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Abstract: Crop modeling uncertainty is expected to be high under weather data limitations; thus,
jeopardizing decision-making on food-water security. Missing near-surface wind speed (u2) data
required to accurately estimate reference evapotranspiration (ETo) seemed to significantly affect
both the potential evapotranspiration (ETP) and yield simulations for data-scarce windy regions.
In this study, the uncertainty in crop modeling based on different ETP approaches was assessed.
In this regard, wheat yield and evapotranspiration were simulated with the CSM-CERES-Wheat
model using either the Priestley-Taylor/Ritchie (PT) or the Penman-Monteith DSSAT (PM) methods
under “rain-fed, low-nitrogen stress”, “rain-fed, high nitrogen stress”, “full irrigation, low nitrogen
stress”, and “full irrigation, high nitrogen stress” scenarios for a u2 range from 0.8 to 3.5 m s−1.
The daily weather data required to run the model were retrieved from 18 semi-arid areas located
in western Iran. The statistically significant differences in mean yield and cumulative distribution
were determined by the non-parametric Wilcoxon signed-rank and the Kolmogorov-Smirnov tests,
respectively. The deviation in evaporation and transpiration simulated by applying PT and PM
was lower under rain-fed condition. Under “rain-fed, low-nitrogen stress”, the PT-simulated yield
deviated significantly (p < 0.05) from PM-simulated yield by more than 26% for the sites with u2

above 3 m s−1. The deviation in ETP estimates did not, however, lead to statistically significant
difference in yield distribution curves for almost all sites and scenarios. Nitrogen deficiency resulted
in a smaller difference in yield for rain-fed condition. The yield results showed a deviation below 6%
under full irrigation condition. Under windy rain-fed condition, high deviation in leaf area index
(LAI) and ETP estimates caused a large difference in the actual transpiration to potential transpiration
ratio (Ta/TP), and yield. However, the deviation between PT- and PM-simulated LAI and Ta/TP for
the full irrigation scenarios was less than 6%. Overall, the results from this study indicate that when
soil moisture is depleted, resembling rain-fed condition, simulation of yield appears to be highly
sensitive to the estimation of ETP for windy areas.

Keywords: crop modeling; data limitation; water-nitrogen stress; water-limited regions

1. Introduction

Water availability is among the most limiting factor for crop production and must be
well managed, particularly for water-limited regions. Population growth, water governance
gaps, a low productivity, and climate change cause consumptive water use to exceed water
supply replenishment, a phenomenon known as water scarcity [1,2]. Since more than 90%
of water consumption is dedicated to the agricultural sector in water-stressed areas, proper
agricultural water management is crucial in these regions [2,3].

Water 2022, 14, 3023. https://doi.org/10.3390/w14193023 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14193023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-3023-1224
https://orcid.org/0000-0002-1555-0537
https://orcid.org/0000-0003-2493-7407
https://doi.org/10.3390/w14193023
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14193023?type=check_update&version=2


Water 2022, 14, 3023 2 of 20

Crop models are important components of decision support systems (DSS) for food-
water security [4–6]. Due to improvements in computational technology, a number of
sophisticated crop models have been developed to simulate crop growth, development,
and yield, as well as crop response to environmental changes and stresses [5,6]. Although
most crop models are accessible and easy-to-use, uncertainties surrounding the results
may jeopardize the policymaking processes [7,8]. Model structure, model inputs, and
model parameters are three sources of uncertainty in simulations that have been generally
addressed in the literature [7–10]. Uncertainties in model structure are associated with
mathematical equations used in the models. Input uncertainty arises from the incorrect
climatic (e.g., wind speed), pedologic (e.g., soil texture), and hydrologic (e.g., soil saturated
hydraulic conductivity) measurements required to run crop models [11–13]. Parameters
(e.g., light extinction coefficient used for evapotranspiration partitioning) are model com-
ponents which cannot be directly measured, but often obtained by calibration based on
reliable data sets, and any error in estimating parameters and coefficients adds uncertainty
to the outputs [7–10].

