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Abstract: Early and accurate flood forecasting and warning for urban flood risk areas is an essential
factor to reduce flood damage. This paper presents the urban flood forecasting and warning process
to reduce damage in the main flood risk area of South Korea. This process is developed based
on the rainfall-runoff model and deep learning model. A model-driven method was devised to
construct the accurate physical model with combined inland-river and flood control facilities, such as
pump stations and underground storages. To calibrate the rainfall-runoff model, data of gauging
stations and pump stations of an urban stream in August 2020 were used, and the model result
was presented as an R2 value of 0.63~0.79. Accurate flood warning criteria of the urban stream
were analyzed according to the various rainfall scenarios from the model-driven method. As flood
forecasting and warning in the urban stream, deep learning models, vanilla ANN, Long Short-Term
Memory (LSTM), Stack-LSTM, and Bidirectional LSTM were constructed. Deep learning models
using 10-min hydrological time-series data from gauging stations were trained to warn of expected
flood risks based on the water level in the urban stream. A forecasting and warning method that
applied the bidirectional LSTM showed an R2 value of 0.9 for the water level forecast with 30 min
lead time, indicating the possibility of effective flood forecasting and warning. This case study aims
to contribute to the reduction of casualties and flood damage in urban streams and accurate flood
warnings in typical urban flood risk areas of South Korea. The developed urban flood forecasting
and warning process can be applied effectively as a non-structural measure to mitigate urban flood
damage and can be extended considering watershed characteristics.

Keywords: urban flood forecasting and warning; deep learning; rainfall-runoff model; urban stream;
model-driven; data-driven

1. Introduction

Urban flooding is one of the most damaging natural disasters to human life and
property worldwide, and the frequent occurrence of flood damage in recent years has
highlighted the need to prevent and reduce urban flooding [1–3]. The Sixth Assessment
Report recently published by the IPCC revealed that an unprecedented climate change in
modern human history is occurring, and the surface temperature has risen rapidly since the
Fifth Assessment Report to record the highest since 1850 [4]. With temperatures now 1.2◦

higher than in the past due to climate change, survey results indicate that the likelihood
of large-scale flooding events is up to nine times higher and rainfall up to 19% higher [5],
and urban flood damages are increasing worldwide owing to the impacts of urbanization
and increase in property values [6–9]. The major urban areas in South Korea are also
experiencing a rapid increase in flood damage due to increased urbanization and torrential
rainfall caused by climate change, resulting in casualties and property damage [10,11].
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The flood damage in an urban stream is an integrated result of processes in the drainage
basin with high portions of impervious areas and high values of the runoff coefficient [12].
Additionally, flash flood, river regulation (e.g., channel straightening and shortening,
riverside walking trail), and flood control facilities (e.g., dikes and pump station) increase
the flood risk in an urban stream [13]. To reduce flood damage effectively, structural
measures, as well as non-structural measures, such as accurate and preemptive flood
forecasting and warning, are necessary [14–17]. Especially, with the development and
maturity of machine learning algorithms, extensive advanced deep learning technologies,
such as artificial intelligence, have been successfully applied for the prediction of time
series data in the hydrological area. Important research trends for establishing the optimal
urban flood forecasting and warning method are the previous artificial intelligence-based
time-series learning using a neural network theory that first began with McCulloch and
Pitts [18], and based on this research, the backpropagation learning algorithm developed
for the nonlinear signal processing by Lepedes [19–21], which initiated time-series future
value forecasting studies. With these studies as leads, research employing artificial neural
networks (ANNs) is actively carried out in the field of hydrology. The following studies
demonstrate the beginning of the use of deep learning models. Karunanithi performed a
river discharge forecasting study using the artificial neural network theory [22]. Rangari
resolved one-hour rainfall data of Hyderabad, India into 15, 30, and 45-min data using the
ANN algorithm, to use them as input for urban flood analysis [23]. Tran and Song used the
recurrent neural network (RNN), recurrent neural network-back propagation through time
(BPTT), and LSTM for learning the water level data from Trinity River in the United States
to present the most accurate LSTM forecasting results [24]. Recently developed neural
network models include the feature-enhanced regression model (FER), which is a stacked
autoencoder (SAE) combined with LSTM to predict the storage basin inflow rate [25], and
time-series forecasting studies using bidirectional LSTM are actively conducted [26].

