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Abstract: Recent climate change has brought extremely heavy rains and widescale flooding to
many areas around the globe. However, previous flood prediction methods usually require a lot
of computation to obtain the prediction results and impose a heavy burden on the unit cost of the
prediction. This paper proposes the use of a deep learning model (DLM) to overcome these problems.
We alleviated the high computational overhead of this approach by developing a novel framework
for the construction of lightweight DLMs. The proposed scheme involves training a convolutional
neural network (CNN) by using a radar echo map in conjunction with historical flood records at
target sites and using Grad-Cam to extract key grid cells from these maps (representing regions with
the greatest impact on flooding) for use as inputs in another DLM. Finally, we used real radar echo
maps of five locations and the flood heights record to verify the validity of the method proposed in
this paper. The experimental results show that our proposed lightweight model can achieve similar
or even better prediction accuracy at all locations with only about 5~15% of the operation time and
about 30~35% of the memory space of the CNN.

Keywords: lightweight model; radar echo maps; convolutional neural network; Grad-Cam

1. Introduction

Recent changes in climatic conditions have increased the incidence of flooding world-
wide. Flood warnings are based on the predicted height of the flood, and most previous
research in flood height prediction has been based on radar echo maps and hydrological
models [1–3]. Figure 1 illustrates the concept underlying this type of research. Suppose
that the current time is 13:00, 1 January 2022, and the Central Weather Bureau has trained a
model for location A. Using the radar echo map for time t as an input, the model outputs
a prediction for the height of flooding at location A at time t + 30 min. In this way, it is
possible to use radar echo maps from 13:00, 13:30, and 14:00 to simulate radar echo maps
indicating the conditions predicted for 14:30, 15:00, and 15:30. Using the actual radar echo
map from 14:00 and the predicted radar echo maps from 14:30 to 15:30 as inputs, it is then
possible to predict the height of flooding in location A for every half hour between 14:30
and 16:00.

Scholars have developed a variety of hydrological models to illustrate the correlation
between radar echo maps and flood height. Mecklenburg et al. [1] constructed a model
to simulate radar echo maps for use in predicting flood height. Using the Hydrog model
and data of two flood events in the Czech Republic, Šálek et al. [2] confirmed that radar
echo maps can indeed be used to make accurate predictions pertaining to flood events.
Novák et al. [3] demonstrated that tracking radar echoes via correlation-based quantitative
forecasts of precipitation provide flood predictions of high accuracy. To improve the
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accuracy of flood predictions, Yoon [4] developed a blending model involving six commonly
used quantitative precipitation forecasts as inputs for the StormWater Management Model
and Grid-based Inundation Analysis Model.
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The methods outlined above have no doubt proven effective in the prediction of flood-
ing events; however, they have two notable shortcomings: (1) Establishing hydrological
models requires considerable professional knowledge and extensive measurement data,
and updating can only be performed by teams of highly specialized individuals. Most
scholars are unable to acquire and/or apply the data or verify the correctness of their
predictions. (2) Collecting all of the data required to make flood height predictions for
all locations would require considerable time and increase the likelihood that important
factors are inadvertently overlooked.

Many scholars have begun applying deep learning models (DLMs) to radar echo
maps. Chen et al. [5] developed an extended model based on convolutional long short-term
memory to predict future radar echo maps. Yin et al. [6] used DLMs to fill occluded areas
in radar echo maps. Singh et al. [7] modified part of the long short-term memory structure
to enable high-precision precipitation nowcasting using radar echo maps. Yin et al. [8]
performed high-precision strong convection nowcasting based on the convolutional gated
recurrent unit. Yan et al. [9] used a dual-channel neural network to make short-term pre-
dictions of precipitation. Previous experience indicates that DLMs have two fundamental
benefits: (1) DLMs do not require professional knowledge and depend entirely on historical
data, such that the building and updating process is relatively simple. (2) DLMs automate
the process of finding patterns in inputs and outputs, thereby making it possible to obtain
a more comprehensive collection of factors (far exceeding what can be achieved using
conventional approaches) with a corresponding increase in accuracy. To the best of our
knowledge, this is the first paper to address the use of radar echo maps and DLMs for the
prediction of flood height.

It should be noted that using CNNs to formulate flood height predictions directly
from radar echo maps would be highly inefficient. Discrete CNNs would be required
to deal with the flood conditions specific to every site within large regions or the entire
country. Furthermore, CNN operations would have to be completed in short intervals
(e.g., 10 min or 1 h), thereby necessitating the use of expensive high-end servers. Our
primary objective in the current study was to reduce the cost of operating DLMs without
undermining prediction accuracy.

Previous attempts to reduce the operating cost of DLMs can be divided into two
approaches: (1) methods aimed at simplifying the model structure while maintaining the
dimensions of the input data, and (2) methods aimed at reducing the input dimensions
without simplifying the model structure. The first approach reduces computational cost by
deleting the layers, neurons, or weights that contribute least to the output. Han et al. [10]



Water 2022, 14, 155 3 of 26

deleted weight values and Li et al. [11] deleted entire filter layers. Molchanov et al. [12] used
the Taylor expansion to explore the influence of each filter layer on the loss function in order
to identify filter layers for deletion. Luo et al. [13] implemented a similar approach using a
greedy algorithm. Note that the first approach is effective in reducing the computational
cost of DLMs; however, a lack of compatibility with many graphics processing units means
that this approach is ill-suited to many practical online applications. The second approach
involves training a DLM and then disassembling it to obtain key factors for use as inputs
for machine learning models or deep learning models with limited input dimensionality.
The fact that these models employ only the most important factors for modeling means
that their prediction accuracy does not deviate considerably from that of the original DLM.
In the scheme proposed by Sani et al. [14], the key factors are contained in the output of the
last pooling layer after training. Mohammad et al. [15] developed a set of mathematical
theories by which to disassemble the trained DLM to obtain the key factors. These studies
confirmed that the key factors identified by the DLM could be used to perform high-
precision motion recognition using a low-cost model. Chen and Lee [16] pointed out
that the use of complex mathematical conversion is a waste of computational resources.
They developed a radius base function long short-term memory model to simplify the
disassembly process. Furthermore, the key factors selected using their method match the
input of the original model, thereby eliminating the extra step of converting model inputs
into key factors. They went on to demonstrate that their key factors could be used to
achieve prediction accuracy on par that of deep learning from any machine learning model,
with presumably far lower computational overhead.

