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Abstract: To better understand the effect and constraint of different data lengths on the data-driven
model training for the rainfall-runoff simulation, the support vector regression (SVR) approach was
applied to the data-driven model as the core algorithm in the present study. Various features selection
strategies and different data lengths were employed in the training phase of the model. The validated
results of the SVR were compared with the rainfall-runoff simulation derived from a physically based
hydrologic model, the Hydrologic Modeling System (HEC-HMS). The HEC-HMS was considered
a conventional approach and was also calibrated with a dataset period identical to the SVR. Our
results showed that the SVR and HEC-HMS models could be adopted for short and long periods
of rainfall-runoff simulation. However, the SVR model estimated the rainfall-runoff relationship
reasonably well even if the observational data of one year or one typhoon event was used. In contrast,
the HEC-HMS model needed more parameter optimization and inference processes to achieve the
same performance level as the SVR model. Overall, the SVR model was superior to the HEC-HMS
model in the performance of the rainfall-runoff simulation.

Keywords: rainfall-runoff simulation; support vector regression; HEC-HMS; data-driven model; Taiwan

1. Introduction

The precision and robustness of rainfall-runoff simulations are essential to watershed
modeling from various perspectives, such as planning and designing soil conservation
practices, irrigation water management, wetland restoration, stream restoration, water-table
management, and water resources planning, development, and management [1]. There are
various styles of rainfall-runoff models worldwide developed to solve these issues from
the manners of deterministic, probabilistic, or stochastic approaches [2]. For a well-gauged
watershed, a hydrologic model with an appropriate scheme that meets the watershed
characteristics can be applied for the rainfall-runoff modeling. However, for poorly gauged
or ungauged watersheds, a physically based hydrologic model is preferred for reasonable
parameter estimation processes [3]. For the convenience of applying hydrologic models, a
software package with graphic user interface (GUI) makes the rainfall-runoff simulation
task easier.

The Hydrologic Modeling System (HMS), developed by the Hydrologic Engineering
Center (HEC) of the U.S. Army Corps of Engineering Center, the HEC-HMS, is one of
the most popular rainfall-runoff simulation tools worldwide, including many traditional
rainfall-runoff simulation tools hydrologic analysis procedures [2]. The HEC-HMS is
designed to simulate the complete hydrologic processes of dendritic watershed systems
in event-based simulation or continuous simulation [3–6]. Different mechanisms can be
selected to perform the simulation; each selection requires a different dataset corresponding
to its model setting and parameter tuning. Supplemental analysis tools are provided for
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model optimization, forecasting streamflow, depth-area reduction, assessing model uncer-
tainty, erosion and sediment transport, and water quality [2]. However, in corresponding
with the scheme, complexity, and objective of the rainfall-runoff model, temporal and
spatial distribution data additional to single point observation data may require more
information which results in massive subsequent pre-work preparation and perspiration.

In recent years, alongside the advance of hydrology, data-driven modeling based
on computational intelligence and machine-learning methodologies drew mass research
interest in hydrological and hydrodynamic simulation [7–13]. The model training data
length/quality, the tuning of the data-driven model parameters, and the selection strategy
of the feature values are particularly relevant to this kind of research in terms of credibil-
ity [14,15]. Barbero et al. [16] addressed the determination of the areal reduction factor
(ARF) as a function of area and duration and demonstrated that both adequately long series
and good gauge distribution are necessary for a proper investigation of the ARF.

Among the options, the support vector machine (SVM) method is a robust and efficient
algorithm for classification (support vector classification, SVC) and regression (support
vector regression, SVR) introduced by Vapnik et al. [17], and it has already been applied in
the field of hydrology for a few decades and attained great research results: rainfall and
runoff forecasting, streamflow and sediment yield forecasting, evaporation and evapotran-
spiration forecasting, lake and reservoir water level prediction, flood forecasting, drought
forecasting, groundwater level prediction, soil moisture estimation, and groundwater
quality assessment [18–21].

The object of this work was to clarify the effect and constraint of different data lengths
on the data-driven model training for the rainfall-runoff simulation and to compare the
performance between the data-driven model and the physical-based model in rainfall-
runoff simulation. The study area, measurements, data-driven model, and physical-based
model are described in Section 2. The results of the model validation for simulating
watershed outflows and comparing the performance between the data-driven model and
physical-based model in the rainfall-runoff simulation are presented in Section 3. In
Section 4, a discussion on the advantages and disadvantages of the data-driven model and
physical-based model in rainfall-runoff simulation and conclusions is given.

