53].

Matthews introduced the MCC classification accuracy index in 1975 (in the range of
−1 to 1). If the value is close to 1, it represents the best and most consistent classification
accuracy; a score close to 0 indicates poor classification accuracy, and a score close to −1
shows an inconsistent difference between the true and predicted classification accuracy.
According to Chicco et al. [54], the MCC can provide more realistic and informative results
than the commonly used Cohen’s kappa coefficient and Brier score. Chicco and Jurman [55]
also demonstrated that the MCC will receive a higher score when the confusion matrix
categories have high precision, whereas the accuracy and F-score in imbalanced datasets
are prone to over-optimism. The formulae for Cohen’s kappa coefficient (κ) and MCC are
as follows [54]:

MCC =
TP·TN − FP·FN√

(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)
(11)

κ =
2·(TP·TN − FN·FP)

(TP + FP)·(FP + TN) + (TP + FN)·(FN + TN)
(12)

The rainfall threshold regression model was evaluated using MAE, root mean square
error (RMSE), and mean absolute percentage error (MAPE). MAE and RMSE are used to
compute model error, while MAPE is used to calculate the model accuracy. The formulae
for the three metrics are as follows:

MAE =
1
n

n

∑
i=1
|A(i)− P(i)| (13)

RMSE =

√
∑n

i=1[A(i)− P(i)]2

n
(14)
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MAPE =
1
n

n

∑
i=1

∣∣∣∣A(i)− P(i)
A(i)

∣∣∣∣× 100% (15)

where A(i) is the actual value of data i, P(i) is the predicted value of data i, and n is the total
of the dataset.

All models in this study were built using Desktop PC with Intel Core i7, Processor
3.20 GHz, 40 GB RAM, and python language 3.9.7 through Spyder IDE 5.1.5 compiler.

4. Results and Discussion
4.1. Correlation and Multicollinearity between Factors

First, the correlation between factors was investigated by using the Pearson corre-
lation coefficients (PCCs). PCCs close to 1 or −1 represent the probability of extreme
multicollinearity while PCCs close to 0 indicate almost no multicollinearity between fac-
tors. The results (Figure 7) show that the highest PCCs between factors were observed in
elevation/distance to river, elevation/distance to fault, SPI/TWI, and aspect/distance to
fault, with both PCCs being greater than 0.5 or less than −0.5. Table 3 shows the results of
the multicollinearity analysis. The VIFs of 11 terrain factors were all less than 5, with the
highest being 2.916 and 3.330 in elevation, and the second being 2.444 and 2.492 in distance
from the fault. The distance to the road was the lowest. All factors were used for model
training and prediction based on the VIF results.

Figure 7. Pearson correlation coefficient between factors for training datasets. (a) Landslide suscepti-
bility classification model; (b) rainfall threshold regression model.

Table 3. The VIF results of each factor for training datasets of landslide susceptibility and rainfall
threshold regression model.

Features Landslide Susceptibility
(n = 62,252)

Rainfall Threshold
(n = 31,126)

Elevation 2.916 3.330
Slope 1.359 1.502
Aspect 1.435 1.381
Plan Curvature 1.548 1.548
Profile Curvature 1.246 1.252
TWI 1.963 2.293
SPI 1.279 1.447
Distance to fault 2.444 2.492
Distance to river 2.094 2.491
Distance to road 1.060 1.041
Lithology 1.346 1.423

The variance inflation factor.
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4.2. Result of Hyperparameter Tuning

Table 4 shows the top three validation loss score combinations based on model hy-
perparameter results. The validation loss score of the best combination for the landslide
susceptibility classification model was 0.0801; the architecture contained four hidden layers
with 108, 84, 100, and 112 neurons, and the dropout rate of the dropout layers was 0.05, 0.25,
0.45, and 0.3, respectively. Additionally, the stepsize of the Adam Optimizer was 0.000874,
and the validation accuracy was 90%; this combination was the same as the second. The
validation loss score of the best combination for the rainfall threshold regression model
was 0.0675, which had four hidden layers with 124, 128, 36, and 72 neurons, respectively,
and the dropout rate of the dropout layers was 0.2, 0.2, 0.25, and 0.1, respectively, and the
stepsize of the Adam Optimizer was 0.001889. The combination with the best validation
loss score was applied as the model parameter in the study based on the results.