Evapotranspiration is of great significance in crop modeling as it is a key component
of the water balance and thus, affects processes such as soil water dynamics and, ultimately,
final yield [14,15]. Since an accurate measurement of the crop evapotranspiration is a
tool-demanding and complex task, it is often estimated using the two-step approach which
bases on the estimation of the reference evapotranspiration (ETo) [16–18]. The ETo is the
evapotranspiration rate of a theoretical crop having an assumed height of 12 cm, a fixed
surface resistance of 70 s m−1, and an albedo of 0.23, closely resembling evapotranspiration
from an extensive green grass surface with uniform height, actively growing, well-watered,
and completely shading the ground [19]. Multiplying ETo by the crop coefficients (Kc), crop
evapotranspiration can be estimated in absence of environmental and water stresses (i.e.,
standard condition) [18,19]. The crop evapotranspiration under standard condition can be
considered as potential evapotranspiration (ETP) [19,20]. All three above-mentioned types
of uncertainties can be found for evapotranspiration estimation [14,21]. The parameter-
related uncertainties in evapotranspiration estimation are mainly linked to factors such as
extinction parameter (Kext, applied for evapotranspiration partitioning) or crop coefficient
(Kc) considered for a specific crop. There are uncertainties associated with the parameters
of evapotranspiration modeling. Sau, et al. [22] and López-Cedrón, et al. [23], therefore,
suggested that the performance of crop models can be improved by reducing the default
extinction partitioning factor. However, they mentioned that changing the default Kc is
unlikely to be promising for crop modeling. Input uncertainties in estimating ETo, and
consequently actual evapotranspiration, are generated when the required data, such as
relative humidity, vapor pressure deficit, dew point temperature, wind speed or solar
radiation, are lacking or are of questionable quality [24–26]. Thorp, et al. [14] indicated that
more input-demanding ETo equations such as Penman-Monteith DSSAT (PM) [19] and
standardized ASCE Penman-Monteith (ASCE-PM) [27] are more reliable with respect to
the less input-demanding ETP models such as Priestley-Taylor/Ritchie equation (PT) [28]
for crop modeling. However, users have to utilize less-input demanding models when the
required weather data are partially missing. Hence, an input limitation is likely to lead to
model structure-related uncertainties. In other words, when a specific weather variable, for
instance wind speed data, is missing or of poor quality, modelers employ ETo alternatives
that do not require this weather variable as an input or use the approaches suggested in the
literature, such as those proposed by Allen, et al. [19] or Hargreaves and Samani [29], to
approximate the missing records.

Several studies in climatology and hydrology have addressed the role of missing data
or data quality in ETo simulations [24,30–33]. These studies have primarily considered
PM proposed by Allen, et al. [19] as the benchmark for evaluating other equations. PM
has been recommended by the Food and Agricultural Organization of the United Na-
tions (FAO) and the International Commission for Irrigation and Drainage (ICID) as a
standard method for reference evapotranspiration estimation [34]. This model has also
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been suggested for soil-crop modeling if all required data, i.e., minimum and maximum
temperature, wind speed, solar radiation and relative humidity or dew point temperature,
are available [14,22,23,35,36]. The application of other options to calculate ETo when data
are lacking has been also suggested [28,29,37,38]. However, the condition for which an
alternative formula such as PT can be applied for robust crop modeling using incomplete
sets of data has not been explicitly discussed. Near-surface wind speed is one of the most
important inputs required for calculating ETo by PM, particularly in water-limited arid
and semi-arid regions, where it has been found to be the major contributing variable affect-
ing ETo dynamics [39–44]. Consequently, application of alternatives that do not consider
wind speed may lead to highly uncertain modeling results in wind-affected, water-limited
environments [45,46]. Stresses, e.g., water shortage and nitrogen deficiency, affect yield
through reducing the evapotranspiration rate [47,48]. Such stresses influence the yield
response to evapotranspiration rate, and consequently, the accuracy of yield modeling.
Additionally, the effects of a specific stress (e.g., drought) on evapotranspiration may be
modulated by other stresses. This is why the data-driven models associating yield loss
to crop evapotranspiration deficit based on a response factor are valid for the conditions
under which other inputs, such as nitrogen, are sufficiently supplied [49]. Process-based
crop models can simulate the coupled stresses effects; thus, they are more suited to be
applied for assessing the sensitivity of crop models to estimates of evapotranspiration.
Including the coupled effects of stresses, such as nitrogen deficit, provides insights into our
understanding of crop modeling sensitivity to evapotranspiration approaches under data
scarcity. The objective of this study was, therefore, to determine the deviation in wheat
yield simulated by CSM-CERES-Wheat using Penman-Monteith DSSAT (PM) and Priestley-
Taylor/Ritchie (PT) evapotranspiration approaches for different water and nitrogen stress
scenarios across a broad range of wind speeds.

