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Abstract: Ice problems in channels for water transfer in cold regions seriously affect the capacity
and efficiency of water conveyance. Sometimes, ice problems such as ice jams in water transfer
channels create risk during winter periods. Recently, water temperature and environmental factors
at various cross-sections along the main channel of the middle route of the South-to-North Water
Transfer Project in China have been measured. Based on these temperature data, the heat balance
state of this water transfer channel has been investigated. A principal component analysis (PCA)
method has been used to analyze the complex factors influencing the observed variations of the water
temperature, by reducing eigenvector dimension and then extracting the principal component as the
input feature. Based on the support vector machine (SVM) theory, a new approach for judging the
heat loss or heat gain of flowing water in a channel during winter periods has been developed. The
Gaussian radial basis is used as the kernel function in this new approach. Then, parameters have
been optimized by means of various methods. Through the supervised machine learning process
toward the observed water temperature data, it is found that the air–water temperature difference
and thermal conditions are the key factors affecting the heat loss or heat absorption of water body.
Results using the proposed method agree well with those of measurements. The changes of water
temperature are well predicted using the proposed method together with the state of water heat
balance.

Keywords: heat loss; environmental factors; principal component analysis; South-to-North Water
Transfer Project; support vector machine; water temperature

1. Introduction

Long-distance water transfer project is an important approach to effectively solve
the water shortage problem in large- and medium-sized cities [1]. The total length of the
main canal of the Middle Route of the South-to-North Water Transfer Project is 1267 km, as
shown in Figure 1. Water is transported from the Danjiangkou Reservoir in the Hanjiang
River to the North China Plain [2]. The purpose of this water transfer project is to transfer
water to Henan Province, Hebei Province, and the cities of Beijing and Tianjin. The average
annual amount of transferred water is 9.5 billion m3 [3]. Since the start of the operation
of this water transfer project in 2014, given the strong coupling of cascaded channels, it
has been difficult to keep water levels at all gates along the route being stable. The cross-
section of the main canal has a trapezoidal shape, with a bottom width range from 7.0 to
26.5 m. Along the water transfer route, there are no lakes or reservoirs for water detention,
indicating the importance of safety operation of this project [4]. The main canal of this
water transfer line is spanned from the place located at the north latitude of 33◦ to the north
latitude of 40◦. During winter periods, the temperature in northern China such as in Beijing
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is generally low. As a consequence, the formation of ice cover in the water transfer cannel
creates a big ice problem [5].
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During an ice-covered flow condition, the characteristics of river hydraulics have been
dramatically changed compared to that under an open flow condition. An ice cover adds an
extra boundary to the flow, which leads to considerable changes in the velocity profile, flow
rate, bed shear stress distribution, and water temperature [6]. Water temperature is greatly
affected by thermal factors and environmental variables [7]. Under the influence of air
temperature, flow and boundary conditions during a winter period [8], water temperature is
affected by the hydraulic response to the channel or the complex process of water transport
during an ice-covered period. In the meantime, water temperature is an important physical
factor affecting the change of river ice regime [9]. Therefore, water temperature is often
used as one of important indicators for forecasting river ice regime [10]. To avoid the
development and formation of an ice jam during winter periods, the water temperature
during the water transfer process should be carefully controlled [11].