2. Materials and Methods
2.1. Study Area

A rural watershed located in the northern part of Taiwan was chosen as the study
area. The area of the watershed is 52.1 km2, the elevation of the watershed ranges from
180 to 960 m above sea level, and the average slope is 41.1%. A rainfall station and a water
level-discharge gauging station are located within the watershed. The information for these
two hydrological stations is described in Table 1, and the location of the study basin and
gauging station is shown in Figure 1a,b. The Hen Chi water level gauging station is located
close to the outlet of the watershed, with an elevation of 21.74 m; however, it is still higher
than the minimum elevation of the watershed (about 20.0 m). Moreover, the Da Bao rainfall
gauging station is located upstream of the watershed, at 600 m (as shown in Figure 1).

Table 1. The information of the rainfall and water level gauging station.

Station ID Name Elevation TWD97M2.X TWD97M2.Y

01A210 Da Bao 600 m 292,574.12 2,753,355.88
1140H049 Hen Chi 21.740 m 289,877.43 2,758,720.00

Note: The coordinate system is TWD97M2.
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Figure 1. (a) the location of the studied watershed in Taiwan, (b) the elevations of the studied
watershed, and the position of the rainfall and water level gauging stations, and (c) the distributions
of elements divided in the HEC-HMS model for the studied watershed (Hen Chi watershed).

2.2. The Hydrologic Modeling System (HEC-HMS)

The HEC-HMS is being developed and maintained by the Hydrologic Engineering
Center of the U.S. Army Corps of Engineering Center. In order to simulate the rainfall-
runoff mechanism of a basin, several models needed to be established before running the
HEC-HMS: the basin model, meteorologic model, control specification, time-series data,
and terrain data.

2.2.1. Basin Model

A basin model consists of the elements that reflect the rainfall loss, rainfall-runoff
transformation, and baseflow effect. The geographical parameters such as area, flow length,
and slope of the sub-basin or reach can be automatically retrieved by the GIS module
of the HEC-HMS within a DEM of the basin as an input. The basin can be divided into
several sub-basins, the mainstream, and branches according to the user’s interest or specific
consideration. In this study, a large basin was divided into three sub-basins and one reach,
with one sink outlet of the basin (as shown in Figure 1c). As for the speculation of the
rainfall loss, the Soil Conservation Service (SCS) curve number (CN) loss method [22] was
applied, for which the soil data and land use data were required. In this study, the land-use
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data was acquired from the Ministry of Interior, and the soil-type data was acquired from
the Council of Agriculture of the Executive Yuan. The mentioned data can be obtained
from Taiwan Government Open Data [23]. The percentage of each land-use category and
soil type are listed in Tables 2 and 3. Due to the unknown soil type being a relatively lower
percentage than the others, it was considered loam in the present study. For transforming
the rainfall excess, which was derived after the rainfall loss calculation, into direct runoff of
the sub-basin, the Clark unit hydrograph [24] was manipulated. The time of concentration
and storage coefficient needed to be determined because the relationship between these two
parameters was hypothesized. There are various ways to calculate the parameters [25–29],
yet the calculation results in a big range. Therefore, in this study, the two parameters
were determined via the optimization module of the HEC-HMS. The Muskingum–Cunge
routing method was applied for the reach flow calculation. Additionally, the recession
constant and ratio to the peak were the parameters that needed to be calibrated.

Table 2. The percentage of each land-use category of the Hen Chi basin.

Land-Use Category Percentage %

Agricultural land 25.16
Forests 69.17

Land for transportation 0.81
Water Conservancy-Use Land 0.64

Built-up land 2.50
Public facilities usage land 0.11

Recreational usage land 0.07
Mineral usage land 1.54

Table 3. The percentage of each soil type of the Hen Chi basin.

Soil Type Percentage %

Unknown 4.53
Sandy Loam 16.56

Loam 69.25
Clay Loam, Silty Clay Loam 9.66

2.2.2. Time-Series Data and Meteorologic Model

The HEC-HMS is capable of simulating both event-based and continuous scenarios.
However, for continuous simulation, the discharge peak of each rainfall event is challenging
to catch through the calibration process. For this reason, after examining the data coherence
and quality, 13 typhoon events were selected for the HEC-HMS parameters optimization.
The selected typhoon events are listed in Table 4. The durations (hours) in Tables 4 and 5
refer to both the rainfall and runoff period. In order to make a comparison with data-driven
model training, model parameters calibrated from different numbers of typhoon events are
manipulated for model validation; for this purpose, two typhoon events were selected, and
their information can be found in Table 5.
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Table 4. Typhoon events manipulated for the HEC-HMS parameter calibration.