2. Materials and Methods
2.1. Study Area and Data Sets

The analyses were conducted for 18 water-limited semi-arid areas in the western half
of Iran with aridity indices (AI), defined as the annual ratio of precipitation to PM-estimated
ETo according to UNEP [50], ranging from 0.20 to 0.37 (Figure 1). These regions are con-
sidered as water-limited environments experiencing an increasing trend in meteorological
droughts during the recent half-century [51,52]. Cultivating wheat under rain-fed and
irrigated conditions is common in the study area [53]. The range of minimum temperature,
maximum temperature and precipitation for the average duration of the growing season
is −1.5–4.3 ◦C, 11.4–17.1 ◦C, and 170–382 mm, respectively (Table 1). The surveyed sites
cover a wide range of wind speeds at a height of 2 m (u2), i.e., from 0.78 to 3.47 m s−1

during the winter wheat growing season (Table 1). Wind speed greatly contributes to the
ETP dynamics in these regions and, therefore, a reliable estimation of ETP is likely to be
highly dependent on the availability of wind speed data.

Table 1. Geographic and climatic characteristics of the study sites.

No. Station
Longitude Latitude Elevation AI β u2 * P * Tmin * Tmax *

(◦E) (◦N) m.a.s.l α - m s−1 mm ◦C

1 Ahar 47◦04′ 38◦26′ 1390 0.24 2.45 206 1.4 12.7
2 Aligodarz 49◦42′ 33◦24′ 2022 0.25 3.21 342 1.2 13.5
3 Arak 49◦46′ 34◦06′ 1708 0.21 1.35 238 1.7 13.7
4 Ardebil 48◦17′ 38◦15′ 1332 0.29 3.02 201 0.2 12.3
5 Bijar 47◦37′ 35◦53′ 1883 0.21 3.12 251 1.6 11.5
6 Borojerd 48◦ 45′ 33◦55′ ′ 1629 0.28 2.65 382 2.6 14.1
7 Hamedan 48◦32′ 34◦52′ 1741 0.23 1.69 242 0.2 13.7
8 Kermanshah 47◦09′ 34◦21′ 1318 0.26 1.89 325 1.8 15.6
9 Khorramabad 48◦17′ 33◦26′ 1148 0.29 1.63 373 2.9 16.4
10 Khoy 44◦ 58′ 38◦33′ 1103 0.24 1.29 205 1.7 13.2
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Table 1. Cont.

No. Station
Longitude Latitude Elevation AI β u2 * P * Tmin * Tmax *

(◦E) (◦N) m.a.s.l α - m s−1 mm ◦C

11 Nozheh 48◦43′ 35◦12′ 1680 0.23 2.10 254 −1.5 12.7
12 Qorveh 47◦48′ 35◦10′ 1906 0.23 2.21 262 1.4 12.1
13 Saghez 46◦16′ 36◦15′ 1523 0.32 1.92 318 −1.2 13.0
14 Sahand 46◦07′ 37◦56′ 1641 0.20 3.47 170 3.2 11.4
15 Shemiran 51◦29′ 35◦48′ 1549 0.37 0.78 335 4.3 13.7
16 Urmia 45◦03′ 37◦40′ 1328 0.24 1.73 222 1.2 13.1
17 Zanjan 48◦29′ 36◦41′ 1663 0.22 2.01 232 0.7 13.2
18 Zarghan 52◦43′ 29◦47′ 1596 0.21 1.05 274 2.0 17.1