Boyd et al. [12] calculated and analyzed the peak temperature and duration of each su-
percooling event by observing the water temperature of three controlled rivers, Kananaskis,
North Saskatchewan and Peace Rivers in Alberta, Canada. They pointed out that the water
supercooling process is the key condition for the formation of suspended ice and anchor
ice in rivers in cold regions. Osterkamp et al. [13] measured the temperature of water in
the Goldstream Creek and Chatanika River in Alaska during the formation of frazil ice
particles that forms in turbulent water. Frazil ice particles in flowing water are essential for
the development of ice pans which may lead to the development of ice jams and cause dis-
aster [14]. The correlation between the cooling rate of a river and the heat loss of the water
surface has been calculated for the periods before and during the formation of frazil ice. It
was found that the core of frazil ice in the river was cold organic matter, soil particles or a
combination of these substances, which could enter the river through the mass exchange
process of the air–water interface. The degree of supercooling of the observed river was
given. McFarlane et al. [15] compared five different methods for calculating sensible heat
flux and latent heat flux based on air temperature, relative humidity, air pressure, wind
speed and wind direction, short-wave and long-wave radiation for the Dauphin River in
Manitoba. By calculating the heat balance of the river, the supercooling phenomenon of
the river was predicted. They claimed that the solar radiation is an important factor in
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the heat budget of water bodies. Wang et al. [16] pointed out that both temperature field
and velocity field of flowing water during an ice-covered period are essential for studying
the formation and evolution of frazil ice. By applying the Navier–Stokes equations and
energy equation for flow under an ice cover, the velocity field and temperature field of
flowing water have been analyzed. It is found that the temperature field of water body is
mainly affected by heat conduction on the surface of ice cover and convective heat transfer
on the riverbed. Yang [17] developed both linear and non-linear models for calculating
heat exchange between water and atmosphere based on meteorological data including
solar radiation, long-wave radiation, evaporation and convective heat exchange. The
one-dimensional model for simulating temperature of flowing water in an open channel is
developed. The model is verified and applied along some typical channel reaches of the
Middle Route of the South-to-North Water Transfer Project (MR-SNWTP).

Field observations along the main canal of the MR-SNWTP indicate that, with the
decrease in air temperature and water temperature in winter, frazil ice appears and ice
pans form. An ice cover will be gradually developed on water surface of the MR-SNWTP.
After the MR-SNWTP is covered by ice, both the growth of ice cover thickness and the
decrease in water temperature slowed down. During the stable ice-covered period, the
water temperature was low with some minor fluctuations. With the increase in air tempera-
ture in spring, river ice starts to melt, and the water temperature begins to rise as well [18].
Since the change of water temperature is also an indicator of the complex nonlinear evo-
lution process of an ice cover during winter periods, the machine learning method with
advantages in dealing with nonlinear problems can be considered to predict the trend of
water temperature [19]. Sun et al. [20] used the machine learning method to predict the
river breakup time and peak flow of the Athabasca River in Fort McMurray, Canada. Their
results show that the inclusion of certain inputs in the optimal models can reveal some hints
for the potential mechanism on river ice from the data-driven perspective. Seidou et al. [21]
applied the artificial neural network and the lake ice thermodynamic model to the study ice
cover thickness of several lakes and reservoirs in Canada. It is found that, in case of scarce
or less data available for use, result using the artificial neural network has higher prediction
accuracy. Guo et al. [22] used the improved back propagation (BP) neural network method
to predict the river-breakups in the Heilongjiang and improved the prediction accuracy by
integrating multiple factors affecting water temperature and development of ice conditions.
The commonly used data-driven prediction models include multiple regression, projection
pursuit, and cloud model. These prediction models have achieved a series of results in
different engineering cases [23]. The traditional multiple regression model is difficult to ac-
curately describe the complex relationship between independent variables and dependent
variables. When the process is highly random, the prediction accuracy is often low. The
machine learning models such as projection pursuit and cloud model possess the nonlinear
mapping and adaptive ability, and their computational efficiency and prediction accuracy
are improved compared to the traditional multiple regression models. However, because
the goal of train samples for these models is to minimize the fitting error, it is easy to create
problems such as overfitting or local optimality. The support vector machine (SVM) is an
algorithm based on the statistical learning theory of small samples, which can be used to
solve nonlinear and high dimension problems [24]. Wang et al. [25] predicted the water
level during an ice-jammed period by means of the BP neural network and the support
vector machine. Their results show that the prediction accuracy using the support vector
machine method is higher than that using the BP neural network in case that the sample is
small. The principal component analysis (PCA) method can be used to extract independent
and effective information from features, which is a statistical analysis method to reduce
the input dimension [26]. Ren et al. [27] used the PCA method to eliminate redundant
information and effectively analyzed the main factors affecting water temperature in the
upper reach of the Yellow River. The identification of the heat balance state of water body
in the channel during a winter period has the characteristics of nonlinear process and
high dimension, which is in line with the characteristics of the machine learning method.
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However, no research work has been reported regarding the heat balance of a water body
during an ice-covered period.

