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Abstract: Fish production has become a roadblock to the development of fish farming, and one of the
issues encountered throughout the hatching process is the counting procedure. Previous research has
mainly depended on the use of non-machine learning-based and machine learning-based counting
methods and so was unable to provide precise results. In this work, we used a robotic eye camera
to capture shrimp photos on a shrimp farm to train the model. The image data were classified into
three categories based on the density of shrimps: low density, medium density, and high density.
We used the parameter calibration strategy to discover the appropriate parameters and provided an
improved Mask Regional Convolutional Neural Network (Mask R-CNN) model. As a result, the
enhanced Mask R-CNN model can reach an accuracy rate of up to 97.48%.

Keywords: deep learning; counting; shrimp detection; underwater fish; machine learning

1. Introduction

Shrimp counting is essential for farmers to estimate and manage hatching. The
domain of importance in the agricultural field can help farmers improve their resources’
productivity. An accurate automated shrimp detection and counting algorithm can enable
farmers to optimize and streamline their hatching period. However, counting shrimp from
images is a challenging task for several reasons, including the small size of shrimp and their
transparent color, which we cannot easily see. An additional challenge to shrimp counting
that is not present in shrimp detection is distinguishing multiple overlapping shrimps.

Shrimp farmers who use ponds for production rely on cast netting shrimp and then
relating the amount caught in the surface area of the cast net to the surface area of the entire
pond (Figure 1a,b). While this has been useful for estimating growth, it is not a reliable
predictor of survival. The farmer must drain the tank, collect the shrimp in a mesh bag
and weigh them out of the water to accurately count the shrimps in a tank culture system.
Holding shrimp in water causes stress due to a lack of dissolved oxygen and the fact that
they are highly concentrated when packed for weighing, which can take up to two minutes.
This increase in stress and potential exoskeleton damage increases mortality and hastens
the spread of black spot occurrences (Figure 1c). The unresolved challenges are when the
shrimp’s photographs can be visualized in three difficulties, as shown in Figure 1c for low,
Figure 1d for intermediate and Figure 1e for shrimps with high density is captured from
the very low- or very high-contrast images. Furthermore, the amount of water adhering to
the shrimp must be considered in this method.
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Figure 1. The challenges of shrimp detection using CNN with various illumination types: (a) low
and (b) high contrast, from the side view; (c) low, (d) intermediate, and (e) high density of very
low-contrast images due to its transparent color from the top view.

Deep learning is an obvious choice for dealing with cluttered scenes where conven-
tional vision analytics machine methods struggle with semantic segmentation. This paper
presents a novel pipeline that accurately estimates shrimp counting. The board steps of the
pipelines are:

• Capture a set of shrimps images;
• Label the shrimp in each of the images captured;
• Train a ResNet101 backbone by using a default parameter to perform image segmentation;
• Train a ResNet101 backbone by performing image segmentation with the parameter

calibration; and
• Use a parameter calibration to train a convolutional network to take the segmented

image and output an intermediate estimate of shrimp counting.

This study aims to provide a data-driven shrimp counting methodology that a farmer
can implement in cluttered farm settings. As a result, the proposed method focuses on
labeling and training in speed and accuracy. The major contributions in this paper are:

• The application of a region-based convolutional network to accurately detect the
shrimp; and

• The application of a region-based convolutional network to accurately count the
number of shrimp.

The rest of the paper is organized as follows: (1) a summary of related work on count-
ing approaches, (2) methods used with the introduction of Mask R-CNN and improved
Mask-RCNN, (3) experimental results and analysis, and (4) conclusion.

2. Related Work

Detection with an accurate counting approach can apply non-machine learning, ma-
chine learning, and counting based on deep learning.

Figure 2 shows a conceptual diagram of underwater fish detection and recognition.
The factors related to the technological factors are hardware availability, cost, and software
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modularity. On the other hand, organizational factors such as knowledge sharing and
management support are essential to maintain the shrimp counting system. Finally, other
factors contributed to the resource factors such as dataset, deep learning skills, and fishery
farm availability. These three aspects have been established to impact the researchers’
motivation to study underwater fish detection and recognition.

Figure 2. Conceptual diagram of this study.

The literature review and the findings of the qualitative interviews highlighted the
current problem, which is a counting process with a long period, and the results are
also inaccurate. This pitfall is attributable to the weakness of a farmer’s limited human
resources in the counting process. Our study focused on the counting process using the
deep learning-based algorithm in underwater fish detection and recognition.

At the cutting edge of the 4th Industrial Revolutionary and COVID-19 pandemic, many
easy and intermediate human tasks are systematically transforming into computerized
decision tools to reduce production costs and increase production goods while maintaining
social distancing among workers. Likewise, the Internet of Things is widely booming
and applied across sectors to keep up with the industrial needs and better quality of life.
Hence, computer vision has become vital in place of many manual inspection systems.
They were beginning from hyperspectral images until nano images such as a satellite in
a study by Anahita et al. [1], cell detection by Yazan et al. [2], optical character recogni-
tion by Tarik et al. [3], vehicle counting by Abbas et al. [4], and rice diseases diagnosis by
Abdullah et al. [5]. Furthermore, machine learning enhancement that can reverse feature
engineering, namely deep learning, has attracted many researchers to explore the com-
puter vision research area in place of handcrafted feature engineering. This extraordinary
capability of imitating nature activity using a convolutional neural network ignites the
implementation of shrimp counting to maximize productivity at the various growth stages.