As global urban flood damage due to climate change intensifies, efforts to reduce
such flood damages by predicting and warning are also becoming an issue [27–32]. A
considerable number of studies have already developed integrated forecasting and warning
systems for urban flooding in developed nations including the United States, European
countries, Japan, and so on, non-structural flood protection measures, and a flood protection
concept that organically links inland and outland water in urban areas were introduced
where structural flood control systems were inadequate for flood damage mitigation. The
European Flood Awareness System (EFAS) provides probabilistic flood forecast data 10 days
before a flood occurrence to national authorities of the European Union and the Emergency
Response Coordination Center of the European Commission [33,34]. Similarly, the Thames
Estuary 2100 (TE 2100 project) provides a 36-h flood risk forecasting and warning by
connecting weather stations and weather satellites. It establishes flood management plans
phased according to climate change for the Thames River basin and specific areas in London
and provides situational codes of conduct. Such flood forecasting provides essential data
for determining actions to protect citizens, properties, and various infrastructures in urban
and industrial areas. [35,36]. However, in Korea, most flood forecasting and warning are
based on extensive river flood forecasting systems, and it is not easy to reflect the watershed
characteristics of urban hydrological systems that connect inland and rivers in urban areas,
and it is difficult to predict and prevent urban stream damages due to rapid rainfall and
pump stations [13].

Therefore, this study presents an optimal flood forecasting and warning method based
on the runoff model and deep learning techniques to prevent casualties in an urban stream
from urban flash floods and reduce urban flood damages. A highly urbanized basin and
flood risky area called Dorim river basin in Seoul city was selected as a case study. First, the
rainfall-runoff model of the target area was constructed considering the combined inland-
river, flood control facilities, and the stream elevation scenario according to the rainfall
intensity was analyzed for warning of flood damage. Based on this work, flood forecasting
and warning criteria were calculated, various deep learning models were constructed, and
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time-series data from gauging stations were trained to forecast and warn water levels of
flood-prone areas. For effective urban flood forecasting and warning, relevant analyses
must consider accurate hydrological time-series data construction and temporal and spatial
properties of the target urban basin (inland and outland water connection analysis, real-
time water level, hydrological data such as flow rate, flood control facility operational data,
basin spatial data, and urban hydrological system such as an urban network). In particular,
early and accurate flood forecasting for urban flood risk areas is an essential prerequisite
for reliable urban flood forecasting and warning.

2. Materials and Methods

The urban flood forecasting and warning process of this study is developed for a
complex urban basin in which inland and river are organically connected, especially in
the urban stream in which casualties and isolation accidents occur (Figure 1). This process
is divided into three phases, investigation of urban flooding, analysis of flood warning
criteria, and flood forecasting. The flood damage of Dorim river basin can be effectively
reduced through accurate warning criteria by a rainfall-runoff model, and flood forecasting
using deep learning techniques.
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Figure 1. Urban flood forecasting and warning process.