Typhoon
Number

Typhoon
Name

Max Rainfall
(mm/h)

Total Rainfall
(mm)

Max Discharge
(cm)

Duration
(h)

199111 ELLIE 46 210 126 47
199216 POLLY 21 503 149 165
199416 GLADYS 98 398 154 119
199608 HERB 31 486 243 155
199714 WINNIE 22 248 195 132
199810 ZEB 36 476 174 159
200020 XANGSANE 33 539 317 119
200407 MINDULLE 30 249 232.33 185
200420 HAIMA 37 497 245.86 104
200715 KROSA 33 551 217.91 149
200813 SINLAKU 47 725 284.59 197
200815 JANGMI 55 548 250.63 143
200908 MORAKOT 46 374 65.92 176

Table 5. Typhoon events for the HEC-HMS model validation.

Typhoon
Number

Typhoon
Name

Max Rainfall
(mm/h)

Total Rainfall
(mm)

Max Discharge
(cm)

Duration
(h)

201209 SAOLA 73 746 955.28 161
201513 SOUDELOR 59 574 804.27 140

2.2.3. Model Parameters Optimization

The GIS module acquires the geographical parameters in the HEC-HMS during the
processing of the digital elevation data of the basin and the related field survey data.

The calibrated parameters are acquired from the built-in function named optimization
trial manager of the HEC-HMS. The parameters can be retrieved via one of the criteria
listed: peak-weighted RMS error, percent error peak, percent error volume, sum absolute
residuals, sum squared residuals, and time-weighted error. The parameters for calibration
are listed in Table 6, while the range of the parameters used the system defaults.

Table 6. The parameters for the HEC-HMS model calibration.

Element Parameter for Optimization

r_1 Muskingum–Cunge—Manning’s n—
sub_1 SCS Curve Number—Initial Abstraction
sub_2 SCS Curve Number—Initial Abstraction
sub_3 SCS Curve Number—Initial Abstraction
sub_1 Clark Unit Hydrograph—Storage Coefficient
sub_2 Clark Unit Hydrograph—Storage Coefficient
sub_3 Clark Unit Hydrograph—Storage Coefficient
sub_1 Clark Unit Hydrograph—Time of Concentration
sub_2 Clark Unit Hydrograph—Time of Concentration
sub_3 Clark Unit Hydrograph—Time of Concentration
sub_1 Recession—Ratio to Peak
sub_2 Recession—Ratio to Peak
sub_3 Recession—Ratio to Peak
sub_1 Recession—Recession Constant
sub_2 Recession—Recession Constant
sub_3 Recession—Recession Constant
sub_1 Recession—Initial Discharge
sub_2 Recession—Initial Discharge
sub_3 Recession—Initial Discharge
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In hydrologic modeling, the model parameters can be inferred by estimating the
distribution function of the samples [30]. In this study, the max rainfall intensity, total
rainfall depth, and rainfall duration of the corresponding typhoon event were applied as
the feature values of the SVR model to infer the HEC-HMS model parameter values. After
the optimization process for each typhoon event, two methods of estimating the model
parameters were used in this study. Type 1 used the SVR model to estimate the parameter
set by using the optimized parameter values and their corresponding maximum rainfall,
total rainfall, and rainfall duration as feature values to retrieve the value of each parameter.
Type 2 simply used the average values of the optimized parameters.

2.3. Support Vector Regression

SVR is a variation of SVMs. SVMs are developed based on statistical learning the-
ory [31]. The original SVMs were for solving the classification problem. The classification
problem can be simplified by manipulating a kernel function by mapping the original
datasets from the input space to a higher dimensional feature space. The standard support
vector regression can be formed by introducing a loss function that describes the deviation
of the SVMs’ estimation function into the original SVMs. In brief, the basic idea of SVR
is to find a model function f(x) to represent the relationship between the features and the
target [32].

LIBSVM [33] is an integrated software for support vector classification (SVC), SVR,
and distribution estimation. LIBSVM is an open-source package and was employed in this
study for its robust and worldwide usage [34,35]. Several types of the SVMs can be selected
in LIBSVM, nu-SVR; the linear kernel was applied in this study, and the default model
parameter values were used. For the SVR model training, two approaches were applied.
One used the typhoon events discrete data as the input, as in the HEC-HMS approach;
another used continuous hourly rainfall and discharge data from 1991 to 2009, as shown in
Figure 2. The datasets with the duration of 19 years (from 1991 to 2009), five years (from
2005 to 2009), two years (from 2008 to 2009), and one year (2009) were applied to acquire
the SVR training model parameters.
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In the present study, the model target was river discharge at a specific time; the features
were rainfall and discharge prior to the specific time as shown in Equation (1):