2.1. Handcrafted Feature Engineering

Calculating geometrical features is a suitable manual inspection method in the indus-
try or agriculture sector. Many researchers imitate how human vision encapsulates the
optical property of the continuous [2,3,5] or discontinuous [4,6] pattern or shape. Usually,
continuous property involves the characteristic and structured properties of the line and
circularity. However, a discontinuous feature includes an irregular edge or circularity.
Another significant matter in handcrafted feature engineering is scale-invariant. Many re-
markable feature engineering inventions can address scale-invariant with the employment
of a non-linear function [1] as Wavelet, SIFT, BOW, SURF; however, such approaches are
less tolerable or robust when dealing with low-contrast and high-contrast images. Again,
their procedures entail an extensive, long processing time for the training model.
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Previous authors also use a statistical approach [2–5] to indicate discontinuous ge-
ometrical properties. Yazan et al. [2] propose an iterative randomized irregular circular
algorithm (IRIC) that detects irregular and overlapping cells by initiating dynamic ini-
tialization to determine the best circle candidate with a lower probability of incorrectly
detecting circles. Finally, they accumulate the number of spheres to indicate the prolifera-
tion rate estimation of brain cell cancer. They also proved that their IRIC outperformed
other existing algorithms. The vehicle counting system by Abbas et al. [4] strikes research
attention by utilizing the exploited contour-based approach to count vehicles according to
its vehicle classification emitting into a free flow entrance. Their approach has also shown
remarkable performance compared to the state-of-the-art methods.

Similarly, an automatic rice disease inspection by Abdullah et al. [5] using handcrafted
feature engineering can withstand only specialized irregular shape features based on their
proposed bi-level thresholding. We could summarize that handcrafted feature engineer-
ing is adequate to address specified objects and static scale-invariant less. It relies on a
typical environment setting upon all the above geometrical feature engineering expensive
when dealing with scale-invariant, overlapping, and low- and high-contrast environments.
Moreover, it would be costly when dealing with scale-invariant, overlapping, and low- and
high-contrast environments.

2.2. Autocrafted Feature Engineering

Autocrafted feature engineering is also known as automated feature engineering. Auto-
mated feature engineering aims to assist data scientists with feature creation by automatically
creating hundreds or thousands of new features from a dataset. Feature tools, the sole library
for automated feature engineering currently available, cannot replace the data scientist. Still,
they can free up the data scientist’s time to focus on more valuable aspects of the machine
learning pipeline, such as delivering robust models into production. Automated feature
engineering has solved one problem but created another problem: too many features. Too
many features can lead to poor model performance because the less valuable features drown
out more important features. In image recognition [7], many feature extraction methods
became obsolete with deep learning. The same for natural language processing [8], where
recurrent neural networks made much feature engineering obsolete.

Furthermore, Luis et al. [9] used FETEX 2.0, a software application for automatic
discriminative feature descriptor from image objects, to describe agricultural parcels and
provide various information. They successfully obtained the output file of a table produced
in four different formats, each containing a vector of features for each object processed.
Nonetheless, with the help of FETEX 2.0, they successfully integrated additional data to
advance the improvement of land use and land cover database classification and agri-
cultural database updating processes. A novel system, “Cognito” by Udayan et al. [10],
strikes research attention by performing automatic feature engineering on a given dataset
for supervised learning. The users were allowed to specify the domain or data-specific
choices to prioritize the exploration. They successfully presented the design and operation
of Cognito and demonstrated its efficacy by using eight real datasets.

On the other hand, a computer vision system created by Jingyao et al. [11] for robotic
weed management can detect agricultural plants at various stages of growth using depth-
based and color-based information. Data pre-processing, vegetation pixel segmentation,
plant extraction, feature extraction, feature-based localization refinement, and crop plant
classification were all techniques used in the image processing pipeline. As a result, they
enhanced the average segmentation scores from 76.4% to 92.4%. This study also observed
that the lettuce shape is more complex to localize than the broccoli shape.

2.3. Non-Machine Learning-Based

There are several methods in counting based on non-machine learning, namely blob
counting [12], counting by detecting the pixel area [13], and shape analysis [14]. The input
image is segmented into blobs of moving objects, using background subtraction and shadow
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elimination. Various features are extracted and normalized for each blob according to its
approximate size in the actual scene. The number of objects could estimate simultaneously
in each blob [15]. Subdurally et al. [16] proposed that the methods based on observation
are significantly more visible and easily distinguishable than any other features.

Using image processing techniques, Toh et al. [12] propose a simple approach for counting
feeder fish automatically. First, they use blobs that mark the fish’s location. The image of the
blobs will be filtered to remove noise and background objects. Then, the number of fish in
one frame and the average number of fish in the overall fish frame are counted using the
blobs’ area information. They were successful in their endeavors. The fish count accuracy
escalates as the median reference area, averaging the median area for higher fish test cases.
Unfortunately, as the number of intersecting fish increases, the accuracy drops.

In continuation to [12], Labuguen et al. [13] offer an automated fish fry counting
method that uses image processing to detect the pixel area filled by each fish silhouette.
First, a school of fish fry is placed in a specially built container that goes through binarization
and edge detection. Then, to acquire the overall fish count and the average number of
fishes for each image frame, they add the area inside each contour for each image frame.

Fabic et al. [14] described an effective method for fish detection, counting, and species
categorization from underwater video recordings using blob counting and form analysis.
They also used an erasure process to help with fish detection by subtracting the coral
background and recovering fish shapes with canny edge detection. Zernike shape analysis
was performed to detect shape similarity for fish species identification, either Acanthuridae
or Scaridae. They used blob counting to calculate the fish count after the latter had been
delimited. Finally, due to the rapid frame changes, they calculated the average fish count
per unit time from the counts in each frame.

With similar motivation, Subdurally [15] determining the population density of public
spaces has become critical for effective public space management in surveillance applica-
tions. Their two proposed methods using blobs and contour detection are based on the
observation that heads are significantly more visible than other features, facilitating their
differentiation. Individuals are counted in the proposed systems that produced extremely
reliable results, with an average head detection rate of 82% and 84%, respectively. How-
ever, they claimed that selecting a good threshold can increase correctness by decreasing
completeness. Other challenges are that skin pixel may vary from dark to bright pixels, and
the threshold value needs further calibration if the focal length changes continuously.

2.4. Machine Learning-Based

Machine learning is an algorithm that allows software applications to become more
accurate in predicting outcomes without being explicitly programmed. The basic premise
of machine learning is to build algorithms that can receive input data and use statistical
analysis to predict an output while updating outputs as new data become available.