2.1. Study Area

The target watersheds were the urban stream that crosses through the center of
the city, the stream inflow, and the Dorim river basin where inland and outland waters
are organically connected and flood damage is aggravated, which were selected among
32 flood-prone areas in Seoul, the capital of South Korea (Figure 2). The major causes of
flood damage in Dorim river basin are torrential rainfall due to climate change, discharge
increase due to rapid urbanization, flooding due to inner basin drainage defects, riverside
casualties due to sudden torrential rainfall, and a potential damage increase from extreme
weather events. In addition, the riverbank is occupied by roads at Dorim river basin,
so it is impossible to expand the river width, and bridges lower than the bank height
were observed to impede the streamflow. In particular, upstream of Dorim river basin
is a mountainous region with steep slopes, and the flood arrival time is relatively short.
Thus, recent abnormal rainfalls prompt flash floods, which rapidly elevate the Dorim river
basin flood elevation and continuously generate casualties by exposing citizens that use
pathways built along the entire Dorim river, bicycle roads, and the riverside for avoiding
the rain to flood risks (Table 1).
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There is a main stream, Dorim river and 4 tributary streams, Daebang river, Bongcheon
river, and Dorim 1,2 tributary river, connected with Dorim river in the target watershed
(Figure 3a). Water levels are provided from a total of three locations in Dorim river basin:
Dorim Bridge, Sindaebang Station, and Sillim 3 Bridge. We collected additional data for a
total of seven locations, from the Seoul National University entrance, Gwanak Dorim Bridge,
Guro 1 Bridge, and Guro Digital Complex Station water level measurement data measured
by each local government (Guro, Gwanak, Dongjak, and Yeongdeungpo District Offices),
and performed quality control (Figure 3b). A pump station is a typical structural flood
control method, and a total of 12 stations are located in Dorim river basin. Accurate data
must be collected from pump stations to develop an integrated urban hydrological system
that connects inland and river (Figure 3c). Overall data from the Seoul pump stations were
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collected by referring to their Implementation Design Report for the number of pumps,
pump specifications, discharge, pump station location, pump elevation, and reservoir.
Furthermore, the pump operation records were collected for every pump station to validate
the accuracy of the constructed rainfall-runoff model. The bicycle roads, pathways along
the stream, flood control facilities, stream cross-section, and cases of flood damages were
examined comprehensively and from various perspectives for the flood-prone areas in
the Dorim river basin. The results revealed that most casualties were generated due
to sudden torrential rainfall, a short travel time due to the steep slopes upstream, and
insufficient differences between the stream floor and riverside water levels. Additionally,
the drainage pump station located in the stream was found to rapidly increase the Dorim
river basin discharge by operating the pump for inner basin drainage. An examination
of each subsection of flood risk areas revealed that the entire upstream section did not
have sufficient difference between the stream floor and the left and right pathways, bicycle
roads, and riversides. Thus, the area was prone to casualties from sudden torrential rainfall.
Moreover, the river width increased downstream, for instance, from an average of 33.1 to
78.8 m, and the upstream with a relatively narrow river width and higher flow velocity
had short travel times and frequent casualties (Figure 3d). Based on the analysis of the
Dorim river basin properties, facility surveys, and flood-prone areas, an accurate rainfall-
runoff model was constructed, which was used in the composition of the learning module
(learning data, forecast point, etc.) for deep learning.
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2.2. Data-Driven Method

Flood forecasting and warning in the Dorim river basin were performed with a deep
learning model through training and forecasting 10-min hydrological time-series data. The
deep learning module was constructed with Python 3.7, together with various libraries
including Scikit-learn, Keras, Pandas, and NumPy. Vanilla ANN, LSTM, Stack-LSTM,
and Bidirectional LSTM models were used to forecast the stream water level of the target
basin. The structures of the above deep learning models are provided in Figure 4. In
general, a vanilla ANN, which is simply called a neural network, receives more than or
equal to one input data, aggregates them, performs output or activation, and shows neuron
action potential. Each input into the vanilla ANN is weighed individually, and the sum
of neurons is delivered through nonlinear functions known as the activation function or
transfer function. These nonlinear functions generally have a Sigmoid form, but they
can manifest in other forms of nonlinear or step functions. Currently, various activation
functions are under development. In the RNN model, the connections between the nodes
in the artificial neural network process input and output in units of sequences according to
time, which represents the most basic sequence form for deep learning models. However,
the hidden state must be calculated up to the order amount of t to calculate a single layer,
so the operation speed is slow. Additionally, the gradient may gradually decrease to the
point of no possible learning as the number of data and layer depth increase. In LSTM,
the self-loop allows the gradient to be calculated continuously, which solved the gradient
dissipation issue from RNN [37]. In Stack-LSTM, scales can be added, which are input
value levels observed in time by adding LSTM layers. Additionally, memory units, such as
individual letters, words, and sentences, can be learned in a given time, or issues arising
from different time scales can be solved [38]. The general RNN can only process and use
data in a single direction, but this results in data imbalance. Therefore, in order to improve
this structural problem, a bidirectional LSTM or biLSTM learns not only the relationship
with the previous input but also that with the incoming input in relation to the ordered
input data. Bidirectional LSTM has two hidden layers, forward states and backward states,
and these two hidden layers have a structure that is not connected to each other, but the
input value itself is transmitted to both of these hidden layers. The output value also
receives the data of the two hidden layers and calculates them all. The forward calculation
is the same as a general RNN, and the input values of the backward hidden layer are put in
the opposite direction, and the output layer value is calculated after all input values are
applied to the two-way hidden layer.