In the current study, we adopted an approach similar to the scheme described in [16].
Briefly, a DLM is trained using a radar echo map as the input and flood height as the
output. From the trained DLM, key grid cells are extracted (i.e., key factors in [16]) for use
as inputs in other lightweight models. Finally, only the lightweight models are used in
online applications in order to reduce the computational cost. Figure 2 presents a flow chart
of the proposed scheme. Note that even when using the proposed scheme to make flood
predictions for a large number of locations simultaneously, the computational demands are
far lower than those imposed by a DLM. Note also that this approach greatly increases the
cost of building lightweight models; however, we disregarded the cost of model building
due to the fact that model rebuilding or updating is required only for long-term predictions
(quarterly or yearly). The methods outlined in [16] are inapplicable to our scheme, because
the model input in that study is an independent data dimension, whereas the model input
in this study is a radar echo map divided into a grid with strong dependence among
adjacent grid cells.
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In the current study, we employed a convolutional neural network (CNN) in conjunc-
tion with the Grad-Cam package for the extraction of key grid cells from radar echo maps
(representing regions with the greatest impact on flooding) for use as inputs into another
DLM, as shown in Figure 2. This approach makes it possible to reduce the number of
input dimensions with a corresponding reduction in computational overhead. This, in turn,
should make it possible to make multiple simultaneous predictions of flood height over
large areas. Note that we selected a CNN for this research because the model input is a
radar echo map comprising a large number of grid cells, and the model output is a single
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value (flood height) associated with the target place. CNNs are among the most effective
models for predicting single output values from grid input data. After inputting data
(in grid format) into the trained CNN, back propagation is used to identify the key cells
(i.e., those of greatest relevance of the output value). The Grad-Cam package is an accessory
widely used with CNNs. He et al. [17] used a CNN with Grad-Cam to select factors that are
important in the detection of lung cancer. Li et al. [18] used Grad-Cam to optimize channel
selection in a CNN for EEG-based intention recognition. Marsot et al. [19] combined a
CNN with Grad-Cam to optimize facial recognition in a porcine model. Combining a
CNN with Grad-Cam is a reasonable approach to analyzing radar echo maps; however,
our grid input differs fundamentally from the inputs in previous papers. The grid cells
in this paper represent distinct geographic locations, which do not vary. The grid inputs
in most previous studies were derived from images, such that the entity represented by
the grid cell tended to vary. Thus, we had to modify the means by which Grad-Cam is
used for the extraction of key factors. In the end of this work, we will conduct experiments
using actual radar echo maps and historical flooding records to confirm that the proposed
CNN–Grad-Cam framework can indeed identify the grid cells with the greatest influence
on flood heights in multiple locations. Our results confirmed that using only the key grid
cells to build a DLM reduced computational overhead, while maintaining accuracy close to
that of the original CNN.

The fact that our model is based primarily on the key features of DLM means that
as long as relevant inputs are available, a lightweight model can be established without
the need for hydrological knowledge. However, this type of system cannot be used when
input–output correlation is poor, when all input dimensions that affect the output value
are unavailable, or when the reproducibility of historical data is not good. In real-world
scenarios, flood height can be affected by other factors, such as the tides, upstream rainfall,
and flood discharge from reservoirs. In such situations, the exclusive use of radar echo
maps would be unlikely to achieve accurate predictions in areas adjacent to the sea or rivers.
Additionally, when flood conditions in low-lying areas are controlled by pumps, DLM
cannot be used to establish an effective predictive model, let alone a lightweight model.
Therefore, we recommend applying the proposed model to relatively simple environments,
such as places where the flooding situation is predominantly affected by rainfall or terrain.
Note that such environments are very common in most rural and even urban locations. In
this paper, we consider only the relationship between radar echo maps and flood height,
such that the CNN is used primarily for first-stage modeling. CNNs provide good modeling
results when using data in a grid format (e.g., a map grid), but poor modeling results when
grid-format data and single data are input together. In the future, we will develop extended
versions of this model to overcome the limitations of conventional CNNs.

Section 2 presents an overview of the relevant literature. The proposed algorithm is
presented in Section 3. Simulation experiments are outlined in Section 4. Conclusions and
future work are discussed in Section 5.

2. Related Works

This section presents an overview of previous studies on the two research topics
related to this thesis: flood prediction methods and the application of Grad-Cam.

2.1. Flood Prediction

Researchers have developed a wide range of methods by which to investigate extreme
weather and flooding, including hydrological models, statistical methods, machine learning
schemes, and composite approaches. In their hydrological model, Thorndahl et al. [20]
used weather radar data with various spatial and temporal resolutions to make rainfall
predictions for use in urban flood models aimed at predicting the scale of flooding. To
improve the accuracy of flood predictions, Yoon [4] developed a blending model using
five quantitative precipitation forecasts to predict rainfall, including MAPLE, KONOS,
SCDM, UM LDAPS, and ASAPS. In their system, rainfall is used as an input, and the
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StormWater Management Model and Grid-based Inundation Analysis Model are used to
make predictions pertaining to flooding in urban areas.

Wang et al. [21] adopted a statistical approach, in which a city is divided into a grid
and a linear programming model is used to explore the flow of water in and out of the
grid cells to facilitate flood predictions in real-time. Jati et al. [22] identified six key factors
for use in logistic regression to predict floods, resulting in prediction accuracy of roughly
85–95%.

Berkhahn et al. [23] used machine learning to create a physical model for use in
generating artificial flood events, the maximum flood level of which was estimated using
an ANN. A combination of adaptive neuro fuzzy inference with a genetic algorithm,
differential evolution, and particle swarm optimization allowed Arora et al. [24] to achieve
results superior to any single model or other combined models. SyedKabir et al. [25]
used a 2D hydraulic model to generate simulation data and a CNN model for training.
Comparisons with actual flood events verified that their CNN model was superior to
support vector regression in predicting the maximum submerged area and depth.

The composite ARMT system developed by Hsu et al. [26] uses weather radar to
predict the area of rainfall, after which a closed-circuit television system is used to collect
images depicting rainfall to estimate local flooding. In comparison with historical data,
their method achieved accuracy of 83–92%. Ichim and Popescu [27] combined aerial drone
images with a CNN model to identify instances of flooding in rural areas.