Notes: α The “m.a.s.l” refers to meters above sea level. β AI indicates the annual aridity index. * The average
values of near-surface wind speed (u2), precipitation (P), minimum (Tmin) and maximum (Tmax) temperature
during the growing season for the four scenarios that were used in this study. The weather data are based on the
period of 1996–2016.
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Figure 1. Location of the study sites with the number corresponding to the stations defined in Table 1.
The climate classification is based on the aridity index (AI) proposed by UNEP [50]. The AI values of
<0.05, 0.05–0.20, 0.20–0.50, 0.50–0.65, 0.65–1.00 and >1.00 represent the hyper-arid, arid, semi-arid,
dry sub-humid, moist sub-humid and humid climatic regimes, respectively [50]. The AI was mapped
by the Inverse Distance Weight (IDW) method.

The daily weather data including daily minimum and maximum temperature (recorded
by a thermometer at height of 2 m, ◦C), wind speed (measured by an electronic anemome-
ter at a height of 10 m, m s−1), relative humidity (measured by hair hygrometer, %) and
sunshine hours (recorded by an electronic pyranometer, hour) data were obtained from
the Iran’s Meteorological Organization (IRIMO) for the period of 1996–2016. The conver-
sion of wind speed measured at 10 m height to wind speed at 2 m height was carried
out according to Allen, et al. [19]. The sunshine hour measurements were converted to
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daily total solar radiation based on the Angstrom formula [19]. The easy-to-measure data
for the dominant soil series at each site (i.e., particle size distribution, profile depth, soil
organic carbon content, and soil bulk density) were obtained from the soil and land-use
maps and reports provided by Iran’s Soil and Water Research Institute (SWRI) (Table 2).
Other soil-related inputs (i.e., lower limit of plant extractable soil water, LL, drained upper
limit, DUL, saturated water content, θs, and saturated hydraulic conductivity, Ks) were
determined based on the pedo-transfer functions established by Saxton, et al. [54] and
Rawls, et al. [55] using the available soil physical characteristics for each site (Table 2). The
agronomic management inputs, such as planting depth, method, distribution, spacing, and
population were those reported by Nouri, et al. [56]. In addition, the cultivar coefficients of
a bread winter wheat cultivar, i.e., Azar-2, as calibrated by Nouri, et al. [56] were used for
model parameterization.

Table 2. Main soil physical properties of the study areas, averaged over all soil layers.

Site Texture Class
Sand Silt Clay OC Depth θs * DUL * LL * ρb Ks *

% cm cm3 cm−3 g·cm−3 cm·h−1

Ahar clay loam 28.7 37.2 34.1 0.64 125 0.44 0.35 0.20 1.30 0.25
Aligodarz loam 30.8 44.0 25.2 0.49 130 0.42 0.31 0.15 1.47 0.52

Arak sandy clay loam 58.2 16.7 25.1 0.16 120 0.39 0.25 0.15 1.49 0.85
Ardebil clay loam 27.8 43.1 29.1 0.44 120 0.43 0.33 0.18 1.27 0.37

Bijar clay loam 27.7 39.9 32.4 0.56 150 0.45 0.35 0.21 1.31 0.28
Borojerd loam 44.0 37.4 18.6 0.41 150 0.40 0.26 0.12 1.44 1.10

Hamedan clay loam 32.4 29.6 38.0 0.40 120 0.44 0.36 0.23 1.40 0.20
Kermanshah clay 30.4 28.0 41.6 1.30 120 0.47 0.41 0.26 1.32 0.12
Khorramabad silty clay loam 14.2 52.0 33.8 0.50 125 0.47 0.38 0.21 1.30 0.17

Khoy silt loam 20.4 54.5 25.1 0.36 150 0.48 0.32 0.16 1.19 0.53
Nozheh clay loam 25.4 41.1 33.5 0.23 100 0.47 0.34 0.20 1.29 0.23
Qorveh clay loam 25.8 34.6 39.6 0.27 150 0.46 0.37 0.24 1.34 0.18
Saghez loam 31.7 45.9 22.4 0.55 130 0.39 0.23 0.09 1.48 1.27
Sahand loam 47.2 31.9 20.9 0.35 130 0.40 0.26 0.13 1.45 1.15