In summary, the seasonal change of water temperature in rivers affects the formation
of river ice. Results of daily field observations at channel cross-sections in winters may
be affected by ice conditions in the MR-SNWTP. The heat balance of water body in rivers
during a winter period is more complicated. The sluice gate for flow control located in
Beijuma of the MR-SNWTP is the junction point of the water transfer channel from an open
channel to the culvert, and its location is shown in Figure 1. This channel cross-section of
the MR-SNWTP was chosen in this study since relatively more field observation data are
available and the temperature in this region is relatively low. Additionally, this cross-section
is vulnerable to the ice problem during winter periods. In this study, the machine learning
method is used to study the heat balance and water temperature at this cross-section of the
MR-SNWTP.

2. Methodology

The change of temperature follows the principle of energy conservation [28], and the
main parameters used in the water temperature model are shown in Table 1.

Table 1. The main parameters used in the water temperature model.

Parameter Interpretation Parameter Interpretation

ρw mass density of water cp specific heat capacity of water
Tw water temperature Qw flow discharge of water

Aw
flow cross-sectional area of the
channel Ex diffusion coefficient

Bw
width of water surface channel
cross-section ϕwa water—air heat flux

Ni

the ratio of the length of the
water surface of the cross-section
covered by ice cover to the width
of the water surface of the same
cross-section

ϕwi water—ice cover heat flux

The general equation for describing temperature of water in an open channel is as
follows:

∂

∂t
(
ρwcp AwTw

)
+

∂

∂x
(
ρwcpQwTw

)
− ∂

∂x

(
Exρwcp Aw

∂Tw

∂x

)
= Bw ϕwa (1)

Equation (1) is a mathematical model for describing water temperature field [29].
Symbols in Equation are explained in Table 1. From left to right of Equation (1), it is the
time term, the convection term, the diffusion term, and the source term, respectively.

For a channel with a regular cross-section similar to ghat of the MR-SNWTP, the
temperature gradient along the flow direction is small, and the diffusion term can often
be ignored. Combined with the continuity equation of the flow, by assuming the flow is
incompressible with the fixed specific heat capacity, Equation (1) can be simplified. In
the presence of an ice cover on water surface (either partially or fully covered), both the
boundary conditions and flow conditions for the model have been changed, resulting in
a significant impact on the water temperature [30]. The exchange of heat occurs between
the atmosphere, ice cover and water, which is related to the coverage of ice cover on water
surface. Therefore, the equation for describing temperature of water can be rewritten as
follows:

∂

∂t
(
ρwcp AwTw

)
+

∂

∂x
(
ρwcpQwTw

)
− ∂

∂x

(
Exρwcp Aw

∂Tw

∂x

)
= Bw[Ni ϕwi + (1− Ni)ϕwa] (2)
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where Ni represents the extent that the cross-section is covered by ice. When an ice cover is
present in a channel, the heat transfer of the water body is closely related to the heat loss of
the ice body. The above equations characterize the physical mechanism of the heat transfer
of the water body during a winter period [31].

The heat exchange between atmosphere and water is affected by weather conditions,
solar radiation and wind speed. In late fall or early winter, with the decrease in air
temperature, cooling intensity will be increased. Therefore, heat loss from water body
results in the decrease in water temperature until the water surface is covered by an ice
cover which is normally formed by frazil ice particle and ice pans in rivers. After the entire
water surface is covered by ice, the water temperature continues to fluctuate and drop,
and the water temperature gradient at the front of the ice sheet is large. During the stable
ice-covered period, with the decrease in air temperature, the thickness of the ice cover
gradually increases, and the heat exchange between water and air decreases. During this
stable ice-covered period, the water temperature can reach a dynamic equilibrium condition
with some minor fluctuations. In the spring, with the increase in the air temperature and
solar radiation, an ice-covered river undergoes the thermodynamic breakup process (ice
cover melting process). The water body gradually absorbs heat and results in the increase
in temperature of water body. Since the MR-SNWTP is 1267 km long and spans a latitude
difference of 7◦, there will be some changes in the temperature of water body along the
MR-SNWTP. The change of air temperature and that of water temperature has an obvious
nonlinear relationship. The continuous change of meteorological elements in winter and
spring affects the relevant parameters in Equation (2).