2.3. Model-Driven Method

Increasingly, the application of models in urban hydrology has undergone a shift
toward integrated structures that recognize the interconnected nature of the urban land-
scape and both the natural and engineered water cycles [39,40]. In this paper, recent spatial
data was used to construct an integrated rainfall-runoff model combined with the inland
and river of the Dorim river basin, to accurately calculate the urban flood forecasting and
warning criteria for the target point. A land cover map, impervious area ratio, soil map,
DEM, and Implementation Design Reports of the pump station and underground depot
were used to construct an integrated urban hydrological model (Figure 5). Flood control
facilities, such as pump stations or underground storage, are essential for reducing inland
flood damage, but the impact of flood control facilities is larger in urban areas, such as
Dorim river basin, which is closely associated with outland flooding and outland casualties,
and require more precise analysis. For the validation of the rainfall-runoff model for flood
control facilities, a sudden torrential rainfall event that occurred on 1 August 2020, which
generated casualties, was validated. The pump station Implementation Design Report and
pump operation record data were referenced for the parameter data of the rainwater pump
station and underground storage inserted in the model (Figure 6). On 1 August 2020, one
person died in the Dorim river upstream area and 25 were isolated before being rescued.
In the location and time where 25 people were isolated, more than or equal to 8 out of
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12 pump stations were under operation, which were discharging a significant amount of
outflow to Dorim river basin. In contrast, three underground storages located upstream
were not operated according to the operational standard for preventing Dorim river from
flooding. When the results from the model that executed the calibration and validation
of the stream cross-section and flood control facilities were examined, the R2 values for
each pump station simulation results were 0.26–0.73, and the R2 values for the water level
analysis results were 0.48–0.79 (Figure 7).
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3. Analysis and Application of Urban Flood Forecasting
3.1. Flood Forecasting and Warning Criteria Calculation Based on the Rainfall-Runoff Model

After examining the flood damage characteristics of the basin to calculate the Dorim
river basin flood forecasting and warning criteria, the criteria for the target basin were
established based on the riverside water level to prevent casualties from flash floods instead
of stream flooding. An actual case of flood damage in Dorim river basin was referenced for
the water level analysis based on the rainfall-runoff model for establishing forecasting and
warning. The third huff quartile distribution analyzed from the basin, rainfall duration of
100 min, and rainfall 20–100 mm scenarios were configured to analyze the riverside flood
elevation according to the application at each analysis point. The flood elevation analysis
results revealed that riverside flooding occurred when rainfall was 40–50 mm or above
for one hour at the Sillim 3 Bridge point and Seoul National University entrance point
at the upstream section of Dorim river basin. At the Seoul National University entrance,
riverside flooding occurred within about 30–44 min, depending on the rainfall intensity.
At Sillim 3 Bridge, riverside flooding occurred within about 36–50 min. At the Gwanak
Dorim Bridge and Sindaebang Station points in the mid- and downstream of Dorim river,
riverside flooding occurred within about 36–50 min. The height differences between the
riverbed and riverside were small at the Dorim Bridge and Sindaebang Station points, so
riverside flooding occurred at a relatively low rainfall of 20–30 mm or above. Depending
on the rainfall intensity, riverside flooding occurred within about 36–64 min at the Dorim
Bridge and about 46–66 min at the Sindaebang Station. Riverside flooding occurred when
rainfall was 20–30 mm or above at the Guro Digital Complex Station and Guro 1 Bridge
points in the downstream section of Dorim river basin. Depending on the rainfall intensity,
riverside flooding occurred within about 52–92 min at the Guro Digital Complex Station
and 54–86 min at the Guro 1 Bridge (Table 2).