Shemiran clay loam 28.8 40.5 30.7 0.43 120 0.44 0.33 0.19 1.42 0.32
Urmia sandy clay loam 52.4 21.4 26.2 0.80 120 0.38 0.25 0.15 1.45 0.82
Zanjan sic 10.8 44.5 44.7 0.38 150 0.45 0.42 0.26 1.36 0.10

Zarghan clay loam 27.2 43.1 29.7 0.19 120 0.43 0.33 0.17 1.39 0.36

Notes: * Determined based on the pedo-transfer functions. OC: Organic carbon content; θs: Saturated water
content; DUL: Drained upper limit; LL: Lower limit of plant extractable soil moisture; ρb: Soil bulk density; Ks:
Saturated hydraulic conductivity.

2.2. Modeling Framework

This study used the CSM-CERES-Wheat (Cropping System Model-Crop Environ-
ment Resource Synthesis-Wheat) provided in DSSAT v4.7.5 (Decision Support System for
Agrotechnology Transfer) [57,58]. The model divides the growing period into nine phases
and simulates crop growth and development based on genetic characteristics, solar radia-
tion, photoperiod, atmospheric CO2 concentration, and water and nitrogen availability. The
CSM-CERES-Wheat uses the ETP concept as it was established prior to the development
of ETo. Originally, the CSM-CERES-Wheat employs PT, as a model directly estimating
ETP. After developing DSSAT 4.0, PM, as a sophisticated ETo model, was also included to
estimate ETP, known as the Penman-Monteith DSSAT. The DSSAT v4.7.5 uses the two-time
step approach by multiplying a single crop coefficient with the PM-estimated ETo:

ETP = KcDSSAT ×
0.408∆(Rn − G) + γ(900/(Tmean + 273))u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ∆ is the slope of saturation vapor pressure curve (kPa ◦C−1), Rn is the net radiation
at reference surface (MJ m−2 d−1), G is the soil heat flux density (MJ m−2 d−1) which is
zero for daily analysis, Tmean is the daily mean air temperature at a height of 2 m (◦C), u2 is
the average wind speed at a height of 2 m (m s−1), es is the saturation vapor pressure (kPa),
ea is the actual vapor pressure (kPa), es − ea is the saturation vapor pressure deficit (kPa),
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γ is the psychrometric constant, and KcDSSAT stands for single crop coefficient for a given
crop. The single crop coefficient (KcDSSAT) is obtained in DSSAT as follows:

KcDSSAT = 1.0 + (EORATIO− 1.0)
LAI
6.0

(2)

where LAI stands for leaf area index (m2 leaf/m2 ground), and EORATIO is a parameter
specifically applied by DSSAT, not by FAO 56 method [19], which is equal to 1.0 for most
crops (e.g., wheat and maize). Considering the value of 1.0 for EORATIO, the KcDSSAT is
equal to 1.0 (according to Equation (2)), and therefore, ETo and ETP estimated by PM can
be used interchangeably in the CSM-CERES-Wheat [14]. As the CSM-CERES-Wheat is
developed based on ETP concept, we here used ETP throughout the paper. It is noteworthy
that, on the contrary to the DSSAT algorithm, the Kc value of wheat (and also the other
crops) applied by the FAO 56 approach varies during a growing season.

The mathematical expression of the Priestley-Taylor/Ritchie equation (PT), the equa-
tion commonly used to calculate ETP under weather data limitation, is:

ETP =


0.01× Exp{0.18× (Tmax + 20.0)} × ETEQ i f Tmax < 5.0

1.1× ETEQ
{([Tmax − 35.0]× 0.05) + 1.1} × ETEQ

i f 5.0 ≤ Tmax ≤ 35.0
i f Tmax > 35.0

(3)

ETEQ = (SR× 23.923)× [2.04× 10−4 − (1.83× 10−4 × Alb)]× [29 + (0.6Tmax + 0.4Tmin)] (4)

Alb =

{
MSAlb i f LAI = 0.0

0.23− (0.23−MSAlb)× Exp(−0.75× LAI) i f LAI > 0.0
(5)

where Tmin and Tmax are minimum and maximum temperature (◦C), respectively, LAI
stands for leaf area index (m2 leaf/m2 ground), ETEQ represents the equilibrium evapo-
transpiration (mm d−1), SR is the solar radiation (MJ m−2 d−1), Alb denotes the reflectance
of soil-crop surface (fraction), and MSAlb is the soil albedo with mulch and soil water
effects (fraction).