Equations (1) and (2) show the relationship between the change of water temperature
and other factors. Since the parameters in these equations vary with various factors
including the environmental variables, the analytical solution of these equations will be
very complicated. The hydrodynamic process also affects the heat balance of the water
body. When the flow velocity is high enough, shore ice along channel banks is normally
difficult to be developed. Additionally, the relatively larger flow velocity during a freeze-up
period is likely to cause the incoming ice pans/floes to be entrained and submerged under
the sheet ice cover to form an ice jam. During the break-up period, the surface of the entire
channel (together with pools) is grouped into the open channel section, ice-cover melting
section and the fully ice-covered section. Along the melting section of the channel, ice cover
becomes soft and loose with a lot of pores. Under the influence of hydrodynamic force, this
loose ice cover is gradually eroded, and the wavy-shaped surface appears on the bottom of
an ice cover, which eventually causes the ice cover to be melted, broken, and transported
downstream. The hydrodynamics of the flowing water and the ice dynamics affect the heat
transfer of water and changes of water temperature.

By taking the thermal and dynamic factors that affect the change of temperature of
water body as the input features, an SVM-based discriminant model for water heat balance
is established to assess the heat loss and heat gain of water body. In this study, data were
obtained through on-site observations. Among them, the observed data for water flow
conditions at some cross-sections near the control gate have been acquired from the man-
agement department of the MR-SNWTP. The temperature sensor and flow velocity meter
have been used to collect data for describing water flow conditions, which were measured
4 times every day. The meteorological data were acquired from the meteorological station
which was setup by considering the locations for observations of the water flow. The num-
ber of daily measurements of meteorological data is consistent with that of for water flow.
The daily average approach is adopted to form a dataset for subsequent analysis. These
environmental variables have different effects on the latent heat flux and the sensible heat
flux, which are correlated to the heat balance. The correlation analysis of each characteristic
data has been carried out, and the correlation matrix of the measured dataset is established.
The calculated correlation coefficient is presented in Figure 2. The corresponding thermal
factors and dynamic factors are abbreviated to better express the figure. These factors
include: the temperature difference between air and water (Air and Water TEMP diff), the
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previous water temperature (Pre-water TEMP), the cumulated seven-day average daily air
temperature (7d Air TEMP CUM), the time effect (TM EFF), the maximum air temperature
(Max Air TEMP), the minimum air temperature (Min Air TEMP), the difference between
wind speed and water velocity (Wind S and VEL diff), the flow Froude number of water
flow (Fr), the solar radiation (SR), the air pressure (Air PRESS), the cloudiness (Cloudiness),
the weather conditions (WEA COND), the cloud height (Cloud H), and the precipitation
(Precipitation).
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In Figure 2, the correlation coefficient of 1 indicates that the two features are completely
linear positive correlated; the correlation coefficient of −1 indicates that the two features
are completely linear negative correlation; and the correlation coefficient of 0 indicates that
the two features are independent. It can be seen from Figure 2 that there is a certain degree
of correlation among the influencing features, that is, there is information overlap between
the input features. The commonly used methods for data dimension reduction include
single-factor analysis, grey system analysis, set pair analysis, analytic hierarchy process and
principal component analysis. Results of single-factor analysis have polarization problem.
The dimension reduction methods based on grey system theory, set pair analysis theory
and analytic hierarchy process are controversial in the selection of index weight, and the
application of the model automatic calculation is limited. The core idea of the PCA method
is to reduce the high-dimensional associated features to a few unrelated features, and to
reflect the original information as much as possible. The PCA method can be used to
process the standardized sample data, extract the main information of input variables, and
improve the accuracy of classification based on comprehensive consideration of various
influencing factors [32]. To ensure that the data have the same importance as the input
scale, the daily average dataset of the selected measured parameters and measurement
records are pre-processed by the standardized method, and the covariance matrix S is
calculated according to Equation (3):

S =
1

n− 1
XXT (3)

where n is the number of sample data, and X is the normalized sample matrix. By solving
the characteristic equation, m non-negative features λk (k = 1, 2, · · · , m) of the covariance
matrix S are obtained and arranged in the order of λ1 > λ2 > · · · >λm > 0. The correspond-
ing orthogonal unit eigenvector µk is solved, and the formula of principal component
calculation is as follows:

Zk = µT
k X (4)
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In Equation (4), Zk represents the kth principal component (k≤m), and the contribution
rate vi of the ith principal component is calculated using Equation (5):

vi = λi

/ m

∑
k=1

λk (5)

The upper limit of machine learning effect is controlled by the available data. The
standardized input data are divided into training and verification sets. To reduce the
difference introduced by different sample division, the model is trained by the cross-
validation method. For the part of training set, it is divided equally and one of them is
selected as the test set, and the rest is used as the training set to complete the cross-validation
process.