2.2. Related Research on Grad-Cam

The core concept underlying the Grad-CAM scheme is simple. Regardless of the
type of neural network implemented after the convolutional layer, it should be possible
to obtain weight values of features in the DLM (without modifying the model) for use in
deriving key feature points. This method involves deriving gradient information from
the last convolutional layer via back propagation, determining the importance of each
neuron, and then generating a hot-zone map indicating the degree to which the CNN
output is applicable to a given area. The fact that this method can be used to identify the
area of interest in real-world applications means that the DLM does not need to be modified
or retrained.

Numerous scholars have applied this method to image recognition tasks with the aim
of enhancing the interpretability of the DLM and building a lightweight model that is easy
to apply. Hata et al. [28] used DLM and electrocardiogram images to classify aortic valve
stenosis. The use of Grad-CAM to find the key feature regions improved classification
results. Chueh et al. [29] applied a DLM to retina OCT images in order to differentiate
between males and females, whereupon Grad-CAM was used to identify gender-related
retinal features. Panwar et al. [30] employed Grad-Cam in their CNN model for use in
analyzing CXR and CT-Scan images of the lungs to detect COVID-19. They achieved
accuracy of 95.61%, and the resulting heat maps greatly enhanced the interpretability of
the results. Seerala et al. [31] used Grad-CAM to identify key features within chest X-ray
images from pneumonia patients. Marsot et al. [19] used class activation maps generated
by Grad-CAM to intuitively understand how a neural network model learns to distinguish
parameters for animal classification. He et al. [17] used Grad-CAM to identify features of
importance in predicting postoperative complications in cases of lung cancer. Grad-Cam
technology has been widely used in image processing; however, this is the first study in
which it is used for map analysis.

3. Algorithms

Figure 3 illustrates the three-stage computational framework proposed in this paper.
Our aim is to predict the flood height in grid cell A. The first stage involves data pre-
processing, aimed at sorting out the historical flood records pertaining to cell A and finding
the radar echo map for the corresponding time point. The second stage involves training a
CNN using the radar echo map identified in the previous stage (as the input) and the flood
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height of A (as the output). After training the CNN, Grad-Cam is used to find the grid
cells that are key to estimating flood height in area A. The final stage involves using the
key grid cells as input into a lightweight deep neural network (LDNN) for modeling and
prediction. In the following subsection, we discuss the collection, cleaning, and integration
of flood-related data and radar echo maps. We then introduce the CNN architecture, after
which we describe how Grad-Cam is used to identify key grid cells. In the final subsection,
we introduce the LDNN used in this paper.
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3.1. Collection, Cleaning, and Integration of Flood-Related Data and Radar Echo Maps

In this section, we introduce the methods used in the collection and formatting of
flood-related data. We also introduce the radar echo maps and discuss the means by which
the data are assembled into a data set applicable to the CNN. Flood-related data from
sensors is returned as a value representing the flood height at steady intervals. Assuming
that the sensor is set up in grid cell A, the first time the sensor collects data is t1, and a value
is returned after every interval t. We then represent the flood height value of n consecutive
returns as HA = [hA(t1), hA(t2), . . . , hA(tn)], where ti = ti−1 + t. The value of t ranges from
10 min to 12 h. Due to network instability, external sensors are prone to missing HA values.
Cleaning and augmenting HA values involves two sub-steps. The first sub-step involves
obtaining a reasonable range of flood heights for grid cell A, based on historical data from
the weather bureau. We then check whether the HA values fall within that range, and mark
any missing values or values outside that range. The second sub-step involves determining
whether to change or discard the marked values, based on the timespan to the previous
sub-step. If the duration of the marked value is less than 24 h, then Equation (1) is used to
fill in the value in accordance with the situation at that time of day.

ha(a + c)= ha(a) +
c

b + 1
(ha(a + b + 1)− ha(a)), (1)

where a represents the time of the previous marked value, b represents the number of
consecutively marked values, and c represents the data inserted for the cth record. If the
duration of the marked value exceeds 24 h, then the marked value is simply discarded. If
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the inserted values for periods t2 and t3 in area A are hA(t2)′ and hA(t3)′, and the values
within t20 to t40 are discarded, then the new HA can be expressed as HA

′ = [hA(t1), hA(t2)′,
hA(t3)′, hA(t4), . . . , hA(t19), hA(t41), . . . , hA(tn)].

After sorting out flood data for area A, we sort out the radar echo maps surrounding
area A, which are usually obtained from the weather bureau. Assuming that the radar echo
maps provided by the bureau are recorded at intervals of k, we obtain radar echo map data
of the surrounding x × y grid with A as the center. Assuming that the time of the first
radar echo map is k1, and the interval between each image is k, then we can represent m
continuous radar echo maps as PA = [pA(k1), pA(k2), . . . , pA(km)], where ki = ki−1 + k. The
value of k usually ranges from 10 min to one hour. The kith radar echo map pA(ki) in PA
can be expressed as pA(ki) = [va,ki(1, 1), va,ki(1, 2), . . . , va,ki(1, y), va,ki(2, 1), . . . , va,ki(2, y), . . . ,
va,ki(x, 1), . . . , va,ki(x, y)]. Note that A will not be in the center of the radar echo map when
A is located at the edge of the map. In this situation, making A the center would limit the
range of the radar echo map, as shown in Figure 4. Note also that the radar echo map grid
is actually a rectangle, due to the limited the range of the radar echo map obtained from the
government and limitations due to terrain and other factors. We must assume that the radar
echo map obtained from the weather bureau is accurate and reasonable. The grid used
for radar echo maps should be adjusted to the specifics of the intended application. The
additional information provided by grids of high resolution can significantly increase CNN
prediction accuracy, and our lightweight model based on the CNN architecture would also
benefit from grid of higher resolution. Nonetheless, any improvement in accuracy would
come at the cost of higher computational overhead. In other words, selecting the resolution
of radar echo maps involves a trade-off between accuracy and computational capacity or
efficiency. In fact, the computational demands of large-scale CNNs are likely to exceed the
capacity of all but the most highly enabled computer systems.
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Flood-related data and the radar echo map must be organized within a data set appli-
cable to the CNN. This is achieved in two sub-steps: (1) Selection of flood and non-flood
events, and (2) Combination of the event and the radar echo map. Sub-step (1) involves
sorting through events one-by-one. Due to the rarity of flood events, most of the values in
flood height data set HA

′ are 0 (i.e., only rare flood events are greater than 0). Inputting
HA
′ directly into the CNN for training would result in data imbalance and corresponding

inaccuracies. This situation can be avoided by balancing the ratio of non-flood events
against flood events. We begin by recording the number of times the flood height value
exceeded σ, where σ is the threshold value indicating a flood event, as defined by the
government. We estimate the distribution of flood height levels, randomly select ϕ data
points from the remaining non-flood events, and record when those data points occurred.
For convenience, we assume that w pieces of data in HA

′ are retrieved. Note that the
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newly retrieved data are expressed as HA
′′ = [hA(tr1)′′, hA(tr2)′′, . . . , hA(trw)′′]. The times

associated with these data points are TimeA = {tr1, tr2, . . . , trw}, where tr1, tr2, . . . , trw are
sorted chronologically but may be discontinuous.