Table 4. Top 3 ranking of hyperparameter tuning results for models.

Hyperparameters
Landslide Susceptibility Classification Rainfall Threshold Regression

1st 2nd 3rd 1st 2nd 3rd

Counts of hidden layer 4 4 3 4 4 3
Neurons of hidden layer 1 108 108 108 124 120 120

Rate of dropout layer 1 0.05 0.05 0.30 0.20 0.20 0.45
Neurons of hidden layer 2 84 84 96 128 108 84

Rate of dropout layer 2 0.25 0.25 0.45 0.20 0.70 0.05
Neurons of hidden layer 3 100 100 60 36 28 88

Rate of dropout layer 3 0.45 0.45 0.10 0.25 0.05 0.00
Neurons of hidden layer 4 112 112 - 72 28 -

Rate of dropout layer 4 0.30 0.30 - 0.10 0.40 -
Stepsize of Adam

Optimizer 0.000874 0.000874 0.000383 0.001889 0.000669 0.000507

Initial epoch 67 23 67 67 67 67
Epochs 200 67 200 200 200 200

Best step 91 41 127 83 120 99

Validation accuracy 0.8916 0.8683 0.8652 n/a n/a n/a
Score (Validation loss) 0.0801 0.0977 0.0998 0.0675 0.0704 0.0710

4.3. Training and Evaluated Results

The total dataset was split into train and test datasets in the ratio of 70% to 30%,
respectively. The prediction data were based on all grid points within the study area, with
a batch size of 50,200 epochs, and 20% for validation dataset. The model parameters were
determined using tuning hyperparameters to produce the best combinations of validation
loss scores.

The results for the landslide susceptibility classification model show that the early
stopping function ceased during training while the epoch was approaching 155 times
(Figure 8a, Table 5). The final accuracy and loss for the training dataset were 0.8816 and
0.0871, respectively, and 0.8973 and 0.0786 for the validation dataset. The overall accuracy,
F1 score, Cohen’s kappa, and MCC for the training dataset were 0.9094, 0.9092, 0.8187, and
0.8211, respectively, while the results show 0.8959, 0.8957, 0.7918, and 0.7944 for the test
dataset. The high model metric scores indicate the model is able to predict reliable results.

During the rainfall threshold regression model training, the early stop function paused
when the epoch reached 89 times (Figure 8b, Table 5). The calculated final loss for the
training and validation datasets was 0.0734 and 0.0698, respectively. The MAE, RMSE,
and MAPE of the training dataset computed 180.09 mm/day, 228.03 mm/day, and 26.31%,
respectively; for the validation dataset, these were 185.98 mm/day, 233.97 mm/day, and
27.16%. The reason for the high MSE and RMSE errors is that the actual rainfall at the time
of the landslides could not be captured; therefore, this study assumed that the landslides
occurred when precipitation reached the maximum daily rainfall for the year; accordingly,
the training results for the model still had errors and uncertainties. Although the model’s
results were not perfect, MAPE was calculated at about 27%, which is within an acceptable
range. Figure 9 shows the ROC area under curve of training and test models.
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Figure 8. The accuracy and loss trend of training and validation dataset. (a) Landslide susceptibility
classification model; (b) rainfall threshold regression model.

Table 5. The evaluated result for models.

Models Evaluate Train Dataset Test Dataset

Landslide
Susceptibility
Classification

Overall accuracy 0.9094 0.8959
Precision 0.9118 0.8985
Recall 0.9094 0.8959
ROC AUC 0.9633 0.9550
F1 score 0.9092 0.8957
Cohen’s kappa 0.8187 0.7918
MCC 0.8211 0.7944

Rainfall Threshold
Regression

MAE 180.09 185.98
RMSE 228.03 233.97
MAPE 0.2631 0.2716

Figure 9. The ROC area under curve. (a) Training dataset; (b) test dataset.
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4.4. Predicting and Revising Landslide Rainfall Threshold

Generally, when the susceptibility factor shows a higher value and the rainfall thresh-
old factor a lower value, the risk of landslide occurrence is elevated. As a result, the
emergency evacuation is triggered earlier.