The SVM algorithm is based on the principle of minimization of structural risk. Re-
garding the classification of samples, the sample dataset is set as Zi = [Zi1; Zi2], yi is the
corresponding label of Zi. The heat gain of water body is labeled as “+1”, and the heat
loss of water body is labeled as “−1”. The hyperplane formula for the sample classifica-
tion is expressed in Equation (6), and the classification decision function is described as
Equation (7) [33]:

wT · η(Z) + b = 0 (6)

f (Z) = sign
(

wT · η(Z) + b
)

(7)

where w = (w1; w2; · · · ;wm) is the weight vector corresponding to Z, b is the displacement
term which determines the distance between the hyperplane and the origin. The sign ( )
represents the sign function. The Lagrangian function for solving this problem can be
described as Equation (8):

minL(w, b, η, α) =
1
2
‖w‖2 −

p

∑
i=1

αi

[
yi

(
wT · η(Z) + b

)
− 1
]

(8)

where α = (α1; α2; · · · ; αp) is a Lagrangian operator, αi > 0. By solving Equation (8) and
substituting it into Equations (7) and (9) is obtained:

f (Z) =
p
∑

i=1
αiyiη(Zi)

Tη(Zh) + b

s.t.


αi ≥ 0; i = 1, 2, · · · , p

p
∑

i=1
αiyi = 0

(9)

The standardized sample data are inseparable in the original space. To solve this
problem, the standardized sample data are mapped and transformed in the original space,
and the value of the transformed space inner product function can be transformed into the
value directly calculated using the kernel function. The calculation formula is as follows:

k(Zi, Zh) = η(Zi)
Tη(Zh) (10)

where η (Zi) and η (Zh) are the mapping transformation functions of the original space;
and k (Zi, Zh) is the kernel function. When meteorological data are relatively complete,
based on the observed thermal-hydrodynamic data about winter ice-water regime of the
MR-SNWTP, the heat budget process of water body and the mutual feedback relationship
of the related parameters are identified.

3. Analysis of Heat Budget of Water Body

The MR-SNWTP delivers water from the low latitude to high latitude. In winter, it is
necessary to identify the influence of both thermal and dynamic factors of flowing water on
the heat balance of flowing water in the main canal of the MR-SNWTP. The key to the study
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is how to consider the influence of temperature, solar radiation, cloud cover, precipitation,
wind speed and other factors on the heat balance process of flowing water.

The supercooling process caused by heat loss of water body is a critical process for ice
formation in channels. Hence, it is proposed to use environmental variables to predict the
correct direction of water temperature change. Then, by considering the difference between
calculation accuracy and complexity, the parameter adjustment algorithm was selected to
assess the heat balance state of water body. The cumulative temperature during a certain
time period is often used for analyzing river ice hydrology [34]. The difference between air
temperature and water temperature, the cumulative air temperature, and wind speed and
velocity gradient were selected for analyzing the impact these factors on the heat balance
of water body, as shown in Figure 3.
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It can be seen from Figure 3 that, under condition of the heat balance of water body,
both thermal factors and dynamic factors contribute to the heat transfer of water body,
and it is difficult to use a linear segmentation to directly separate the heat transfer caused
by thermal factors from that by dynamic factors. This is the characteristics of the heat
budget of water body in river during a winter period. It has also become difficult to
accurately calculate the heat exchange of flowing water in winter by using both theoretical
equations and numerical simulation. Due to the mixing process of flowing water and
latent heat from the phase transition from liquid water to solid ice, the heat balance state
of water body cannot be simply expressed as a good linear function of either dynamic
or thermal condition. In the case of being linearly inseparable, the samples in the low-
dimensional space are mapped to a high-dimensional feature space by using a nonlinear
mapping function to make it to be linear. Then, it is possible to use the linear algorithm
to analyze the nonlinearity of samples in the high-dimensional feature space, and the
optimal classification hyperplane can be found in this feature space. The so-called optimal
classification surface not only requires to correctly separate the categories, but also needs to
maximize the classification interval. The purpose for correctly separation of categories is to
ensure that the empirical risk is minimized. Actually, the maximum classification interval
is to minimize the confidence range in the generalization bound.