Based on the results above, the forecasting and warning criteria for the Dorim river
basin were established, and an urban flood conduct manual was developed to prepare a
Dorim river basin flood response process. A total of four local governments perform the
actual flood protection operation of Dorim river basin, but since their flood forecasting and
warning criteria differ, an integrated flood protection operating standard was presented.
Operating restriction facilities that regulate Dorim river basin and access must be based
on a flexible operation method among autonomous districts with reference to the water
levels at the selected reference points Sillim 3 Bridge and Sindaebang Station. However,
regulation of the upstream section (Seoul National University entrance-before joining
Bongcheoncheon) when the reference water level is reached at Sillim 3 Bridge, and the
mid- and downstream section (after joining Bongcheon river-before joining Anyang river)
according to the reference water level at Sindaebang station was presented (Table 3).
Through the operational standard presented herein, a rainfall guidance must be broadcast
to restrict citizen access to the stream once an initial rainfall is forecasted or detected.
Thereafter, a phased riverside warning must be issued, and stream access blocked in the
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upstream section when the water level reaches 34.01 m at Sillim 3 Bridge, and when the
water level reaches 13.55 m at Sindaebang Station in the downstream section (Figure 8).

Table 2. Waterlevel analysis due to rainfall scenario in Dorim basin (Guro digital station).

Duration
(min)

Waterlevel by Rainfall Intensity (EL.m)

20 mm 30 mm 40 mm 50 mm 60 mm 70 mm 80 mm 90 mm 100 mm

20 10.24 10.24 10.24 10.25 10.25 10.25 10.25 10.25 10.26

22 10.24 10.24 10.25 10.25 10.25 10.25 10.25 10.26 10.26

24 10.24 10.25 10.25 10.25 10.25 10.25 10.26 10.26 10.26

26 10.25 10.25 10.25 10.25 10.25 10.26 10.26 10.26 10.26

28 10.25 10.25 10.25 10.25 10.26 10.26 10.26 10.26 10.26

30 10.25 10.25 10.25 10.26 10.26 10.26 10.26 10.26 10.27
32 10.25 10.25 10.26 10.26 10.26 10.26 10.26 10.27 10.27
34 10.25 10.26 10.26 10.26 10.26 10.26 10.27 10.27 10.27
36 10.26 10.26 10.26 10.26 10.26 10.27 10.27 10.27 10.27
38 10.26 10.26 10.26 10.26 10.27 10.27 10.27 10.33 10.28
40 10.26 10.26 10.26 10.27 10.27 10.27 10.34 10.40 10.33
42 10.26 10.26 10.27 10.26 10.27 10.35 10.40 10.44 10.40
44 10.26 10.27 10.27 10.32 10.35 10.47 10.43 10.46 10.49
46 10.27 10.27 10.27 10.34 10.39 10.45 10.56 10.61 10.53
48 10.27 10.27 10.45 10.41 10.51 10.62 10.56 10.61 10.69
50 10.27 10.28 10.43 10.49 10.48 10.90 10.63 10.68 10.94
52 10.27 10.31 10.40 10.55 10.85 10.88 10.73 11.11 11.15
54 10.27 10.46 10.48 10.55 10.85 11.22 11.14 11.33 11.45
56 10.29 10.39 10.61 10.70 10.78 11.24 11.22 11.51 11.57
58 10.32 10.42 10.67 10.88 11.43 11.33 11.50 11.58 11.74
60 10.35 10.50 10.61 10.97 11.18 11.47 11.63 11.75 11.89
62 10.37 10.59 11.04 11.38 11.39 11.63 11.78 11.85 12.01
64 10.40 10.56 10.99 11.44 11.55 11.73 11.86 11.98 12.10
66 10.44 10.59 11.39 11.53 11.65 11.83 11.96 12.11 12.22
68 10.45 10.73 11.31 11.64 11.74 11.93 12.07 12.21 12.40
70 10.46 10.71 11.37 11.71 11.88 12.03 12.19 12.32 12.46
72 10.50 11.01 11.52 11.79 11.96 12.10 12.26 12.46 12.58
74 10.51 11.21 11.62 11.86 12.03 12.19 12.35 12.50 12.66
76 10.56 11.42 11.70 11.92 12.11 12.26 12.40 12.58 12.75
78 10.65 11.39 11.71 11.97 12.12 12.33 12.49 12.66 12.81
80 10.61 11.45 11.81 11.99 12.23 12.37 12.53 12.70 12.87
82 10.62 11.50 11.83 12.04 12.26 12.41 12.59 12.76 12.93
84 10.65 11.58 11.87 12.07 12.28 12.46 12.64 12.79 12.97
86 10.67 11.60 11.90 12.10 12.30 12.48 12.67 12.86 13.01
88 10.68 11.60 11.92 12.13 12.29 12.53 12.69 12.85 13.03
90 10.79 11.61 11.95 12.14 12.36 12.51 12.71 12.88 13.05
92 11.26 11.62 11.92 12.17 12.35 12.53 12.73 12.92 13.07
94 11.28 11.65 11.98 12.17 12.37 12.53 12.73 12.90 13.07
96 11.30 11.69 11.96 12.19 12.37 12.54 12.73 12.90 13.06
98 11.21 11.71 11.96 12.19 12.35 12.54 12.71 12.89 13.06