Meesha et al. [16] used two machine learning strategies to develop wheat classification:
support vector machine and neural network. They employed a digital camera to record
wheat grain images, classified using image thresholding to extract morphological features
using roundness ratio, area, and volume. Machine learning methods were used to extract
wheat-specific information from the photos. Based on the results, it has an accuracy range
of 86.8% to 94.5%. To categorize wheat into five grades, morphological features, on the
other hand, necessitate extensive parameter tweaking. Applying an image processing
algorithm with a support vector machine (SVM) classifier, Abozar et al. [17] employed a
top view RGB camera to monitor the pigs, and a background subtraction approach was
utilized to separate the animals from their background, taking into account the perimeter
and area of the convex hull and boundaries. The proposed method automatically scores
the lateral and sternal lying posture in grouped pigs under commercial farm conditions
with high accuracy of 94.4% for the classification and 94% for the scoring (detection) phases
using two-dimensional image features and classification techniques. The localization and
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classification accuracy diminishes as a result of the comparable colors to the pen floor, lying
close to the feeders or the pen wall.

2.5. Deep Learning-Based

Deep learning is an artificial intelligence function that mimics the work of the human
brain in data processing and decision-making patterns. Deep learning is an artificial
intelligence subset of machine learning that involves a network that can learn without
supervision from unstructured or unlabeled data. Deep learning can also be referred to as
deep neural learning or a deep neural network.

Sethy et al. [18] used a dataset of 5932 rice field images to study four different types
of rice leaf diseases. They compared CNN models, deep features, and the SVM approach
for identifying rice diseases using transfer learning. They discovered that using the SVM
classification model to extract deep features from resnet50 outperforms other traditional
feature methods such as local binary patterns, histograms of oriented gradients, and
grey level co-occurrence matrix. A small CNN called mobilenetv2 plus SVM performs
comparably to the resnet50 plus SVM.

Maryam et al. [19] presented a method for estimating yield that is based on a simulated
deep convolutional neural network. Accounting for the exact number of fruits and flowers
available can help farmers decide on planting practices and disease-resistant plants. Their
network is entirely trained on synthetic data before being tested on real-world data. They
used a modified Inception-ResNet architecture to capture features on multiple scales. Their
algorithm can calculate the fruit precisely tomato estimation efficiently, even if there is
an overlap between fruits. Their study results showed 91% average test accuracy on real
images and 93% on synthetic images. They are yet to train on the unripe fruit, focusing
only on ripe and half-ripe fruit.

On the other hand, Weilu et al. [20] developed a self-learning saliency feature map-
based deep learning-based pipeline for pinpointing and calculating agricultural pests in
photos. To reduce overlapping detections, the proposed method combines a ZF (Zeiler and
Fergus model) convolutional neural network (CNN) and a region proposal network (RPN)
with non-maximum suppression (NMS) on multi-scale images. Different feature extraction
networks were investigated to showcase the practical uses of their technology, including
AlexNet, ResNet, and ZF Net. The precision of their proposed approach was 0.93, with a
miss rate of 0.10 and a mean average precision (mAP) of 0.885. ZF-Net outperforms the
Alex-Net but is comparable to ResNet-50 and ResNet-101.

In continuation, Zhenglin et al. [21] proposed a method for on-tree mango fruit
detection, tracing, and summing using 10-frames-per-second videos collected of trees
from a moving base alongside the inter-row at 5 km per hour using deep learning, with
the Kalman filter Hungarian algorithm. MangoYOLO, a deep learning-based mango fruit
detection system, was employed in each frame to detect fruit. The Hungarian method
correlated fruit between neighboring frames to enable multiple-to-one assignment. To
hinder repetitive summation of a single fruit that is veiled or excluded identification in
a frame series, they employed a Kalman filter to anticipate the position of fruit in the
subsequent frames. The suggested method recorded 2050 fruits using MangoYOLO with
a bias-corrected root mean square error (RMSE) of 18.0 fruit per tree, compared to 1322
fruit with a bias-corrected RMSE 21.7 fruit per tree using the dual-view picture method.
Despite its lower implementation cost, this solution does not allow tree segmentation or
localization within the orchard.

Recently, detecting marine creatures has also become favorable (X. Liu [22], Merencilla
et al. [23], Li et al. [24]). Shark-EYE was developed by Merencilla [23] by using the YOLOv3
algorithm to detect single shark fish, including multi-scale prediction and bounding box
prediction-based logistic regression. They achieved mAP values up to 86%. However, they
revised their applications with wearable devices equipped with a wide range of cameras.
Liu [22] collected the marine animal images with seven classes (abalone, crab, fish, lobster,
scallop, sea cucumber, and shrimp) by an underwater robot equipped with an embedded
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device. A MobileNetV2 model based on convolutional neural network (CNN) and transfer
learning to alleviate insufficient data and motivate feature migration has the best validation
set accuracy of 92.89%. However, this work focuses on classifying individual or close
objects. Similar motivation by Li et al. [24] created the world’s first large-scale Marine
Animal Segmentation (MAS) dataset, MAS3K, using an ECD-Net-based MAS model. Their
MAS3K collection contains several photos of marine animals with high-quality annotations,
covering complicated underwater environments and the camouflage properties of marine
animals. They asserted that ECD-Net is an excellent deep learning-based MAS model
equipped with various interactive features and cascaded Decoder Module enhancements.
Extensive trials showed that ECD-Net outperforms eleven SOTA object segmentation
models in MAS performance.

We describe the comparative analysis for the counting object related works based on
non-machine learning, machine learning, and deep learning in Table 1.

Table 1. Summary of the comparative analysis for the counting object-related works.