Dt = f(D(t − x), . . . , R(t − y), . . . ), (1)

where D denotes the discharge at time t, R denotes the rainfall, x and y are timesteps before
the specific time t, where x is in the range of 1 to 3, and y is in the range 1 to 6. For instance,
the feature selection of two discharge values and three rainfall values prior to the specific
time t as in Equation (2):

Dt = f(D(t − 1), D(t − 2), R(t − 1), R(t − 2), R(t − 3)), (2)

In the present study, SVR was applied for the data-driven model training and testing
and for the inference of the HEC-HMS model parameters, as mentioned in the previous
section. Two types of the model training process proceeded in this study by manipulating
19-, 5-, 2-, and 1-year ranges of observation data to proceed with the model training,
denoted as Type 1. The other was the HEC-HMS parameter calibration using data from
13 typhoon events, denoted as Type 2. The SVR models with different features selection
within different data types were trained and tested. In order to ensure the quality of model
input data, a minimum discharge of 15 CMS was set as a criterion of data selection. The
results revealed that the SVR model could estimate an excellent rainfall-runoff relationship
using the observational data of a shorter period, while the HEC-HMS needed further efforts.

2.4. Model Performance Criterion

In this study, the data length limitation to rainfall-runoff simulation proceeded by
comparing the simulation results performed by the HEC-HMS and the SVR model. Dif-
ferent data length was applied to the SVR model training and the HEC-HMS parameter
calibration. The Nash–Sutcliffe efficiency (NSE) coefficient [36] was applied for the model
performance evaluation. The formula of the NSE coefficient can be expressed as follows:

NSE = 1 − ∑T
t=1

(
Qt

o − Qt
s
)2

∑T
t=1

(
Qt

o − Qo
)2 (3)

where Qo is the mean of the observation discharge, Qt
o is the observational discharge at

time t, and Qt
s denotes the simulated discharge at time t.

It can be straightforwardly derived that the range of the Nash–Sutcliffe efficiency
coefficient is −∞ to 1, where 1 means the simulated discharge is identical to the observa-
tion discharge. More bias between the observation and simulated discharge makes the
Nash-Sutcliffe efficiency coefficient value far smaller than 1. The performance of the model-
ing outcomes under different watershed dataset acquiring scenarios was also compared
and discussed.

3. Results
3.1. The HEC-HMS Parameters Calibration and Validation Results

The discharge measurements recorded from 13 historical typhoon events were applied
for the HEC-HMS model parameters calibration. The results are shown in Figure 3. Ty-
phoons Saola (2012) and Soudelor (2015) were applied to validate the inferred parameter
sets, as shown in Figures 4 and 5. Type 1 denotes the parameter sets inferred using SVR,
and Type 2 denotes the parameter sets derived by simple average. For the convenience of
comparison, the data periods of 19, 5, 2, and 1 year(s) denote 13, 4, 3, and 1 typhoon event(s).
The results showed that the mean Nash–Sutcliffe coefficient of the optimized models was
0.904. However, in the model validation phase, the mean models’ performance dropped to
0.754. Type 1 of the parameters’ inference was better than Type 2 in a general manner. One
interesting phenomenon that should be noted was that the HEC-HMS always underesti-
mated the peak of observed discharge. The reason might be that the peak-weighted RMSE
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was selected as an objective function of the optimization trial process of the HEC-HMS
and this model tends to simulate the hydrograph shape more than the peak discharge. If
the percent error in peak discharge was selected, the objective function might be different.
Another possible reason was that the maximum discharge of the validation typhoon events
was far more significant than the typhoon events used for model calibration.
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3.2. The SVR Model features Selection Results

Two types of the SVR model training process were conducted in the present study by
manipulating 19, 5, 2, and 1 year(s) of observation data to proceed with the model training.
Figures 6 and 7 show the testing results derived from the Type 1 SVR model. The other
training process was the HEC-HMS parameter calibration using 13 typhoon events data
(the Type 2 SVR model), as shown in Figures 8 and 9. It can be seen that the SVR model test
results of Type 2 of data importing were just slightly better than Type 1.
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3.3. Comparison among Model Validation and Test Results

For the convenience of model performance comparison purposes, the model validation
and test results are demonstrated in Figures 10 and 11 corresponding to different typhoon
events: Saola (2012) and Soudelor (2015). The results showed that the SVR model was
far superior to the HEC-HMS within different data time ranges or parameter inference
methods. Even if observational data from 1-year or a typhoon event was used for the SVR
model training, the SVR model could still infer the target discharge. Table 7 shows the
parameter optimization results of the HEC-HMS of Typhoon Saola and Soudelor. It can be
seen that tuning the values of parameters could make the model performance better, even
close to the SVR model. Nevertheless, the inference methodology of the parameter value is
an issue that needs lots of further effort.
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Table 7. Parameter optimization results of the HEC-HMS of the study events.