Sub-step (2) involves combining the data of flood height and the radar echo map.
This sub-step is needed because the time intervals and time of the flood sensor and the
radar echo map may be different. There is no direct correspondence, as shown in Figure 5.
The details of this sub-step are as follows. We assume that the radar echo map data set is
PA = [pA(k1), pA(k2), . . . , pA(km)], where k1, k2, . . . , km are continuous points in time, and
the intervals between each point in time are k. We perform the following checks for the ith
time point tri of TimeA.
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Figure 5. Example illustrating the outcomes of time differences (time points and intervals) between
flood sensors and the radar echo map.

Case 1: If there is a time point kj in k1, k2, . . . , km that precisely matches tri, then we
combine the kjth radar echo map pA(kj) with flood height hA(tri)′′ as a single set of inputs
and outputs.

Case 2: If there is no time point in k1, k2, . . . , km that matches tri, and the time interval
between tri and tri+1 is greater than k, then we find kj, the point in k1, k2, . . . , km closest to
tri. We take the radar echo map pA(kj) of kj and flood height hA(tri)′′ and combine them into
a single set of inputs and outputs.

Case 3: If there is no time point in k1, k2, . . . , km that matches tri, and the time interval
between tri and tri+1 is less than k, we find kj, the point in k1, k2, . . . , km closest to tri.
We take the radar echo map pA(kj) of kj and flood height hA(tri)′′ and combine them into
a single set of inputs and outputs. Note that tri+1 and hA(tri+1)′′ are not considered in
subsequent calculations.

After checking all w time points in TimeA, we obtain a set that can be used as the input
and output for the subsequent CNN [(pA(tcnn1), hA(tcnn1)′′), (pA(tcnn2), hA(tcnn2)′′), . . . ,
(pA(tcnnw′ ), hA(tcnnw ′ )′′)], where tcnni represents the ith data in this set, and w′ is the total
number of data points in the set (i.e., w′ < w).

3.2. CNN Architecture Used in Target Framework

In this section, we introduce the input, output, and network architecture of the pro-
posed CNN. As described in the previous section, the ith input data of the CNN is pA(tcnni)
in CNN_IO, which represents a radar echo map with a grid size of α × β × γ, where β and
γ represent the size of the radar echo map, and α indicates the number of characteristics
of the radar echo map. The ith output data of the CNN is hA(tcnni) in CNN_IO, which
represents the flood height. As for the selection of CNN training, testing, and validation
datasets, we recommend that the ratio should be set at 70%, 15%, 15% or 70%, 10%, 20% to
meet most CNN training procedures. In addition, in order to maintain the independence of
the three datasets, we suggest that the training, testing, and validation datasets be divided
into different flooding events or into different flood years when the user has enough data.

The internal architecture of the CNN used in this framework comprises an input layer,
several convolutional layers, a max pooling layer, multiple fully connected layers, and an
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output layer, as shown in Figure 6. The mathematical formula of each layer and its physical
meaning in flood height prediction are described below. The input layer is used to transfer
the radar echo map into the model. The mathematical formula of any neuron in this layer
can be expressed as follows:

Oz,x,y = pA(tcnnt)z,x,y, (2)

where Oz,x,y is the output value of the neuron with the zth feature located at (x, y). The
multi-layer convolutional layer is used mainly to extract features from the radar echo
map. Assuming that the size of the radar echo map received by the CNN is x × y and
the CNN uses a total of n convolutional layers, we recommend setting the filter size of
the first convolutional layer in accordance with the ratio of x to y. We do this because
the rectangular data input of this CNN should be transformed into a square to facilitate
subsequent processing. The filter size in the second convolutional layer is based on the
output size of the previous layer. The number of convolutional layers depends on the size
of the input radar echo map. Regardless of the convolutional layer in which a neuron is
located, it can be expressed using the following mathematical formula:

Oi
(z,x,y) = act(∑s

g=1 ∑s
h=1 li

k I(z,x+g−1,y+h−1) + bi
k), (3)

where oi
(z,x,y) is the output value of the ith neuron whose zth feature is located at (x, y). bi

k

and lik are, respectively, the corresponding bias vector and kernel in the layer. I(•,•,•) is the
input for this layer, and act(•)is the Relu activation function.
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After the convolutional layer processes the radar echo map, a max-pooling layer is
used to reduce the model size and highlight the important characteristics in the feature
space. If the input data of a neuron in this layer is (Ci, Ri, Hi), then the output result is
(C0, R0, H0), the pool size of this layer is (p, p), and stride is s, such that the mathematical
formula of the neuron can be written as

C0 =

⌊
Ci − p

s
+ 1

⌋
, (4)

R0 =

⌊
Ri − p

s
+ 1

⌋
, (5)

H0 = Hi. (6)

After obtaining the results of the max-pooling layer, we use a multi-layer fully con-
nected layer to model the connections between the important radar echo map features and
the output flood height. The first layer of the fully connected layers begins by flattening
the results of the max-pooling layer. Assuming that the result of the max-pooling layer
is matrix (Ci, Ri, Hi), then the input of the first fully connected layer will be a vector of
length Ci × Ri × Hi. Each neuron in these fully connected layers can be expressed using
the following formula:

Oi = σ(∑D
j=1 wij Ij) + biasi, (7)
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where oi represents the output of the ith node, D represents the number of input features, Ij
represents the feature input value from the jth node, wij is the weight from the jth node of
the input to the ith node of the output, biasi is the the offset vector of the ith node of the
output, and σ(•) is a sigmoid function.