Citation and Year

Key Features of Designed
Algorithms/Models (Key

Objectives and
Performance Metrics)

Advantages
(Achieved Performance)

Limitations
(Based on the

Application-Specific
Standard Requirements)

N
on

-M
ac

hi
ne

Le
ar

ni
ng

-B
as

ed
A

lg
or

it
hm

s

Alomari
et al. [2]

Cell counting using dynamic
initialization and number

of iterations

Reduce false positive rate,
resolve easy and

medium-density object image

Unresolved high-density
object image

Abdullah
et al. [4]

Car counting using adaptive blob
edge analysis

Resolve medium- and
low-resolution images

Unsupported to vary low-contrast
image type

Jingyao
et al. [11]

Color depth fusion algorithm using
Kinect V2 Sensor

High true-positive crop
segmentation rates

Low localization accuracy for
flower-shaped vegetation

Y.H. Toh
et al. [12]

Count fish using blob and pixel size
analysis methods

Accuracy escalates as the
median reference area by

averaging the median area of
higher fish test cases

As the number of intersecting fish
increases, accuracy drops

R. T.
Labuguen
et al. [13]

Count fish fry using adaptive
binarization and time frame average

High accuracy with
intermediate density

Accuracy drops below 75% as the
number of fry fish exceeds 700

J.N. Fabic
et al. [14]

Color histogram, canny edge and
Zernike shape analysis to identify

fish species (Acanthuridae
and Scaridae) on underwater video

fish sequences

Able to estimate close to the
ground truth value

Overcount of less than 10% due to
background elimination

Subdurally
et al. [15]

Calculate headcount using blob and
contour analysis

The acceptable head
detection rate

Low-value completeness factor for
the contour method, skin pixel
may vary from dark to bright

pixels, and the threshold value
effects if the focal length
changes continuously.

M
ac

hi
ne

Le
ar

ni
ng

-
Ba

se
d

A
lg

or
it

hm
s Meesha

et al. [16]

Extract wheat grading into five
classes using image thresholding,
morphological features, support

vector machine, and neural network

SVM outperforms NN with
86.8% and 94.5% accuracy rates

Morphological features are
exhaustively relying on the pixel

roundness ratio, volume, and area

Abozar
et al. [17]

Pig calculation and monitoring
using support vector machine

Outperforms when counting
lateral and sternal lying
posture of gathered pigs

Open-floor, lying close to the
feeders or pen wall distracts

calculation performance because
of alike colors
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Table 1. Cont.

Citation and Year

Key Features of Designed
Algorithms/Models (Key

Objectives and
Performance Metrics)

Advantages
(Achieved Performance)

Limitations
(Based on the

Application-Specific
Standard Requirements)

D
ee

p
Le

ar
ni

ng
-B

as
ed

A
lg

or
it

hm
s

Sethy et al.
[18]

Classifies four types of rice
leaf diseases

Extracts deep features from
resnet50 and mobilenetv2,

typical and small CNN models,
respectively, and classify them

using the SVM
classification model

Maryam
et al. [19]

Tomato estimation using three
parallel layers concatenated into one

that improvised the
Inception-ResNet-A module

The occurrence number of ripe
and half-ripe fruits can

easily accumulate
Ignore green fruit counting

Weilu et al.
[20]

Overcome overlapping detections
for pest counting with the

introduction of CNN with the Zeiler
and Fergus (ZF) model and a region

proposal network (RPN) with
non-maximum suppression (NMS)

Multi-scale images can reduce
the error losses and decrease

false positives

ZF Net + RPN is comparable to
ResNet-50 and ResNet-100

Zhenglin
et al. [21]

Mango plant counting using Kalman
filter, Hungarian algorithm,

and YOLO

LED lighting and a camera
have low implementation costs

because they exclude
differential global navigation

satellite system

Disregards localization within the
orchard or tree segmentation

Liu et al.
[22]

MobileNetV2 model based on
convolutional neural network
(CNN) and transfer learning

Able to classify seven marine
animals using a robot camera

Classification accuracy varies
according to the number of
individual animals in each

captured image

Merencilla
et al. [23]

Shark EYE used YOLOv3 algorithm
for object detection, multiscale

prediction, and logistic
regression-based bounding

box prediction

The system uses a large
collection of great white sharks’

datasets underwater for
training, as sharks are hard to

differentiate from other
shark-like animals in an

underwater environment

It needs further to be refined for a
wearable device equipped with a

wide-angle camera

Li et al.
[24]

Segment marine animals involving
conch, fish, and crab with a complex

environment, MAS3K datasets

Introduce an enhanced cascade
decoder network (ECDNet)

with multiple interactive
feature enhancement modules
(IFEMs) and cascade decoder

modules (CDMs)

The single decoder and the
influence of the number of CDMs

need to improvise for better
performance

3. Mask R-CNN

Mask R-CNN [25] aims to solve the instance segmentation problem and separate
objects in an image or a video. The output will give the object bounding boxes, classes, and
masks. Mask R-CNN includes two stages: generating the proposals regions with an object
given the input image or video in the first stage. The second stage covers a pipeline that
can anticipate the object class label, uncover the bounding box, and create an object mask
at the pixel level specified in the first stage proposal region. In a nutshell, the Mask R-CNN
backbone structure is subsequently associated with both stages.

Instance segmentation is an extension of object detection, in which a binary mask is
associated with each bounding box. This instance segmentation allows for more refined
information about the extent of the object in the bounding box. Several algorithms perform
segmentation, but the one used by the Tensorflow Object Detection API is the Mask R-
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CNN. Mask R-CNN detects objects through a series of steps. Firstly, the default parameter
remains, and a CNN feature descriptor extracts a global feature image. Second, apply
to these feature maps using the region proposal network. These steps produce ROIs
representing the object proposals accompanied by their objectness scores. The ROIs and
corresponding feature maps are then passed through the Region of Interest (RoI) Align
layer. Mask R-CNN employs the ROI Align layer rather than the ROI Pooling layer. The
RoI Align layer is intended to fix the location misalignment in the ROI pooling affected by
quantization. An ROI is appropriately mapped from the actual image to the feature map
without rounding up to integers. In the next step, a softmax layer is used on top of the fully
connected network to predict classes. A linear regression layer is used parallelly to output
bounding box coordinates for predicted classes and the softmax layer.