Therefore, the prediction dataset was used as input for the trained model to calcu-
late the landslide susceptibility factor and rainfall threshold factor with values ranging
from 0 to 1.

The spatial distribution tagged image file (TIF) for prediction results is from the Geospatial
Data Abstraction Library (GDAL) [56] and was mapped in with ArcGIS. Figure 10 shows that
the landslide susceptibility factor in the historical landslide area and downstream was
higher than in other areas, whereas the high rainfall threshold factor was primarily found
in areas with obvious topographic changes.

Figure 10. The prediction result of the sub-basin and Alishan D098 influence area. (a) Landslide
susceptibility classification model; (b) rainfall threshold regression model.

Although the rainfall threshold model’s input data include topographic factors, these
factors were excluded from the training data due to missing landslide rainfall values in
the non-landslide area, because the rainfall threshold model was only able to estimate the
rainfall threshold data in the landslide areas. Accordingly, the training model eliminated
topographic features of the non-landslide zone and the prediction results show a lower
rainfall threshold value for non-landslide areas. It was assumed that the landslide occurred
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when rainfall surpassed the highest daily precipitation of the year because the actual
precipitation landslide threshold was not known; therefore there was still uncertainty in
the training model’s outputs. To obtain the revised landslide rainfall threshold factor, two
predictions were multiplied. This method significantly reduces the factor of the area with
low landslide susceptibility and low rainfall threshold; as a result, the high coefficient
of “high landslide susceptibility and low rainfall threshold” was retained. The result
(Figure 11) shows that the lowest landslide rainfall threshold in Alishan D098 was primarily
located in the northeast, with a downstream influence area. Due to the area’s high landslide
susceptibility but lower rainfall threshold in the prediction results, the MDR ranged from
350 to 780 mm/day after revision. Because of the topography, the western area showed a
lower rainfall threshold, but the landslide susceptibility was lower. The original landslide
rainfall threshold value of about 600 mm/day was increased to about 900 mm/day after
the rainfall threshold was revised.

Figure 11. The spatial distribution of landslide rainfall threshold in Alishan D098 influence area. (a)
Original result, which did not take the landslide susceptibility into account; (b) revised result, which
did take the landslide susceptibility into account.

4.5. Establishing Recurrence Interval Distribution of Revised Landslide Rainfall Threshold

MDR data (from 1989 to 2021) were collected from the Longmei rain gauge station
(C1M390), which is located near Alishan D098. The probability density functions, such
as Extreme-value Type I, Normal, Pearson Type III, Log-Normal, and Log-Pearson Type
III Distribution frequency analysis, were employed for frequency analysis. Moreover, the
Kolmogorov–Smirnov Test (K-S Test) was used to examine the suitability. After that, the
lowest RMSE among distribution methods was selected to establish the distribution for
each corresponding recurrence interval. Since the extreme values of type I distribution
showed the lowest RMSE (Table 6) to determine the corresponding recurrence intervals, the
revised landslide rainfall threshold values were inputted into this distribution (Figure 12).

Table 6. Result of KS-Test and RMSE * by distributions.

Recurrence Interval p-Value RMSE

Extreme-value Type I Distribution 0.9995 0.0424
Normal Distribution 0.8510 0.0555

Pearson Type III Distribution 0.9725 0.0441
Log-Normal Distribution 0.9725 0.0437

Log-Pearson Type III Distribution 0.8510 0.0840
* Root mean square error.
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Figure 12. Extreme-value Type I distribution of Longmei rainfall gauge station.