Considering the complexity and coupling of the water heat budget process, the Gaus-
sian radial basis function (RBF) is used as the kernel function of the support vector machine:

k(Zi, Zh) = exp
(
−γ · ‖Zi − Zh‖2

)
(11)
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In Equation (11), Zi and Zh represent different input characteristics, and γ is the
Gaussian kernel bandwidth parameter. By introducing the multiplier α∗i , and the penalty
parameter C, a slack variable ε needs to be added to the threshold to reduce the error of
the dual problem. The slack variable represents that the error term whose deviation is less
than ε is not penalized, we can get:

minL(w, b, η, α, εi, α∗) =
1
2
‖w‖2 + C

p

∑
i=1

εi −
p

∑
i=1

αi

[
yi

(
wT · k(Zi, Zh) + b

)
− 1− εi

]
−

p

∑
i=1

α∗i εi (12)

The parameter C represents the degree of punishment for prediction errors. The larger
the C value, the more the model does not allow prediction errors. If the C value is too large,
the model will make fewer errors in the training data process and easily cause overfitting.
On the contrary, if the C value is too small, the model will easily ignore the prediction
error, which will lead to a poor performance of the model. The value of γ will influence the
range of the Gaussian function corresponding to each supporting vector. The weight of
high-order features decays very fast, so that, the larger the γ value, the less the support
vectors; the smaller the γ value, the more the support vectors. The number of support
vectors will affect the speed of the training and prediction process. The parameters C and γ
jointly determine the prediction results of the model. Appropriate selection of their optimal
combination can lead to the good generalization ability and fitting effect of the model.

The selection of values of parameters in the kernel function is the key to the calculation
accuracy. Thus, the optimization of parameters is needed to determine the values of C and
γ. The commonly used methods for parameter adjustment include the grid search (GS)
method, the particle swarm optimization (PSO) method, and the genetic algorithm (GA)
method. The grid search method is to use the search data to form a grid space, and then
obtain the value for each grid point using the exhaustive method. The concept about the
PSO method is that each particle contains two attributes of speed and position, each particle
contains a fitness value determined by the objective function and knows the best position
and the current position found by itself until now. In the whole group, the best target
position found by all individuals is also known by each particle. How each individual
particle proceeds to the next position is determined by the parallel search of the population.
The GA method is a random search method by means of the evolutionary process of the
biological world. Its main characteristics is to directly operate the data to be optimized.
It can automatically obtain and guide the optimized search space, adaptively adjust the
search direction, and has strong robustness. As mentioned above, the heat exchange of
water body during an ice-covered period is a complex process and affected by many factors,
which can be expressed as:

dTw

dt
= g(Tw−h, Ta−s, Tt, δv, Fr, P, Ra, Rel, Rp, N, Hc) (13)

where Tw−h represents the historical conditions of water temperature; Ta−s represents air
temperature conditions including daily maximum, minimum, average temperature and
cumulative temperature during a period; Tt represents the time-effect factor. Since the
variation of water temperature approximately shows a periodic function and it fluctuates
around the average annual water temperature, both sin (2πTday/Tyear) and cos (2πTday/Tyear)
are selected to reflect the time-effect Tt; where Tday is the date count of the year (note: 1
January is 1, etc.); and Tyear is the number of annual dates; δv represents the component
gradient of wind speed and flow velocity in the flow direction, which has an important
influence on the heat transfer process; Fr is the flow Froude number; P is the average daily
pressure; Ra is the solar radiation; Rel is the daily average relative humidity; Rp is the
average daily precipitation; N is cloud amount; Hc is the cloud height. These parameters
have either direct or indirect impact on the change of water temperature. Results of
field observation showed that the changes of water temperature are compatible with the
simulations of the collected data. If g > 0, it indicates that the water body absorbs heat and
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the water temperature rises; if g < 0, water body loses heat and water temperature drops.
After standardizing parameters in Equation (10) based on data measured at the typical
survey stations, the PCA was used to extract the first principal component and the second
principal component as the input of the SVM. The cumulative contribution rate of each
principal component output by using the PCA is shown in Table 2.

Table 2. Cumulative contribution rate of the principal components.