Faster R-CNN [26] is also a unique algorithm used for object detection. Similarly, the
Faster R-CNN consists of two phases. The first phase, known as the regional proposed
network (RPN), recommends a bounding box only for nominees with constrained objects.
In the second stage, after extracting features from each bounding box via Region of Interest
Pooling (RoIPool), Faster R-CNN executes subsequent processes involving the classification
and regression for each bounding box. For a faster conclusion, the features used by both
processes can be exchanged. The concept of Mask R-CNN [25] is straightforward: the Faster
R-CNN mask has two outputs for each nominee object, a class label, and a bounding-box
offset, and extends a third branch that generates the object mask in binary form to represent
the pixels in the bounding box where the object is. The output of the extension mask is
dissimilar from the output of the class. In contrast, the bounding box indulges a more
acceptable spatial arrangement of the object during the extraction process.

We measure the loss function, Ltotal , for each shrimp RoI as follows:

∑ Ltotal = ( w1 × Lrc ) + ( w2 × Lrb ) + ( w3 × Lc ) + (w4 × Lb) + (w5 × Lm ) . . . . (1)

where w is a set of weights of each loss function, Lrc is the region proposal network (rpn)
class loss, Lrb is the shrimp rpn bounding box loss, Lc is the shrimp class loss, Lb is
the shrimp bounding box loss, and Lm is the shrimp mask loss. It calculates Ltotal after
changing a set of hyperparameters in Mask R-CNN such as maximum detection instance,
maximum ground truth instance, number of thresholds, train anchors for each image,
number of steps for each epoch, number of train regions of interest of each image, number
of validation steps, number of steps in each epoch, and numbers of epoch, regularization,
optimizers, learning rate, batch size, learning momentum, and weight decay. Undertaking
the most minimum loss, we achieved calibration of those parameters manually. Hence,
Figure 3 describes the improved Mask R-CNN after the parameter had changed based on
the default Mask R-CNN. The steps to detect objects in the improved Mask R-CNN model
will remain the same.

Figure 3. Algorithm for improved Mask R-CNN with parameters calibration step.
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4. Experimental Results and Analysis

To save time in the training models’ process and shorten the time in the labeling
dataset, Mask R-CNN is used in this paper to find out the best parameter and detect the
total number of shrimps in an image. We designed and sketched the experimental setup
for the shrimp counting system, as shown in Figure 4, encompassing the container, box,
sensor, and touch light.

Figure 4. The experimental design to set up the shrimp counting system.

The sensor used in this experiment was a camera with a model Arducam USB camera
module 8MP Sony IMX 219. The other types of equipment that were included a container,
box, and torchlight. The pixels for capturing the photo were set to 640 pixels for width and
480 pixels for height. The image taken was saved in .jpg format. The height of the container
was 20 cm, and the diameter was 25.5 cm. The torchlight was adjusted until all the light
could cover the container’s water surface. The actual view of the experimental setup for
our shrimp counting system is depicted in Figure 5.

Figure 5. The real view of the experimental setup for the shrimp counting system.

4.1. Building a Dataset

The dataset used for this paper is a picture that consists of a troupe of shrimps. The
picture was collected and captured using a Canon EOS 80D model DSLR camera. The
aperture was f/5.6, the shutter speed was 1 per 100 s, ISO 100, the camera lens used was
18–55 mm, and the distance to take pictures was 10 cm from the top of the water level.
The picture captured is shown in Figure 6a. The picture was collected with a total number
of 120 images. With envision, an 80:20 supplied train and test dataset split concept was
applied, consisting of 100 images for the training set and 20 images for the testing dataset.
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Figure 6. (a) Underwater image detection for shrimp, and (b) example of a labeled picture.

Underwater cameras obtained some of the data used in the experiment for marine
animals and others. The data are divided into seven categories: fish, shrimp, scallop, crab,
lobster, abalone, and sea cucumber. Each category ranges from 1000 to 1400 sheets, with
a total of 8455 sheets where 80% of data were used for training and 20% for testing sets.
We enhanced the training set data; moreover, each original image was generated into three
deformed images by three processing methods: rotation, translation, and flipping. The
training set can be expanded to 27,056 pictures.

The image taken changed the image size from 6000 pixels for width and 4000 pixels
for height to 960 pixels for width and 640 pixels for height to facilitate the labeling of
the shrimp in the pictures. The shrimp in the picture was labeled using the VGG Image
Annotator, and the labeled picture is shown in Figure 6b.

The folder of “datasets” was created in Google Drive, along with two subfolders
named “train” and “test” to store the training dataset and testing dataset. After the labeled
picture, the annotation information with the .json file with the same name was saved in
the corresponding subfolders “train” and “test”. Less dense category ranges totaled 81
images, medium dense category ranges totaled 15 images, and dense category ranges had
four images. After labeling the shrimp in each image, it generated 5041 ground truth in
training the model phase.

4.2. Training the Model

We chose ResNet101 in combination with FPNs from the Mask R-CNN backbone
networks. The feature map was extracted from the input image by the backbone network
first, and then the features were output by the backbone network. The map was given to
the region proposal network (RPN) and ROIAlign (ROI) to generate the area of interest.
Finally, the ROI used the convolutional and fully connected layers to forecast the target
category and bounding box and the fully convolutional neural network to recognize the
target region (FCN). The target’s instance detection task has finally been accomplished.

The training model procedure in this paper uses 100 training images and the default
and improved hyperparameters of the Mask R-CNN model, as shown in Table 2 and
Appendix A. The default number of steps for each epoch is 50, but the upgraded version
calls for roughly 100. In the training phase, using the above model requires a significant
amount of memory resources and time. As a result, Google Collab is used in the training
model process. Figure 3 depicts the method of determining the best hyperparameters.