Following completion of multi-layer fully connected layer calculations, the flood
height prediction is output by the output layer, which uses only one neuron fully connected
to the last neuron in the fully connected layer. The mathematical formula of the neuron in
the output layer can be written as follows:

oj = σ(wijii) + bj, (8)

where oj represents the output of a given node, σ(•) is the sigmoid function, and wij and bj,
respectively, indicate the corresponding weights and bias vectors.

3.3. Using Grad-Cam to Identify Key Grid Cells

This section explains the use of Grad-Cam to identify key grid cells to be marked by
the CNN on the radar echo map for the prediction of flood height at the target location. We
first introduce the operational concepts and formulas of Grad-Cam, and then introduce
how Grad-Cam results can be used to identify key grid cells.

Generally speaking, after training a CNN and inputting data of the ith grid, the CNN
result is based on the ith input. The Grad-Cam package uses gradient information of the
previous convolutional layer in this CNN operation to infer the degree to which each
cell of the ith input influences the ith output. A matrix is used to represent the degree of
influence, and the size of the matrix is equal to the length and width of the input data.
Scholars commonly represent this matrix using a heat map to make it easier to understand.
Figure 7a,b present maps indicating the degree of importance after inputting multiple radar
echo maps into the CNN to derive the flood height. Note that the degree of blackening is
proportional to the influence on the output value. Note also that the maps generated by
Grad-Cam differ according to input, as shown in Figure 7a,b. Differences in input data can
have a profound influence on the output of each grid cell.

The formula used to calculate Grad-Cam is derived under the assumption that the
length and width of the feature map set are mf and nf, the channel size is sc, and the output
result of the CNN is ô. We can calculate the weight wc of the cth channel of the feature map
fc as follows:

wc =
1

m f × n f
∑
m f

∑
n f

∂ô
∂ fc

, (9)

where 1/(mf × nf) is the term used to calculate global average pooling, and ∂ô/∂fc are
gradients obtained via back propagation. We then combine the degree of importance of all
feature maps to derive the degree to which each input grid cell influences the CNN output:

W = Relu(
sc

∑
c

wc fc). (10)

Note that the above formula also uses the Relu function to set all negative numbers to
0, and thereby complete the calculations.

Grad-Cam calculates the degree to which individual grid cells influence the output
value corresponding to each input datum and generates a matrix representing the degree
of influence. Thus, if we input n pieces of data into the CNN, then we should obtain n
matrices; however (as mentioned previously), the grid cells representing a given location
in different matrices may have different values. This makes it difficult to identify the key
grid cells for modeling. Thus, we use following formula to calculate the importance of each
grid cell.

Fimp(i, j) =
1
n∑n

k=1 imp(i, j)× wk, (11)
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where n is the total number of input data, impk(i,j) indicates the importance of grid cell (i,j)
calculated by Grad-Cam for the kth input data (1 ≤ k ≤ n), Fimp(i,j) is the final importance
calculation for grid cell (i,j), wk is the weight value given by the user, indicating the degree
of importance assigned by the user to each input. If the user believes that each piece of
input data is of equal importance in prediction, then wk is set to 1. Finally, Equation (11)
can be used to rank the importance of all grid cells from large to small, whereupon the
top-ranking cells are selected as key grid cells.
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3.4. Lightweight Deep Neural Networks (LDNNs)

The key grid cells are treated as independent dimensions to be input into an LDNN
for modeling. From a theoretical perspective, most of the regression models used in
conventional machine learning, such as support vector regression [32,33], k-nearest neigh-
bors [34,35], and Random Forest [36–38], could be used as an alternative to LDNN; however,
we elected to use a deep neural network (DNN) in order to maximize prediction accuracy.
Note that the number of key grid cells is far smaller than the number of cells in the entire
radar echo map. Under these conditions, the computational cost of an LDNN is far lower
than that of the CNN in the previous section.

The structure of the LDNN used in this paper is introduced in the following section,
as shown in Figure 8. The total number of layers and the number of neurons in each layer
varied as a function of input (key grid cells). Note that the input layer is responsible only
for transmitting input data. In the network, the number of neurons is equal to the number
of key grid cells extracted in the previous step. The first fully connected layer is used
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to increase dimensionality. Assuming that the input layer has a total of n neurons, there
will be 2ˆceiling(log2n) neurons in this layer, where ceiling(•) represents the unconditional
roundup function. The number of neurons after the second fully connected layer decreases
by a multiple of 2 or 4 until reaching 1, and the last layer is the output layer. Without
a loss of generality, the formula in each neuron of fully connected layers can be written
as follows:

oj = tanh(tj × wij) + bj. (12)

where oj represent the output of a given node, tanh(•) is the tangent sigmoid function, wij
is the corresponding weight, and bi is the bias vector corresponding to the jth neuron.
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Generally, the implementation of a neural network can be divided into offline model
establishment procedures (training, testing, and verification) and online operational proce-
dures. The time required to establish the model is dominated by the dimensionality of data
input m and the number of data items in the dataset n. Note that m affects the calculation
time after data is input into the model. Increasing m produces a corresponding increase
in the numbers of layers, neurons, and weights between neurons, which increases the
computational overhead. Note that n mainly affects the model training time. By reducing
the value of m, an LDNN can reduce the time required to complete offline establishment
procedures. Online calculation time generally refers to the time required to process an
input after the model has been implemented online. This value depends largely on system
capacity and the number of input dimensions m. In other words, LDNN reduces online
calculation time by reducing the value of m.

4. Simulation Experiments

Real-world radar echo maps and data sets gathered from flood sensors were used to
verify the effectiveness of our proposed method. In the following, we outline the data sets
and experiment parameters as well as the parameter indicating the time delay between the
radar echo map input and flood height output. We then examine the effectiveness of the
LDNN and explain our reasons for selecting particular feature values.