The model then partitions ETP into EP (potential soil evaporation) and TP (potential
crop transpiration) based on leaf area index (LAI) and light extinction coefficient (Kext):

EP = ETP × Exp(−Kext × LAI) (6)

TP = ETP × (1− Exp(−Kext × LAI)) (7)

where EP and TP are potential and actual transpiration soil evaporation rate (mm d−1),
respectively, and Kext is Light extinction coefficient, and LAI stands for leaf area index
(m2 leaf/m2 ground).

The soil water subroutine of the CSM-CERES-Wheat applies the tipping bucket (cas-
cade) approach considering upward flow through a layered soil profile based on water
diffusivity. This subroutine, along with soil-plant-atmosphere interface energy balance
module provides estimates of runoff, deep percolation, soil water movement, and evap-
otranspiration. The soil-plant-atmosphere interface energy balance subroutine simulates
the potential root water uptake (PRWU) based on the plant root length density and soil
physical properties using the microscopic uptake theory. The actual root water uptake
(RWU) is then modeled as a function of soil water content for each layer. The PRWU is
used for simulating actual transpiration (T) according to the following equation:

Ta =

{
Min(TP, 10× PRWU) i f LAI > 10−4 and TP > 10−4

0 i f LAI = 0 and TP = 0
(8)

where Ta and TP stand for actual and potential transpiration rate (mm d−1), respectively,
LAI is leaf area index (m2 leaf/m2 ground), and PRWU denotes potential daily root water
uptake over soil profile (cm d−1).
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The model computes a Soil Water stress Factor (SWFAC) to quantify the water deficit
influences on crop growth, biomass related processes and phenology:

SWFAC =

{
PRWU/EP1 = Ta/TP i f PRWU < EP1

1 i f PRWU ≥ EP1
EP1 = 0.1TP

(9)

Moreover, another water stress index, namely the Turgor Factor (TURFAC), is also
considered to determine the drought stress impacts on cell expansion:

TURFAC =

{
PRWU

RWUEP1×EP1
= Ta

RWUEP1×TP
i f PRWU

EP1
< RWUEP1

1 i f PRWU
EP1

≥ RWUEP1
(10)

where Ta and TP are, respectively, actual and potential transpiration rate (mm d−1), respec-
tively, LAI is leaf area index (m2 leaf/m2 ground), RWUEP1d PRWU stands for potential
daily root water uptake over soil profile (cm d−1).

The indices range from 0 for complete stress to 1 for no stress. The equations are all
written based on the newest version of codes provided on https://github.com/DSSAT/
dssat-csm-os (accessed on 1 June 2020). The ratio of Ta/TP is also used in some other
crop models such as CropSyst as the soil water stress [59]. The Ta/TP ratio is proportional
with the yield (Y) to maximum yield (Ym) ratio according to Hanks [60], de Wit [61] and
Paredes, et al. [62]. Note that in contrast with Y, T and TP, the quantity of Ym does not
depend on the value of ETP. Table 3 provides some of the meteorological and hydrological
processes and conditions considered for the current scenario analysis.

Table 3. Crop modeling approach and inputs.

Process and Condition Approach

Potential evapotranspiration (ETP) The Priestley-Taylor/Ritchie [28] and the Penman-Monteith
DSSAT [19] equations

Potential evapotranspiration (ETP) partitioning The method provided by Ritchie (1972)

Actual soil evaporation Physically-based model using diffusion theory proposed by Suleiman and
Ritchie [63] and modified by Ritchie, et al. [64]

Root water uptake Single root approach described in Ritchie [65] and Ritchie [66]
Actual crop transpiration Limiting transpiration flow to actual root water absorption rate [66]

Runoff Modified USDA-SCS CN 1 detailed in Williams, et al. [67]

Weather input data Precipitation, near-surface wind speed (u2), relative humidity, solar radiation,
and minimum and maximum temperature (Tmin and Tmax)

Drainage Revised vertical drainage model proposed by Suleiman and Ritchie [63]
Soil moisture redistribution Modified diffusivity theory [64]
Lower boundary condition Free drainage

Simulation start date 30 days prior to sowing date

Notes: 1 United States Department of Agriculture-Soil Conservation Service Curve Number.