Regularization L1 and optimizer SGD with the lowest loss function is taken to the
next step, converting the learning rate. Referring to Table 2 and Figure 7, the values for
the learning rate to be tested are 0.01, 0.001, and 0.0001; maintaining the lower learning
rate with the lowest loss function will be maintained and taken to the next step, which is a
conversion on the learning momentum. The values for learning momentum to be tested are
0, 0.5, and 0.9. The value of learning momentum with the lowest loss function will also be
maintained and taken to the next step to convert the weight decay. The values for weight
decay to be tested are 0.1, 0.01, and 0.001.
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Table 2. Experimental parameters.

Parameter Default Mask
R-CNN Improved Mask R-CNN

Regularization L2 L1
Maximum Detection instance 100 400

Learning rate 0.001 0.01
Maximum ground truth instance 100 400

Name NONE SHRIMP
RPN threshold value 0.7 0.8

RPN train anchors per image 256 512
Number of Steps per epoch 50 100

Train Region of Interest per image 200 300
Validation steps 50 200

Weight decay 0.0001 0.001

Figure 7. The process of finding the optimal hyperparameter.

In the last step, the optimal hyperparameters are selected based on their performance,
and the model is used in the next phase, which is the implementation phase or the testing
phase. The performance of the model is then tested in terms of accuracy.

4.3. Experimental Environment

In Table 3, we declare our experimental environment information, where we use
Tensorflow version 1.3.0 [27,28] and Keras version 2.0.8 to extract important MR-CNN
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libraries for the software part. We ran the code on a computer with 8GB RAM, and i-7
Processor with a CPU clock speed of 2.8 GHz, and a GPU Geforce GTX1050 running
Windows 10, 64 bit.

Table 3. Experimental environmental information.

Attribute Name Attribute Value

Tensorflow version 1.3.0
Keras Version 2.0.8

RAM 8 GB
Processor Intel (R) Core TM i7-7700HQ CPU @ 2.80GHz
Graphics GeForce GTX 1050

Operating system version Windows 10 Pro, 64 bit

4.4. Evaluation Index

The evaluation index for the performance of the model is evaluated based on preci-
sions, recall, mean average precision (mAP), accuracy based on category, and value of R2.
With 20 images as the validation set, the validation results of the improved method are
compared with those of other methods. Several symbols are used in the equations, and
Table 4 shows the notation table.

Table 4. List of notations.

Symbol Meaning

TP The number of images consisting of shrimp has been correctly localized

FP The number of images unsuccessfully or partially localize the shrimp

FN The number of images unsuccessfully localize the shrimp

Q
∑

q=1
AveP(q)

The variable q is the number of queries in the set, and AveP(q) is the
average accuracy average precision for a particular query

Q A particular query∫ 1
0 p(r) dr

Mean average precision by using all the point interpolation of precision
and recall

n Number of images in the training dataset

∑ Summation

x Predicted number of shrimps

y Number of ground truths

The test set obtains the precision following Equation (2) and the recall following
Equation (3). This index is used to measure and evaluate the effect of the model on shrimps
positioning. Precision is defined as the fraction of relevant instances among all retrieved
instances. Recall, sometimes referred to as “sensitivity”, is the fraction of retrieved samples
among all appropriate instances. A perfect model or classifier has precision and recalls
equal to 1.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

where TP is the number of images that correctly localize the shrimp, FP is the number of
images that unsuccessfully or partially localize the shrimp, and FN is the number of images
that unsuccessfully localize the shrimp.
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Equation (4) shows how the mAP is calculated by q, where q is the number of queries
in the set and AveP(q) is the average accuracy average precision for a particular query, Q.

mAP =
∑Q

q=1 AveP(q)

Q
(4)

Before testing the mAP, the value of intersection over union (IoU) needs to be specified.
IoU is an intersection area between two boundaries (real object boundaries and object
boundaries predicted). Equation (5) shows how IoU is calculated, and an example of IoU in
the picture is shown in Figure 8.

IoU =
Area o f overlap
Area o f union

(5)

Figure 8. Example of calculated IoU.

By using the equation shown in Equation (3), the value of IoU determined in this
experiment is 0.50. If the value of IoU is greater than or equal to 0.50, the object will be
classified as TP, which is true positive; if the value of IoU is less than 0.5, the object will be
classified as false negative (FN). Equation (6) shows how to calculate AP (average precision)
with precision and recall. The value of IoU will be tested on 0.50 and 0.75.

AP =
∫ 1

0
p(r) dr (6)

To calculate the accuracy based on the category is a comparison between the ac-
tual number (ground truth) and the number predicted based on the training dataset.
Equation (7) shows how to calculate the accuracy rate, and Equation (8) shows how to
calculate the error rate.

Accuracy Rate =
No.o f Predicted

No.o f Ground Truth
x 100% (7)

Error Rate = 100% − Accuracy Rate (8)

The density of the number of shrimps is divided into three categories: less dense,
medium dense, and highly dense. The maximum number of actual numbers is 256 shrimps,
and the minimum number is four shrimps. For the less dense category, the ground truth
is between 1 to 90 shrimps, consisting of 82 images, and one of the pictures is shown
in Figure 9 (left). For the category of medium dense, the ground truth is between 91 to
180 shrimps, consisting of 15 images, and one of the pictures is shown in Figure 9 (middle).
For the high dense category, the ground truth is between 181 to 270 shrimps, consisting of
three images and one of the pictures shown in Figure 9 (right).
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Figure 9. (left) Less dense category, (middle) medium dense category, and (right) high dense category.

The value of R2 is the comparison of results between the actual number of shrimps
and the predicted number of shrimps. The method performed on the actual number with
the predicted number is using linear regression. In comparing the actual number and the
predicted number of shrimps, the value of R2 is evaluated. From the value of R2, we know
whether the regression line corresponds to the data used or not. Equation (9) shows how to
calculate the value of R2.