Component 1 2 3 4 5 6 7

cumulative
contribution rate 33% 52% 68% 77% 83% 89% 93%

According to the cumulative contribution rate of each principal component in Table 2,
results showed that the result for the first two principal components can explain more
than 50% of the information for original data; the information for the first five principal
components can explain more than 80% of the information for original data; the information
for the first seven principal components can explain more than 90% of the information for
original data. With respect to the prediction of water temperature and heat balance state,
based on the data measured at the typical survey section during six winters from 2015 to
2021, the measured data from 2015 to 2020 are used as the training samples to establish the
model and optimize the model parameters, but the measured data from 2020 to 2021 are
used as the verification samples to test the capacity for generalization of the model. The
flow chart for calculation for the assessment of heat balance state is shown in Figure 4.
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Since the annual accumulated negative temperature of the training sample varies
in a certain range, it can be used to describe different winter characteristics. During the
winter period of 2019~2020, the Huinanzhuang pumping station (on the Beijuma River)
was under maintenance. The measured data for water transport in the Beiyishui River
during an ice-covered period are used to act as the observation data of the typical survey
section, so that the training set also has a certain coverage on the hydraulic characteristics.
PCA-1 is selected as the first axis and PCA-2 as the second axis. By applying the GS,
PSO and GA methods, results of prediction of classification are generated (Figure 5), and
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the corresponding parameter values are shown in Table 3. When the direction of water
temperature change (heat gain vs. heat loss) is correctly identified, it is classified as a
successful prediction.
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Figure 5. (a) the PCA-GS-SVM classification; (b) parameter optimization using the GS method; (c)
the PCA-PSO-SVM classification; (d) the fitness curve of the PSO algorithm; (e) the PCA-GA-SVM
classification; (f) the fitness curve of the GA algorithm.

Table 3. The PCA-1~PCA-2 parameter values using different methods.

Parameter PCA-GS-SVM PCA-PSO-SVM PCA-GA-SVM

Iteration times 276 286 291
C 0.11 0.10 0.13
γ 48.50 54.34 53.20

Execution time (ms) 83,139 83,085 86,598
Cross-validation rate 71.83% 72.02% 71.46%

Number of boundary support vectors 363 380 349
Number of support vectors 385 398 374

Number of classification predictions 89 89 89
Correct classification number 63 63 63

Classification accuracy 70.79% 70.79% 70.79%
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In Figure 5, log2C and log2γare the logarithms of parameters C and γ, respectively.
According to the calculation process of Equations (3) and (4), the composition of the
principal components includes all the influencing factors, and the contribution of each
factor is different. Due to the different features of various algorithms, the combination of
parameters C and γ obtained by the optimization also fluctuates within a certain range.
It can be seen from Figure 5 that the generated nonlinear partition hyperplane can better
distinguish the heat budget of water body. In the prediction model, 63 out of the 89 classified
data were predicted correctly, and the accuracy reached at 70.79%. From the number of
iterations, the GS method has fewer iterations with a higher optimization efficiency. In view
of the cross-validation rate, the GA algorithm performs well in the model training, and the
number of the support vectors is less. By observing the execution time of the algorithm,
with respect to the operation management of water transfer process, the calculation time
consumed using these three algorithms is within the acceptable range, and the time need
using the GA algorithm is slightly higher. Furthermore, by selecting the first five principal
components in order to adequately reflect the influence of the original correlation factors,
the SVM is used to predict the heat balance state of water body. The prediction results are
summarized in Table 4.

Table 4. PCA-1~PCA-5 parameter values using different methods.

Parameter PCA-GS-SVM PCA-PSO-SVM PCA-GA-SVM

Iteration times 3893 2146 950
C 48.50 19.64 7.82
γ 0.57 1.61 1.71

Execution time (ms) 87,288 96,072 87,401
Cross-validation rate 72.02% 71.08% 72.02%

Number of boundary support vectors 260 244 257
Number of support vectors 293 286 291

Number of classification predictions 89 89 89
Correct classification number 64 65 65