100 11.22 11.71 11.98 12.19 12.40 12.53 12.75 12.89 13.06
(1) Riverside over flooding 10 min before , (2) Riverside over flooding 10 min before, (3) Riverside over flooding
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Table 3. Blocked section of Dorim river in a warning rainfall event.

Classification (Local Government) Regulated Section Section Length

Gwanak District

Upstream
Seoul National University

entrance-Bonglim Bridge (left
bank, right bank)

3.4 km

Downstream

Bonglim Bridge-Dorim Bridge (left
bank, right bank)

Dorim Bridge-Guro Digital
Complex Station (left bank)

3.3 km
1.5 km

Dongjak District Dorim Bridge-Guro Digital
Complex Station (right bank) 1.5 km

Guro District Guro Digital Complex
Station-Anyangcheon (left bank) 4.3 km

Yeongdeungpo District Guro Digital Complex
Station-Anyangcheon (right bank) 4.3 km
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3.2. Deep Learning-Based Flood Forecasting and Warning

Based on a previous study, the deep learning model, which trained water level data
from all periods in a hydrological time-series data, showed underestimated results of water
level peaks [13]. It was found that training the hydrological time-series data during the
inter-event time degraded the forecasting performance of high water levels. The training
group was reestablished to exclude ordinary water levels and inter-event data from the
time-series hydrological data constructed from the Dorim river basin to improve this
shortcoming. As a method of selecting the torrential rain events in the urban basin, the
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urban basin inter-event time definition (IETD) was considered for separating the rainfall
events and extracting the independent rainfall events. In North America, the IETD was
set to six hours [41], but this study considered the time of arrival at the Dorim river basin
(three-four hours) and set the IETD to five hours for selecting the independent rainfall
events, and water level data for the equivalent period was constructed. Training for LSTM
must be composed of time-series data. Therefore, an inter-event and initial water level of
five hours were attached to the beginning and end of the constructed five-hour independent
hydrological time-series data to create continuous hydrological time-series data (Figure 9).
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In the deep learning model for forecasting the water level, the hydrological time-series
data for training were classified into the training, validation, and test sets. After examining
the flood-prone areas in the Dorim river basin, cases of flood damage, flood control facilities,
water level meter location, etc., from multiple perspectives, the learning conditions were
set to train the water levels at Seoul National University entrance, Sillim 3 Bridge, and
Gwanak Dorim Bridge points in the hydrological time-series data to forecast the water
level data at the Guro Digital Complex Station point after 30 min of lead time. The deep
learning models for training the hydrological time series data in Dorim River basin include
vanilla ANN, LSTM, Stack-LSTM, and bidirectional LSTM. Each model was calibrated
through hyperparameter tuning to find the optimal values for numerous parameters and
improve the model performance. We set the hyperparameter to be used for each model,
and a random search method was used, in which the parameters for application were
randomly calculated to find the optimal hyperparameters. The random search method is
more effective than the grid search method that combines each parameter at a time, and
its search for relatively significant parameters by setting checkpoints is known to show
higher accuracy [42]. The applied hyperparameter setting conditions for each model are
summarized in Table 4.



Water 2022, 14, 187 13 of 18

Table 4. Hyperparameter estimation by the random search method.