4.1. Data Sets and Experiment Parameters

The regions of interest in this experiment were two counties in Taiwan (Yilan and
Yunlin). These areas were selected because Taiwan is among the most flood-prone places in
the world and these counties are the most flood-prone in Taiwan. Figure 9 illustrates the
locations of these counties within Taiwan and the corresponding topography. As shown in
Figure 9a, Yilan is located in the northeastern region of Taiwan, whereas Yunlin is located in
the western region, with 3000 m mountains between them. The weather systems in the two
locations are entirely disconnected; therefore, we are confident that the causes of flooding
in the two places are quite different. Yilan is surrounded by mountains on three sides and
the sea to the east, as shown in Figure 9b. Its location on the windward side of the monsoon
during the summer produces rain on more than half of the days each year. In times of
heavy rain, the surrounding plains can also be affected by surging mountain rivers flowing
to the sea. Frequent flooding occurs in areas with inadequate drainage. The landscape of
Yunlin consists mostly of plains. As shown in Figure 9c, it is bordered by hills to the east
and directly faces the sea to the west. Most of the rainfall is caused by air currents from the
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southwest. The average rainfall is similar to that in other regions of Taiwan; however, the
over-pumping of groundwater for agriculture has resulted in severe stratum subsidence,
which increases the risk of flooding under the effects of heavy rain.
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Our flood data were based on the well-known Taiwanese open-source platform Civil
IoT Taiwan, Data Service Platform [39]. This platform (established by the government) uses
a range of sensor data, including water level, river flow, catchment slope change, reservoir
water level, water quality, soil water content, and irrigation canal flow. In the current study,
we focused on flood height readings from water level gauges installed at the bottom of
poles along roads. Photographs of actual water level gauges are presented in Figure 10.
Note also that we focused on flooding along public roads (i.e., disregarding river water
levels), due to the fact that the conditions along these corridors are of particular importance
in terms of public safety.

To limit the amount of data requiring processing, we selected the areas and months
with the most frequent flooding in Yilan and Yunlin, based on data from all water level
gauges in the regions of interest. This included three points in Yilan in June 2020 and two
points in Yunlin area in May 2020 (see Figure 11). Note that none of these locations are
located on the seaside or riverside, thereby ensuring that the flood height would not be
affected by the tides or the height of the river. These locations conform to the research
limitations of this paper, which focuses exclusive on the use of radar echo maps as inputs
for prediction. We also listed a time series of flood heights (Figure 12), a box and whisker
diagram of flood height (Figure 13), and statistics of flood height (Table 1). Note that the
units used to denote water levels in these charts match those of the water level gauges
(cm). Table 1 lists the volumes of data collected for each monitoring point and the amount
of data cleaned during the time period of interest. Overall, 70% of the data was used for
training, 10% was used for testing, and 20% was used for validation. In addition, since the
experimental data in this paper are not sufficient to divide the training, validation, and test
data sets into different flooding events, we only use the method of random selection to
compose these three data sets.
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Figure 11. The observation points in Yilan and Yunlin. (a) Yilan. (b) Yunlin.
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Figure 12. The time series of flood heights in five monitoring locations. (a) Yilan place 1. (b) Yilan
place 2. (c) Yilan place 3. (d) Yunlin place 1. (e) Yunlin place 2.

Radar echo maps were based on data released by the Central Meteorological Bureau of
Taiwan. The map can be divided into three channels: R, G, and B. Each cell in the original
maps measured 350 × 350 m; however, the use of high-resolution maps to represent the
large area of Yilan (13 × 20 km) and Yunlin (53 × 31 km) would exceed the computa-
tional capacity of the experiment environment. We thus decreased the map resolution by
increasing the size of grid cells to 1050 × 1050 m. The resulting radar echo map of the
Yilan area included 11 × 16 cells (Figure 14a), whereas the map of the Yunlin area included
47 × 28 cells (see Figure 14b).
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Table 1. Statistics of flood heights in five monitoring locations.

Yilan Yunlin
Place 1 Place 2 Place 3 Place 1 Place 2

Average 0.645 0.598 0.363 1.332 0.595
Standard Deviation 4.565 1.187 1.896 1.083 0.997

Number of data
in the dataset 4320 4320 4320 4464 4464

Number of flooded
data in the dataset 526 658 834 1143 2761

Number of data used
in the experiment 1052 1316 1668 2286 4464

In this paper, we did not specifically adjust the parameters of the CNN. Rather, we
used presets in the Python Tensorflow suite. For example, the batch size for model training
was set at 20, the number of epochs was set at 100, the loss function was “mse”, and the
metrics was “mae”. Our primary focus in this study was to verify the feasibility of using
CNN and Grad-Cam for lightweight models. We opted to use the default values to avoid
affecting the verification results. Next, as a proxy for wind speed and cloud movement,
we examined the degree to which radar echo maps influenced flood height in the target
location at intervals of 30 min (30 min, 60 min, 90 min, 120 min, and 150 min). We employed
the well-known early stopping procedure, which has proven highly effective in preventing
the problem of overfitting during model training in a range of applications [40–42]. The
judgment benchmark was 20 epochs, and the Adam optimizer was used with an initial
learning rate of 0.001. All experimental simulations in this study were implemented in
Python under the Windows 10 64-bit operating system using an Intel 2-core Xeon Processor
(2.20 GHz) with 32 GB of memory.

4.2. Selection of CNN Time Delay Parameter Indicating the Difference between the Radar Echo
Map Input and Flood Height Output

In this section, we describe the experiments used to guide the selection of the time
delay parameter. Table 2 lists the results with the time delay set to 30 min, 60 min, 90 min,
120 min, or 150 min. Note that the error in Table 2 is described using root-mean-square
error (RMSE) between the flood height predicted by the model and the actual flood height.
This evaluation was used to make it easier for readers to compare model errors with actual
data. In all locations, prediction accuracy decreased with an increase in delay time. This is
a reasonable result, considering the rapid changes in radar echo maps, which essentially
preclude the use for earlier maps to make predictions pertaining to the current map or
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current flood height. We determined that using the radar echo map of the first 30 min
yielded better flood prediction results; therefore, we used this time delay for all subsequent
experiments as the input for the CNN and LDNN.
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Table 2. Impact of time delay on the prediction results in various monitoring locations.