Classification accuracy 71.91% 73.03% 73.03%

With the increases in the number of principal components extracted, the contribution
of each component in the model also increases accordingly. It can be seen from Table 4
that the comprehensive impact factor formed by more principal components can reflect
more information about the original data, and the prediction accuracy of the model can
be further improved. It has been found that the prediction results by means of two bionic
algorithms, namely the PSO and GA methods, are better than those using the GS method.
Results showed that the number of support vectors generated by the PSO algorithm is less.
From Tables 3 and 4, once can see that there are differences in computational performance
using different approaches. When the number of input data are increased, the time of
iterations also increases. This study is concerned with the exploration of the heat balance
state of the MR-SNWTP. In practical application, different parameters for describing the
performance need to be trade-off according to the actual situation of the project. Among
these three methods, the times of iterations using the GA algorithm is relatively small, and
the cross-validation rate of this method is convenient and outstanding. This means that
the GA algorithm method is clearly suitable for the parameter optimization process of the
SVM model in this study. The changes of water temperature have been well predicted by
means of the proposed method together with the state of water heat balance.

According to the classification results of the model, the prediction results showed that
water body began to absorb heat from 13 January 2021. At this time, the air temperature
began to maintain above 0 ◦C with the highest air temperature of about 5 ◦C when the
weather became sunny with sufficient solar radiation and relative low humidity. On 17
January 2021, the main channel of the Beijuma River survey section eventually broke up.
After the breakup of the channel along this survey section, due to the release of latent heat
from the upstream inflow and ice, the water body experienced a repeatedly heat gain -heat
loss process. By 21 January 2021, the main channel was eventually opened, and the water
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body continued to absorb heat, causing the water temperature to rise. Additionally, then,
the remaining shore ice vanished. As a machine learning method, the SVM model can
mine the potential knowledge information of the data and complete the classification and
prediction of the data according to the features of datasets. In this study, the feasibility of
the proposed approach has been verified by using results of the actual water transfer project.
Result of this study can provide reference for engineers in water resources engineering. To
apply it, by replacing the input data and the value of the kernel parameters, the trend of
variation of water temperature can be identified, and the state of water heat budget can be
classified. The proposed method in this study can be promising for controlling ice problems
in channels for water transfer in cold regions and can provide the operation guidelines for
a river system under an ice-covered flow condition in winter.

4. Conclusions

In this study, starting with the thermodynamic characteristics of water body during
winter periods, the heat loss and heat gain process of water body along a typical section of
the MR-SNWTP has been studied. The following conclusions have been drawn from this
study:

(1) By analyzing the factors that influence water heat balance during winter periods,
the correlation coefficient matrix of thermal and hydrodynamic characteristic data
is studied. By using the PCA method to extract principal components as model
input, the correlation between multiple variables was described by a few variables.
By inputting data using the machine learning model, it can effectively reduce data
dimension and eliminate redundancy, and thus improve the computational efficiency.
With the increases in the number of principal components extracted, the prediction
accuracy of the model increases accordingly.

(2) Regarding the selection of the SVM parameters, the GS algorithm, the PSO algorithm
and the GA algorithm are selected to optimize the parameters, which are applied to
identify heat loss or heat gain of water body in channels during winter periods. After
the optimization of parameters, the recognition rate of model prediction algorithm
is better. By comparing the differences between the algorithms, the GA algorithm
is more suitable for the SVM method used for the assessment of water heat balance
state.

(3) Aiming at the problem of heat budget of water body in the study channel in winter,
considering water temperature change by means of environmental variables, a new
approach is proposed to assess the heat balance state by analyzing the observed data
in the field. In view of the nonlinear change of water temperature, the RBF kernel
function with better performance in classification is selected. Regarding the sample
learning, the SVM can quickly and accurately conduct classification. Thus, the SVM
can used to effectively solve the identification problem of water heat exchange.

The changes of water temperature are crucial for the study of ice formation and
evolution. The study of the heat balance state associated with flow water body and ice
cover involves hydraulics, thermodynamics, meteorology, engineering mechanics and
other disciplines. When the prediction is about other water-ice problems, it is necessary to
analyze the physical laws and causality of the research content, and use machine learning
to assist these prior knowledge to generate an appropriate solution. Based on the theory
of this study, the simulation and prediction of water temperature in winter can be carried
out, or the modified multi-classification study regarding the ice-water mechanics can be
conducted by considering different ice conditions, so as to provide the operation guidelines
for a river system under an ice-covered flow condition in winter. This will also be our
future research topic. The method proposed in this study can be promising for controlling
ice problems in channels for water transfer in cold regions.
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