To assess the coupled stresses effects on determining the sensitivity of yield to the
evapotranspiration accuracy, the simulations were conducted for two nitrogen levels and
two water management levels. The scenarios were “rain-fed, high nitrogen stress”, “rain-
fed, low-nitrogen stress”, “full irrigated, high nitrogen stress”, and “full irrigated, low
nitrogen stress”. The rain-fed (no-irrigation) and full irrigated scenarios correspond to the
high and low water stress conditions, respectively. The full irrigation scenario was based on
the automatic irrigation module triggering when the available soil moisture dropped below
70% and was refilled back to its full capacity. The average Soil Water stress Factor (SWFAC)
ranged from 0.33 to 0.51 for the rain-fed scenarios and >0.98 for the full irrigation scenarios.
Two levels of urea application, i.e., 20 (high nitrogen stress) and 310 (low-nitrogen stress)
kg ha−1, were considered for the high and low-nitrogen stress scenarios, respectively. For
the 20 kg ha−1 urea application, all nitrogen was applied during autumn at planting as

https://github.com/DSSAT/dssat-csm-os
https://github.com/DSSAT/dssat-csm-os
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recommended by the Iranian Dryland Agricultural Research Institute (DARI) and the Iran
Ministry of Agriculture. For the 310 kg ha−1 urea application scenarios, 60 kg urea ha−1

was applied at planting and the remaining was equally split and applied within the phases
of terminal spikelet to end of vegetation, end of vegetation to end of pre-anthesis ear
growth, end of pre-anthesis ear growth to beginning of grain filling, and grain filling. In the
current study, application of 310 kg ha−1 urea (according to the above-explained procedure)
was found to cause a negligible nitrogen stress to plant, resembling a low-nitrogen stress
condition. This urea application is not, however, common in wheat-growing regions in
Iran. Nevertheless, it seems to be suitable for studying the coupled nitrogen-water stress
effects on determining the errors in evapotranspiration estimates.

2.3. Statistical Evaluation

The difference magnitude or deviation (∆) between the PT- and PM-estimated variables
was obtained as follows:

Deviation =
100

XPM
×

n
∑

i=1
|XPT − XPM|

n
(11)

where XPT and XPM represent the estimates based on PT and PM, respectively, and n is the
number of comparisons.

The non-parametric two-tailed Kolmogorov-Smirnov test was used to determine
the change in distribution of ETP and crop-related variables as a result of applying the
two different ETP methods (PM and PT). The Kolmogorov-Smirnov’s D statistic is the
largest deviation between two cumulative distribution curves (CDFs). The higher the
Kolmogorov-Smirnov’s statistic, the more significant the difference between CDFs. The
significance of the difference between mean yield simulated by PT and PM was tested using
the non-parametric Wilcoxon signed-rank test. The relationship between the variables was
evaluated using the coefficient of determination (R2).

3. Results and Discussion
3.1. The ETP Deviations

The deviation in ETP modeled based on PT and PM, averaged over four different
scenarios, across a wide range of u2 during the growing season is depicted in Figure 2. It
shows that the difference in ETP estimates increases linearly with an increase in u2 from
1.3 to 3.5 m s−1. The deviation of ETP estimates was less than 12.0% within the u2 range
of 1.3–2.0 m s−1 implying a closer performance of PT to PM. Cristea, et al. [68] also stated
that PT provides a more reliable fit when u2 is less than 2.0 m s−1. Nouri and Homaee [46]
also concluded that deviation of u2 from the range of 1.5–2.5 m s−1 leads to a large error in
estimating ETo under data scarcity. The ETP estimated by PT deviated from PM-estimated
ETP by more than 15% in our studied regions with a growing season u2 greater than
2.45 and less than 1.0 m s−1. As expected, the largest deviation in ETP estimates was
observed for the windy environments. For four surveyed windy sites that had a u2 above
3.0 m s−1 (Bijar, Aligodarz, Sahand and Ardebil), the difference between ETP estimates
was larger than 19.0%. The modeling literature also warns against not taking u2 into
consideration for application of crop models for high wind speed locations [45,46,69–71].