The results (Figure 13) indicate that the lowest landslide rainfall threshold areas are
primarily located in the northeastern and downstream in Alishan D098, with a recurrence
interval of about 2–20 years, because the area has experienced sporadic landslides since
the occurrence of Typhoon Morakot disturbances in 2009. The lowest recurrence interval
was observed in the red-colored area (Figure 13), which showed the highest susceptibil-
ity to landslides. Thus, landslide management is critical for this area. In addition, the
landslide risk in this region will be more crucial when a large-scale landslide occurs in
Alishan D098, which could endanger the upstream settlements (Longmei). The MDR of
the landslide rainfall threshold was defined as 780 mm/day (about a 20-year recurrence
interval) for yellow-colored areas, which eventually increased to 820 mm/day (about a
25-year recurrence interval) for the historical landslide areas that have been managed.

Figure 13. The distribution of recurrence interval of revised landslide rainfall threshold in the
influence area.

Except for the historical landslide area in the northeast part, the obvious landslide
or small-scale landslide was not observed in areas surrounding Alishan D098. The pre-
dicted landslide rainfall threshold was around 980.5 mm/day with a recurrence interval of
approximately 63.6 years.
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Typhoon Morakot’s devastation in 2009 showed climate change impacts in the future
will change the MDR. As a result, the landslide rainfall threshold for the entire area was
proposed to be 980 mm/day. Table 7 shows the proposed landslide rainfall threshold for
the Alishan D098 region.

Table 7. The landslide rainfall threshold of each region as suggested.

Regions Condition
Rainfall

Threshold
(mm/day)

Recurrence
Interval
(Year)

Northeast Alishan D098
Downstream of Alishan D098

Longmei Settlement

Non-managed 780 20

Has been managed 820 25

Whole Area n/a 980 64

5. Conclusions

The landslide incidence time series limitation, the limitation of landslide monitoring
data, the vagueness of the rainfall threshold for the landslide’s occurrence, and the com-
plexity of topographic factors have made it difficult to predict landslide incidence. Despite
numerous types of research, most previous methods for determining the landslide thresh-
old have limitations and errors. As a result, with the advancement of artificial intelligence
algorithms, new methods can compensate for the lack of data availability and produce
satisfactory results. Recent studies which applied deep learning algorithms to predict or
map landslide susceptibility [13,14,20–22,39] acknowledged the capability of deep learning
and, at the same time, have stated uncertainty in the prediction of landslide hazards due
to insufficient data, climate change, and human activities. Moreover, they considered the
achievement of satisfactory results to be contingent on future research.

The purpose of the current study was to predict the distribution of landslide suscepti-
bility and rainfall threshold in the influence area of Alishan D098 using a deep learning
algorithm. The results indicate the model achieved sufficient efficiency in determining the
landslide rainfall threshold. In general, compared to the previous research [19,20], which
focused on the effect of precipitation parameters on the occurrence of landslides, this study
employed the topographic factors, the historical landslide data, and the maximum daily
rainfall. The results show the lowest MDR threshold prediction was about 980.5 mm/day
(64-year recurrence interval), decreasing to 820 mm/day in the managed historical land-
slide area. However, the MDR for the entire Alishan D098 region is anticipated to exceed
980.5 mm/day in the future due to climate change impacts. Therefore, this study proposed
the landslide rainfall threshold to be 980 mm/day.

The current research findings are expected to be used to estimate and adjust the
landslide rainfall threshold and, as a result, to make an emergency evacuation decision for
the region. In addition, the results can be applied for future planning, land management,
and policies or strategies for landslide hazard mitigation.

Since this study provides a new model, it faced challenges and limitations. Due to
insufficient data in the study area, soil texture was not considered as an input feature in
the deep learning models. Furthermore, the amount of rainfall at the time of the landslide
could not be accurately calculated. As a result, the maximum daily rainfall for the year was
chosen as the rainfall landslide threshold; consequently, the training results of the rainfall
regression model were uncertain and showed errors. Therefore, the current study suggests
using the model as a reference for other areas with more available data or improving input
data through the application of different references, such as satellite data to predict future
landslide incidence in this area.
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