R2 =

 n(∑ xy)− (∑ x)(∑ y)√[
n ∑ x2 − (∑ x)2

][
n ∑ y2 − (∑ y)2

]


2

, (9)

where x is the predicted number of shrimps in each of the images and y is the actual
number (ground truth). The value of R2 is always between 0% and 100%. The value of
R2 of 0% represents a model that does not explain any variations in the response variable
around its mean. The mean of the dependent variable predicts the dependent variable and
the regression model. The value of R2 of 100% represents a model that explains all the
variations in the response variable around its mean. Usually, the more significant the R2

value, the better the regression model fits the observations.

4.5. Experimental Results and Analysis

We studied the performance of the proposed improved Mask R-CNN model and
compared it with the existing Mask R-CNN model using the shrimp datasets. Figure 10
shows the precision and recall results for the training dataset, and Figure 11 shows the
accuracy and identification of the validation dataset. It can be seen from Figures 10 and 11
that the improved Mask R-CNN model has a significant improvement in precision and
recall by comparing the Mask R-CNN model.

Figure 10. Results of precision and recall for the training dataset for default and improved Mask
R-CNN.
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Figure 11. Results of precision and recall for the testing dataset for default and improved Mask
R-CNN.

Table 5 displays the results of precision and recall from this experiment. The precision
in the training dataset increased from 95.18% to 95.79%. For the recall in the training phase,
the dataset significantly increased to 51.77%, whereas the precision in the validation dataset
slightly increased to 95.30%. For the recall in the validation, the dataset increased from
50.63% to 52.20%.

Table 5. Results of precision and recall on the training and testing datasets.

Train Test

Precision Recall Precision Recall

Mask
R-CNN 95.18% 48.65% 95.15% 50.63%

Improved Mask
R-CNN 95.79% 51.77% 95.30% 52.20%

As can be seen from Table 6, the AP value 0.50 of the improved Mask R-CNN in the
training dataset is 99%, which is 8.77% higher than the existing detection model Mask
R-CNN. The AP value 0.75 of the improved Mask R-CNN is 96.35%, which is 30.5% higher
than the existing detection model Mask R-CNN. On the other hand, the improved Mask
R-CNN has an AP value of 0.50 in the validation dataset, which is 3.87% higher than
the existing detection model Mask R-CNN, as shown in Table 6. The improved Mask
R-CNN has an AP value of 0.75, which is 25.73% higher than the existing Mask R-CNN
detection model.

Table 6. Results of mean average precision.

Train Test

mAP (AP0.50) AP0.75 mAP (AP0.50) AP0.75

Mask R-CNN 90.23% 65.85% 95.83% 72.77%

Improved Mask
R-CNN 99.00% 96.35% 99.70% 98.50%

Performance measurement of mAP considers the value of 0.50 and 0.75 for the training
dataset shown in Figure 12. The proposed improved Mask R-CNN has shown significant
performance compared to the existing Mask R-CNN (Figures 12 and 13) using the validates
the dataset shown in Figure 14.

Notably, the accuracy drops as the density increases, as tabulated in Table 7. It also
suggests that in the less dense category with the number of ground truths of 2682, the
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proposed model can obtain the predicted number of shrimps of 2671 and achieve the value
for an accuracy rate of 99.59% and an error rate of 0.41%.

Figure 12. Results of mAP when AP = 0.50 and AP 0.75 for the training dataset for default and
improved Mask R-CNN.

Figure 13. Results of mAP when AP = 0.50 and AP = 0.75 for the testing dataset after applying default
and improved Mask R-CNN.

Figure 14. Linear regression between the number of ground truths and the predicted number of
shrimps for 100 images in the training dataset for the default Mask R-CNN.

In the medium dense category with the ground truth number of 1715, the proposed
model can achieve the predicted number of 1679 shrimps, 97.90% accuracy, and 2.10%
error rate. Meanwhile, if the number of ground truths is 644, the proposed model still
predicts 564 shrimps and 87.58% accuracy, and a 12.42% error rate. Therefore, the analysis
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recommends that the overall accuracy rate for the proposed model on the training dataset
reached 97.48%, which is 4914 shrimps out of 5041 shrimps.

Table 7. Results of accuracy rate and error rate based on category.

Category No. of Ground
Truths

No. of Predicted
Shrimps Accuracy Rate Error Rate

Less dense 2682 2671 99.59% 0.41%

Medium dense 1715 1679 97.90% 2.10%

Dense 644 564 87.58% 12.42%

Total 5041 4914 97.48% 2.52%

Figure 14 shows the result of the pictures based on each category using the (i) de-
fault Mask R-CNN model and (ii) the improved Mask R-CNN model. Figure 15 depicts
three shrimp images by density category, where the (a) less dense category has predicted
26 shrimps (GT = 26) in (a) and 55 (GT = 55) in (b); the (b) medium dense category has
predicted about 83 shrimps (GT = 84) in (a) and 97 (GT = 99) in (b); finally, the (c) high
dense category has predicted 100 shrimps (GT = 104) in (a) and 213 (GT = 256) in (b).

Figure 15. Comparison of the results of shrimps by using the (a) default Mask R-CNN model and
(b) improved Mask R-CNN model. The images of shrimp by density: row 1, less dense with the
predicted number of shrimps of 26 (GT = 26) in (a) and 55 (GT = 55) in (b); row 2, medium dense
with the predicted number of shrimps of 83 (GT = 84) in (a) and 97 (GT = 99) in (b); row 3, high dense
with the predicted number of shrimps of 100 (GT = 104) in (a) and 213 (GT = 256) in (b).

One of the ideas in counting is to calculate the object indirectly by estimating the
density map. The first step is to prepare a practice sample dataset with an appropriate
density map for each picture. Density maps are created by performing a convolution with
a Gaussian kernel and normalizing it so that integrating it yields the number of objects.
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The main objective is to train the convolutional network to plot an image to a density map
that can accumulate the number of object occurrences. The density maps according to the
shrimp density are shown in Figure 16.

Figure 16. (a) Image of shrimp by density: row 1, less dense with the actual number of shrimps of 46
and predicted number of shrimps of 46; row 2, medium dense with the actual number of 118 and
predicted number of 118; row 3, dense with the actual number of 188 and predicted a number of 170.
(b) Layer of Resnet101 res2c_out, (c) layer of Resnet101 res3c_out, (d) layer of Resnet101 res4w_out
and (e) predicted number of shrimps.