Classification Parameters

Neurons 5, 10, 15, 20, 25, 30

Layer 1, 2, 3

Batches 16, 32, 64, 128

Epochs 200

Optimizer
Adam, Nadam, Admax, RMSprop, SGD,

Adadelta,
Adagrad

Learning rate 0.001, 0.01, 0.05, 0.1

Validation split 0.1, 0.2, 0.3

Activate function ReLU, SELU, ELU

Weight initialization function He_normal

Normalization function L2 regularizers

Loss mse

Lead time 30 min

Dropout 0, 0.3, 0.5, 0.8

In the hyperparameters that are tuned by the random search, training nonlinear data
was enabled by adding layers for the number of neurons and layers. However, when
the number of layers is too large, overfitting or training problems occur. Therefore, the
number of layers and neurons were set to 1–3 and 5–30, respectively, by applying empirical
conditions. As the number of the neural network increases, the overfitting issue must
be resolved with methods, such as the dropout. In general, the number of layers has a
greater effect on the accuracy more than the number of nodes. The batch size is a parameter
that determines the amount of data for each learning. When the size is too large, the
issue of having to calculate the loss for all data during the weight update and memory
issues are generated. When the size is too small, the learning data are finely split, which
increases the learning period and generates noise. In general, the batch size is set from 32
to 512, as 2n. This study applied the batch size from 16 to 128 considering the empirical
conditions of water level learning. The optimizer is a hyperparameter used for finding the
minimum value of the loss function. In general, Adam is known to show high accuracy,
but empirical conditions were considered, and various optimizers were applied to modify
the learning rate and momentum. The learning rate is a parameter that determines the
extent of movement of the weight toward the gradient direction for learning, for which,
in general, a basic value of 0.01 is used. If the value is too high, the result diverges, and if
the value is too low, the learning rate may become too slow to find the minimum value.
For the validation split, cross-validation (CV) was applied, which is a method of learning
and validating by altering the data sets between the train and validation sets, when data
is limited, with the parameter that determines the quantity of data from the hydrological
time-series data that will be used as validation data. Its ratios were set to 0.1, 0.2, and
0.3. In the activation function, the Exponential Linear Unit (ELU), Rectified Linear Unit
(ReLU), and Scaled Exponential Linear Unit (SELU) were applied, which are often used
recently, and the starting point of learning was found to apply the He_normal to the weight
initialization function, which significantly affects the accuracy. As empirical conditions, the
drop out was set to 0, 0.3, 0.5, and 0.8; the mean square error (MSE) to the loss function;
and the lead time was set to 30 min considering the flood forecasting and warning times
of Dorim river basin. With the basic deep learning model for forecasting the water levels,
the 10-min hydrological time-series data established according to the training conditions
were trained and the accuracy of the forecast water level results was examined (Figure 10).
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The vanilla ANN, LSTM, stack-LSTM, and bidirectional LSTM models were established for
forecasting water levels in Dorim river basin. The water level data from three points in the
upstream section were trained to forecast the water level data at mid- and downstream of
Guro Digital Complex Station with a 30 min lead time from 1 August 2020 to 18 August
2020, and the water level forecast results from each deep learning model were compared
and examined. The hyperparameters calculated for each model by random search did not
show distinct consistency. It was considered that given the random calculation method
for the hyperparameters, another optimal condition could be achieved with variously
applicable parameters other than the combination of hyperparameters calculated for each
model. The evaluation metric for each model showed for all LSTM, Stack-LSTM, and
Bidi-rectional LSTM, but excluding the vanilla ANN, had high forecast performances at
RMSE 0.15 or below (Table 5). The availabilities of the four models were presented in the
urban stream level forecasting through optimal hyperparameter tuning. The deep learning
models showed that the forecasting results were similar for each model, but bidirectional
LSTM showed a slightly more accurate prediction performance compared to the other
models in high water level prediction (Figure 10d). Finally, the loss rates for the training
data and validation data of each model consistently decreased, no overfitting of the models
were observed, and the water levels at the Guro Digital Com-plex with a 30 min lead time
were accurately forecasted in advance. Table 6 shows that the hyperparameters finally
applied through the random search method in each deep learning model. As a result, in
the training of univariate hydrological data in urban areas, the setting of various lead times,
the utilization of complex data, the selection of data to predict urban flooding, and the
setting of hyperparameters rather than the setting of specific deep learning models should
be considered.
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Table 5. Comparison and analysis of waterlevel prediction results due to deep learning models. 

Classification RMSE MAE MAPE (%) R2 

ANN 0.6250  0.5389 87.0691 0.8912 

LSTM 0.1388 0.0700 10.4428 0.9022 

Stack-LSTM 0.1417 0.0862 14.5803 0.8964 

Bidirectional 

LSTM 
0.1470 0.0933 14.8734 0.8887 

Table 6. Adopted hyperparameters by the random search method. 