Typhoon Number Typhoon Name Nash–Sutcliffe Coefficient after Optimization

201209 SAOLA 0.856
201513 SOUDELOR 0.932

4. Discussion and Conclusions

The HEC-HMS and SVR, a physically based model and a data-driven hydrologic
model were used to identify the adaptability within different lengths of field observation
data in the manner of parameters determination (for HEC-HMS) and model training (for
SVR). Two types of parameter determination methods were applied for the HEC-HMS
model validation process: one by using SVR, with optimized parameter values derived
from the typhoon events which occurred within a specific time range, i.e., 19, 5, 2, and
1 year(s), with target and maximum rainfall value, rainfall duration, total rainfall depth
as feature values, to acquire the model validation parameter values, named Type 1 HEC-
HMS in the study; the other one by manipulating the average optimized parameter values
retrieved from the typhoon events which occurred within the same specific time range as
Type 1 HEC-HMS, denoted as Type 2 HEC-HMS in the study. Regarding the SVR, two
different model training strategies were applied. One was the utilization of the continuous
observation data with specific data length, i.e., 19, 5, 2, and 1 year(s), for model training,
expressed as Type 1 SVR in the present study. The other was utilizing observational
data from the typhoon events used with the HEC-HMS, mentioned previously, for model
training and designated as Type 2 SVR in the study. The results showed that the SVR model
could estimate an excellent rainfall-runoff relationship even with a shorter period, for
instance, only one rainfall event with high-quality time series observation data; however,
the HEC-HMS needed many further efforts to achieve similar results. Moreover, different
feature value selecting strategies were applied. The conclusions derived from the present
study are as follows:

1. The validation results showed that Type 2 HEC-HMS performed better than Type 1
HEC-HMS.

2. The model whose parameter values were derived from multiple typhoon events
performed better than the model whose parameter values were derived from only
one typhoon event. The model performance was not always proportional to the
number of rainfall events for the parameter calibration process, even with the excellent
performance of the HEC-HMS during the calibration phase, which might indicate that
a global optimization strategy is needed to improve the model validation performance.

3. As for the SVR trained models, Type 2 SVR was slightly better than Type 1 SVR; the
rainfall pattern of the validation events being typhoons might be the reason.

4. Furthermore, even within a concise time range of model training, for instance, only one
typhoon event, the SVR model could estimate an excellent rainfall-runoff relationship.

5. As for the features selection of the SVR model, when the discharge data of the previous
2-time steps to the target were applied, the model validation results were generally
better than the other features selection. The rainfall data features of the previous time
step were also proportional to the model validation performance, but not as much as
the discharge features were.

6. It could be seen that Type 2 SVR within one typhoon event for model training per-
formed better than Type 1 SVR, which utilized one-year rainfall and discharge data
for training. The possible reason might be that the rainfall pattern, which was a
typhoon, of the validation event was the same as in Type 2 SVR model training. Other
rainfall patterns for model training might give different results. This indicates that
data quality is essential for SVR model training.

7. The quality of observation data is essential to using the HEC-HMS and the SVR
model. However, the HEC-HMS would need the extra effort of field data collection
to determine the geographically related parameters such as land use and soil type;
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additional parameter optimization efforts would also be needed. While SVR is easier
to apply if excellent observation data is available with good features selection. The
maximum discharge of the validation typhoon events was far more significant than
the events used for model calibration. Nevertheless, the SVR model could still give an
excellent rainfall-runoff estimation.

Additionally, several future efforts could be noted:

1. In the study, the HEC-HMS model parameters estimation by the SVR model was
applied, more data-driven based inference of HEC-HMS model parameters is worth
studying.

2. This study does not include kernel function selection and its related parameter deter-
mination of the SVR model; it is worthwhile to identify a suitable kernel function and
other proper parameters in future studies.

3. Selection criteria of the feature dataset for SVR model training could be discussed more.
4. Observation typhoon data was applied in the study; different rainfall patterns and

more training and testing events are necessary to validate the comparison results in
future studies.

5. The study area is a small rural basin in Northern Taiwan; a more complex and
meteorologically different basin could be the future topic of study.
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