Linear regression for the existing Mask R-CNN model and improved Mask R-CNN
was performed between the actual and the predicted number of shrimps. Linear regression
for the existing Mask R-CNN model for the detection is shown in Figure 17. The value of R2

of 0.9204 in Figure 14 suggests that the regression line does not fit well over the data, which
means the predicted number of shrimps is not similar to the actual number of shrimps.

Figure 17. Linear regression between the number of ground truths and the predicted number of
shrimps for 100 images in the training dataset for the improved Mask R-CNN.

Linear regression for the improved Mask R-CNN model is shown in Figure 17. The
value of R2 of 0.9933 in Figure 17 suggests that the regression line fits nicely over the
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data, which means the predicted number of the shrimps is similar to the actual number
of shrimps.

Despite these shortcomings, no studies have investigated shrimp counting using com-
puter vision with deep learning. Hence, this work offers several significant contributions:

i The shrimp images were recorded from the top view with the assumption of equal
size due to similar shrimp age kept in the container.

ii It can automatically estimate the number of shrimps using computer vision and
deep learning.

iii Default Mask R-CNN can be manipulated to effectively segment and count tiny
shrimps or objects.

iv The shrimp counting accuracy depreciates as the shrimp density increases or intensifies.
v The shrimp estimation efficacy has a linear proportion when the hyperparameters

such as maximum detection instance, learning rate, maximum ground truth instance,
RPN threshold value, RPN train anchors per image, the number of steps per epoch,
train region of interest per image, validation steps, and weight decay are increasing.

vi The linear regression shows that R2 increases with better precision after performing
hyperparameter manipulation over the default Mask R-CNN.

vii This application can reduce shrimp death risk compared to practicing manual counting.

Moreover, this work can be extended using IoT [29–31] with explainable future com-
munication technologies for further data collection and processing, and further validation
will be carried out on a large scale of implementation.

5. Conclusions

This study successfully developed a detection and recognition model based on a
deep learning-based Mask R-CNN model for underwater shrimp counting. After testing
and improvement, the proposed method improved the mAP, precision, and recall. The
critical parameters that influence this advancement for the proposed method are maximum
detection instance, maximum ground truth instance, number of thresholds, train anchors
for each image, number of steps for each epoch, number of train regions of interest of each
image, number of validation steps, number of steps in each epoch, and numbers of epochs,
regularization, optimizers, learning rate, batch size, learning momentum, and weight
decay. After intensive manual changing of these parameters, we identified the best Mask
R-CNN parameters. The backbone used in this paper is ResNet-101, either with default or
parameter tuning to verify the precision and efficiency of shrimp recognition. The training
dataset and validation dataset results show that the improved Mask R-CNN model can
detect and locate the shrimp accurately with a value of 97.48% compared to the existing
method, which is more accurate than existing methods. The contribution of this study
is evident as the resulting outcomes can be capitalized as guidelines for the agriculture
industry when estimating the number of underwater animals using computer vision versus
manual counting. In fact, the current study contributes to our underwater computer vision
knowledge by addressing three critical issues: reducing underwater animal death risk
despite manual counting, Mask R-CNN configuration, and highlighting the pitfalls and
advantages in terms of efficacy when dealing with different densities of small animals.
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Appendix A

Hyperparameter settings for the proposed Mask R-CNN pipeline calibration.
BACKBONE resnet101
BACKBONE_STRIDES [4, 8, 16, 32, 64]
BATCH_SIZE 1
BBOX_STD_DEV [0.1 0.1 0.2 0.2]
COMPUTE_BACKBONE_SHAPE None
DETECTION_MAX_INSTANCES 400
DETECTION_MIN_CONFIDENCE 0.7
DETECTION_NMS_THRESHOLD 0.3
FPN_CLASSIF_FC_LAYERS_SIZE 1024
GPU_COUNT 1
GRADIENT_CLIP_NORM 5.0
IMAGES_PER_GPU 1
IMAGE_CHANNEL_COUNT 3
IMAGE_MAX_DIM 1024
IMAGE_META_SIZE 14
IMAGE_MIN_DIM 800
IMAGE_MIN_SCALE 0
IMAGE_RESIZE_MODE square
IMAGE_SHAPE [1024 1024 3]
LEARNING_MOMENTUM 0.9
LEARNING_RATE 0.01

LOSS_WEIGHTS
{'rpn_class_loss': 1.0, 'rpn_bbox_loss': 1.0,
'mrcnn_class_loss': 1.0, 'mrcnn_bbox_loss': 1.0,
'mrcnn_mask_loss': 1.0}

MASK_POOL_SIZE 14
MASK_SHAPE [28, 28]
MAX_GT_INSTANCES 400
MEAN_PIXEL [123.7 116.8 103.9]
MINI_MASK_SHAPE (56, 56)
NAME shrimp
NUM_CLASSES 2
POOL_SIZE 7
POST_NMS_ROIS_INFERENCE 1000
POST_NMS_ROIS_TRAINING 2000
PRE_NMS_LIMIT 6000
ROI_POSITIVE_RATIO 0.33
RPN_ANCHOR_RATIOS [0.5, 1, 2]
RPN_ANCHOR_SCALES (32, 64, 128, 256, 512)
RPN_ANCHOR_STRIDE 1
RPN_BBOX_STD_DEV [0.1 0.1 0.2 0.2]
RPN_NMS_THRESHOLD 0.8
RPN_TRAIN_ANCHORS_PER_IMAGE 512
STEPS_PER_EPOCH 100
TOP_DOWN_PYRAMID_SIZE 256
TRAIN_BN False
TRAIN_ROIS_PER_IMAGE 300
USE_MINI_MASK True
USE_RPN_ROIS True
VALIDATION_STEPS 200
WEIGHT_DEC 0.001
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