Classification ANN LSTM Stack-LSTM 
Bidirectional 

LSTM 

Neurons 50 25 15 15 

Layer 1 1 3 1 

Batches 32 32 64 64 

Epochs 200, Early stopping application 
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Figure 10. Waterlevel prediction by deep neural networks (Gurodigital station). (a) Vanilla ANN.
(b) LSTM. (c) Stack-LSTM. (d) Bidirectional LSTM.

Table 5. Comparison and analysis of waterlevel prediction results due to deep learning models.

Classification RMSE MAE MAPE (%) R2

ANN 0.6250 0.5389 87.0691 0.8912

LSTM 0.1388 0.0700 10.4428 0.9022

Stack-LSTM 0.1417 0.0862 14.5803 0.8964

Bidirectional
LSTM 0.1470 0.0933 14.8734 0.8887

Table 6. Adopted hyperparameters by the random search method.

Classification ANN LSTM Stack-LSTM Bidirectional
LSTM

Neurons 50 25 15 15

Layer 1 1 3 1

Batches 32 32 64 64

Epochs 200, Early stopping application

Optimizer Adam Adagrad Nadam Nadam

Learning rate 0.1 0.05 0.1 0.001

Validation split 0.3 0.3 0.1 0.1

Activate function ELU ReLU ReLU ELU

Weight initialization function He_normal

Normalization function l2 regularizers (0.001)

Loss mse

Lead time 30 min

Dropout 0 0 0 0.5

4. Conclusions and Debate

This study developed a flood forecasting and warning process for an urban stream in
South Korea by systemizing flood forecasting, warning, and quantification techniques for
flooding risks. This case study aimed to contribute to the reduction of casualties and flood
damage in urban streams and accurate flood warnings in complex urban areas. The results
of this study are summarized as follows. The model-driven method by the integrated urban
rainfall-runoff model and the data-driven method by the deep learning model were used to
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predict the urban flood damage. The flood warning criteria for the urban stream based on
the urban rainfall-runoff model were analyzed. The rainfall-runoff model that combined
the inland and river can accurately reflect the characteristics of the watershed, flood control
facilities, and flood risk areas of the Dorim river basin. To calibrate the rainfall-runoff
model, data of gauging stations and pump stations of an urban stream in August 2020 were
used, and the model result was presented as an R2 value of 0.63~0.79. For flood forecasting
and warning in the urban stream, deep learning models, vanilla ANN, Long Short-Term
Memory (LSTM), Stack-LSTM, and Bidirectional LSTM were constructed. Deep learning
models using 10-min hydrological time-series data from gauging stations were trained to
warn of expected flood risks based on the water level in the urban stream. A forecasting
and warning method that applied the bidirectional LSTM showed an R2 value of 0.9 for
the water level forecast with a 30 min lead time, indicating the possibility of effective flood
forecasting and warning.

The Dorim river basin is a representative flood risk area, having the most complex
hydrological drainage system in South Korea. The flood forecasting and warning process
applied to the target area can be sufficiently applied to the hydrological drainage systems
in other complex urban watersheds. By constructing accurate forecasting and warning
criteria through physical models and performing proactive flood warnings through deep
learning models, flood damage reduction measures considering water-shed characteristics
can be expanded. However, according to the frequently improved hydrological drainage
system, it is necessary to continuously update the physical model and calibrate the model
for the latest heavy rainfall events. In addition, it is necessary to evaluate the applicability
of the flood warning method through cooperation with the local government in charge of
the management of the flood defense system to construct a sustainable warning system.
Furthermore, in this paper, the prediction results of bidirectional LSTM showed a slightly
more accurate performance compared to other models in high water level prediction, but
the latest deep learning models did not show a high performance in the prediction of
univariate hydrological time series data compared to LSTM. In the training of univariate
hydrological data in urban areas, the setting of various lead times, the utilization of complex
data, the selection of data to predict urban flooding, and the setting of hyperparameters
rather than setting specific deep learning models should be considered. In further research,
the use of a more extended deep learning model and extension to other urban areas should
be considered, and it is expected that the indicators shown by the deep learning models in
this study can be utilized.
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