Time Delay Yilan Yunlin
Place 1 Place 2 Place 3 Place 1 Place 2

30 min 4.309 0.192 2.203 1.775 0.706
60 min 4.514 1.873 2.348 2.688 1.641
90 min 5.023 1.932 2.614 2.83 1.549
120 min 5.314 2.306 3.431 3.691 1.978
150 min 5.967 2.684 3.739 5.034 2.261

4.3. Effectiveness of LDNN

In this section, we discuss the prediction performance and computational overhead of
the proposed LDNN. We divided the content into three parts: (1) selection of key grid cells
at each monitoring site, (2) comparison of original CNN model and LDNN model in terms
of prediction error, and (3) comparison of original CNN model and LDNN model in terms
of computational overhead.
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Table 3 lists the key grid cells selected for each monitoring station. The horizontal
axis of the table indicates the monitoring location, and the vertical axis lists the prediction
result as a function of the number of key grid cells input into the LDNN. Note that error in
Table 3 is represented in terms of RMSE. The bold numbers indicate the optimal number of
key grid cells for a given observation site. From a theoretical perspective, the number of
key grid cells should be increased in intervals of 1 in order to obtain the optimal solution.
From a practical perspective, however, we had to deal with a large number of grid cells
(176 in Yilan and 1316 in Yunlin), which essentially precluded small incremental increases.
We thus began with 10 key grid cells and increased this in increments of 10 until 100 cells
were selected. The data in Table 3 revealed two important findings. First, LDNN predicted
that RMSE would first decrease with an increase in the number of key grid cells and then
increase after reaching the highest prediction accuracy, regardless of observation location.
A small number of key grid cells would not provide sufficient information to build a model
for the prediction of flood height, resulting in large prediction error. Increasing the number
of grid cells would provide more information with which to build models to predict flood
height, thereby reducing prediction error. Increasing the number of grid cells beyond the
optimal value would result in excessive information leading to conflicts among the results
for various cells, with a corresponding increase in prediction error. Second, the optimal
number of key grid cells varied with the monitoring location. For example, the optimal
number of key grid cells for the three locations in Yilan were 50, 80, and 10. The optimal
number of key grid cells in Yunlin were 10 and 30. From this, we postulate that in cases
where the relationship between the cause(s) of flooding and radar echo maps is simple, it
should be possible to obtain good prediction results using a small number of key grid cells,
and vice versa. This issue is detailed in the next section. For the sake of convenience, the
number of key grid cells in all subsequent experiments are the optimal solutions listed in
Table 3.

Table 3. Impact of the number of key grid cells on prediction results in various locations.

Number of Key
Grid Cells

Yilan Yunlin
Place 1 Place 2 Place 3 Place 1 Place 2

10 4.286 0.401 2.203 1.23 0.947
20 4.351 0.359 2.231 1.175 1.252
30 4.215 0.293 2.468 1.16 1.303
40 3.948 0.285 2.649 1.169 1.342
50 3.907 0.296 2.591 1.194 1.353
60 3.97 0.281 2.672 1.189 1.369
70 4.621 0.21 2.73 1.206 1.368
80 5.296 0.192 2.794 1.214 1.376
90 5.684 0.275 2.943 1.218 1.393
100 6.102 0.33 2.926 1.23 1.405

Table 4 compares the original CNN and the LDNN in terms of prediction errors,
based on three sets of experiments: prediction error of original CNN (indicated by CNN),
error after inputting all grid cells into the LDNN as independent dimensions (indicated
by LDNN(all)), and error of inputting only key grid cells into the LDNN (indicated by
LDNN(n)). Note that error in Table 4 is represented using RMSE. In this table, we first
discuss why the RMSE of different place are quite different. This is because in most
neural network models, prediction error is affected by the magnitude of variations in
the original data. The model used in the current paper was based on a neural network;
therefore, our situation was similar. There were large differences in flood height between
the five observation sites, with the result that our prediction errors differed significantly
from one location to another. Table 1 indicates the standard deviation and prediction
errors associated with CNN, LDNN(all), LDNN(n) for flood records in the five locations
selected for this paper. Figure 13 presents a box map of the flooding records at the five
sites. From Table 1, we can see that the standard deviation at the five locations varied as
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follows: Yilan location 1 > Yilan location 3 > Yilan location 2 ≈ Yunlin location 1 ≈ Yunlin
location 2. As a result, the prediction errors for Yilan location 1 and Yilan location 3
were far more pronounced than for the other three locations. Moreover, we can see in
Figure 13 that the data distribution range for the other three locations was as follows:
Yunlin location 1 > Yunlin location 2 > Yilan location 2, and the model prediction error
followed the same pattern.

Table 4. Comparison of original CNN and the LDNN in terms of prediction error.

Model
Yilan Yunlin

Location 1 Location 2 Location 3 Location 1 Location 2

CNN 4.309 0.192 2.203 1.775 0.706
LDNN (all) 4.738 0.3 2.702 1.945 1.336
LDNN (n) 3.907 0.192 2.203 1.16 0.947

In Table 4, we can see that regardless of the monitoring location, LDNN(all) was
outperformed by the original CNN in terms of accurcy This can be explained by the fact
that compared with the CNN, the LDNN architecture does not place as much emphasis on
information from adjacent cells. Thus, even in cases where all of the values were the same,
the prediction performance of LDNN was worse. Based on this insight, we can conclude
that in subsequent experiments, as long as the performance of LDNN(n) does not deviate
far from that of the CNN, differences in accuracy cannot be attributed to differences in
architecture, but rather to the selection of a reasonable key grid cell. In the two subsequent
experiments, the prediction performance of LDNN(n) was roughly on par with that of the
CNN, regardless of location. This can be explained by the fact that the CNN and LDNN(n)
used the same grid information, despite the fact that the CNN used key grid cells selected
via adaptive learning, whereas LDNN(n) used key grid cells selected by Grad-Cam. In
other words, the grids used in the models were the same; therefore, modeling accuracy was
also nearly the same. Note, however, that the LDNN also possesses some characteristics of
adaptive learning, such that in a few cases, it was able to extract more critical information
and thereby achieve prediction results of higher accuracy (see location 1 in Yilan and
location 1 in Yunlin). Overall, the proposed LDNN(n) achieved prediction performance on
par with that of the CNN; however, the prediction performance of the LDNN was slightly
worse than that of the CNN in one monitoring location (see locations 2 in Yunlin). This can
be explained by the fact that Grad-Cam made an error in key grid cell extraction. This issue
is discussed in greater detail in the next section.

Tables 5 and 6 illustrate the computational costs of the CNN and LDNN models. The
training time of the LDNN was roughly 95% lower than that of the CNN after key grid cells
were identified, and memory usage was roughly 90% lower. Training costs this low would
no doubt be of considerable benefit in training multiple models for large geographic regions.
This configuration would also facilitate the retraining of models, thereby shortening the
update cycle to improve the accuracy of predictions. As shown in Table 6, we simulated the
costs involved in predicting the flood height using multiple grids covering a large area. The
simulation involved running the models 100 times, as would be the case when predicting
100 target places. As shown in the table, time cost of training the LDNN was 85% lower
than that of the CNN and the memory cost was roughly 70% lower. Under these conditions,
the LDNN would be able to update the values of roughly 5500 target places every 10 min,
whereas the CNN would be limited to updating 650–1000 target places. The heavy memory
requirements of the CNN would also necessitate the purchase of larger computer systems.

4.4. Key Grid Cell Selection: Rationale

From a qualitative perspective, we sought to determine whether the key grid cells
indeed influenced flood height predictions at the target observation site. The two target
areas of Yilan and Yunlin are discussed separately.
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Table 5. Comparison of original CNN and LDNN in terms of training cost.

Type of Costs Yilan Yunlin
Location 1 Location 2 Location 3 Location 1 Location 2

Time-CNN 1920 s 1884 s 1936 s 2316 s 2340 s
Time-LDNN 105 s 173 s 68 s 142 s 120 s

Time-Reduced ratio 94.5% 90.8% 96.4% 93.9% 94.9%

Memory-CNN 814 MB 821 MB 817 MB 930 MB 926 MB
Memory-LDNN 64 MB 92 MB 50 MB 92 MB 79 MB

Memory-Reduced ratio 92.1% 88.8% 93.9% 90.1% 91.5%

Table 6. Comparison of original CNN and LDNN in terms of online operating cost.

Type of Costs Yilan Yunlin
Location 1 Location 2 Location 3 Location 1 Location 2

Time-CNN 58 s 56 s 58 s 94 s 96 s
Time-LDNN 9 s 11 s 6 s 10 s 8 s

Time-Reduced ratio 84.5% 80.3% 89.6% 89.4% 91.7%

Memory-CNN 68 MB 71 MB 70 MB 97 MB 94 MB
Memory-LDNN 20 MB 24 MB 15 MB 33 MB 30 MB

Memory-Reduced ratio 70.5% 66.2% 78.5% 66.0% 68.1%

Figure 15 present the key grid cells selected from the Grad-Cam results of the three
observation sites in Yilan. We can see that regardless of the observation site, all key
grid cell–cell combinations included grids over the sea northeast of Yilan. This appears
reasonable, based on the fact that most of the rainfall in Yilan is carried in by rain clouds
from the northeast to strike the mountains to the west of Yilan (see Section 4.1). Most
of these rain clouds were located over the sea to the northeast of Yilan at 30 min prior
to the onset of flooding (the time difference between the input radar echo map and the
output), as evidenced by the radar echo maps of the flood events in Figures 16 and 17. We
also examined key grid cells other than those in the northeast (see Figure 15). Due to the
location of Observation Station 1 to the north of the city, the key grid cells differ from those
associated with the other Yilan stations, as shown in Figure 15a. Observation Station 2 is
located near the Dongshan River (largest river in Yilan), such that flooding in that area is
affected by the river level as well as rainfall. Thus, it is not surprising to observe that the
key grid cells were located in upstream areas of the Dongshan River and its tributaries, as
shown in Figure 15b. Observation Station 3 it is located by the sea and there is no large
water system around it; therefore, rainfall in other places in Yilan did not affect flood height
in the vicinity of this station, with the result that no additional key grid cells were identified,
as shown in Figure 15c.

Figure 18a,b present the corresponding key grid cells selected by Grad-Cam for the
monitoring stations in Yunlin. Most of the rainfall in Yunlin during May and June is
caused by airflow from the southwest (see Section 4.1). Thus, flooding at Observation
Station 1 should theoretically be correlated with flooding in the southwest roughly 30 min
before. The key grid cell selection results in Figure 18a confirm a strong correlation between
rain clouds and key grid cells located to the southwest. As mentioned in the previous
section, the LDNN prediction results for Observation Station 2 were inferior to the CNN
results. Figure 18b shows that the key grid cells are located to the southwest of Observation
Station 2; however, the distance between Observation Station 2 and its key grid cells is
greater than the distance between Observation Station 1 and its key grid cells. In this
situation, LDNN was able to approximate the trends pertaining to flood height; however,
the lower accuracy of the input information resulted in prediction error. In this situation,
errors in key grid cell selection can partly be attributed to sensor settings at Observation
Station 2. As shown in Figure 19, the sensor was placed on a slope next to a ditch, such
that every time it rained (even without flooding), water flowing into the ditch passed the
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sensor, thereby erroneously indicating flood conditions. This kind of inaccuracy in the
trained model no doubt affected Grad-Cam performance in the identification of key grid
cells. Essentially, the radar echo map indicates the position of rain clouds at Observation
Station 2, regardless of whether they are likely to produce heavy rainfall, with the result
that the key grid cells are further south than those of Observation Station 1.
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5. Conclusions

Climate change has exacerbated the problem of flooding around the globe. Research
into the prediction of flood height during heavy rainfall has focused on the use of hy-
drological models in conjunction with radar echo maps. However, the construction of
hydrological models requires highly specialized professional knowledge and extensive
measurement data. Furthermore, many hydrological models fail to consider all relevant
factors specific to the target site, thereby compromising the accuracy of predictions. This
is the first study to use a DLM for the prediction of flood height directly from radar echo
maps. We overcame the heavy computational burden of DLMs by implementing a novel
LDNN, in which a CNN is trained using a radar echo map in conjunction with historical
flood record at target sites. We then use the Grad-Cam package to extract key grid cells
from the radar echo map (i.e., cells with the greatest impact on flood height prediction) as
inputs into the LDNN for modeling and prediction. The efficacy of the proposed scheme
was verified using simulations based on actual radar echo maps and records of flooding at
sites in two discrete areas.

Note that this paper discusses only the modeling of relationship between radar echo
maps and flood height, despite the fact that flooding is affected by factors other than rainfall
(e.g., water levels in surrounding rivers or tides). Unfortunately, the data format used to
quantify those factors is a single value, such that it cannot be presented in the grid format
required for the proposed scheme. Thus, we will examine other (i.e., non-CNN) models
and other data formats for use in lightweight DLM modeling. Note also that in places in
which flood depth changes drastically, predicting flood depth using a single model can be
difficult [43]. Thus, we are developing additional methods by which to overcome this issue.
In addition to model improvements mentioned above, we consider whether the interaction
of different flood factors, such as multiple elevations’ radar echo maps, terrain, land use,
etc., may affect the accuracy of Grad-Cam’s judgment of key grid cells. We will study this
in the future.
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