3.2. Deviations in Crop-Related Variables

The deviation of evaporation (Ea) and transpiration (Ta) increased linearly with an
increase in the deviation of PT-estimated ETP from PM-estimated ETP for all scenarios
(Figure 3). The average deviations in transpiration and evaporation were 6.0% and 7.8%,
respectively, under “rain-fed, low-nitrogen stress”, 4.8% and 5.6% under “rain-fed, high
nitrogen stress”, 14.0% and 11.1% under “full irrigation, low nitrogen stress”, and 13.9%
and 10.4% under “full irrigation, high nitrogen stress”. Given a smaller deviation for
evaporation and transpiration for no-irrigation scenarios, PT was similar to PM in simu-
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lating evapotranspiration components under drier condition (Figure 3). Furthermore, the
availability of nitrogen does not seem to contribute significantly to the deviation in the
estimated evapotranspiration components. The difference for evapotranspiration compo-
nents under rain-fed scenarios for the study sites was below 13% (Figure 3a–d). However,
the difference between PT-simulated transpiration from the transpiration simulated based
on PM was more than 20% under full irrigation scenarios for the four windy sites, i.e.,
Sahand, Ardebil, Aligodarz and Bijar with u2 above 3 m s−1 (Figure 3e,g). The evaporation
results demonstrated a difference ranging from 12.8% to 19.2% for the sites with u2 values
larger than 3 m s−1 for low water stress (full irrigation) scenarios (Figure 3f,h). It can be
concluded that the difference between evapotranspiration components obtained by PT
and PM is less under severe soil drought. However, PT may not be reliable for estimating
the evapotranspiration components, particularly transpiration, for windy areas under full
irrigation when u2 data are missing.
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Figure 2. The average deviation of Priestley-Taylor/Ritchie (PT)-estimated potential evapotranspi-
ration (ETP) from Penman-Monteith DSSAT-estimated ETP (∆%) over a range of near-surface wind
speeds (u2) during the wheat growing season for four different management scenarios.

Under “rain-fed, low-nitrogen stress”, the difference between grain yield, Ta/TP and
maximum LAI (LAIm) estimated by PM and PT increased linearly by increasing the dif-
ference in ETP estimates (Figure 4a–c). The difference exceeded 26.0% for yield, 16.0% for
Ta/TP, and 38.0% for LAIm under “rain-fed, low-nitrogen stress” for the four windy sites
with u2 above 3 m s−1 (Figure 4a–c). Considerable the difference between TP partitioned
from PT-estimated ETP and that partitioned from PM-estimated ETP seems to arise from
the large difference between LAI and ETP simulations (Equation (7)) for the windy sites
under “rain-fed, low-nitrogen stress”. Thus, despite a relatively small difference between
the transpiration estimates (13.0% >), PT-estimated TP deviated greatly from PM-estimated
TP leading to a high difference in Ta/TP simulations under “rain-fed, low-nitrogen stress”
(16.0% <). In other words, a high deviation of ETP estimates causes a large difference
in TP (Equation (7)) and, consequently, in the water stress index (Equations (9) and (10)).
Given that the correlation coefficient was greater than 0.65 (Figure 5), there exists a strong
association between the difference of Ta/TP and the difference in yield under high water
stress conditions. It is noteworthy that there is a direct association between Ta/TP and
yield [62]. Consequently, a large difference in Ta/TP estimates resulted in a large difference
in wheat yield for the sites that had a high wind speed and where soil water was highly
restricted but with sufficient nitrogen. Liu, et al. [72] also reported that the application of
different ETP approaches impacts the accuracy of yield simulations by affecting transpi-



Water 2022, 14, 3023 10 of 20

ration and potential transpiration results for water-stressed soils. PT-simulated daily LAI
was substantially different from PM-simulated daily LAI for the “rain-fed, low-nitrogen
stress” scenario leading to a relatively high difference in estimating Ta/TP based on PT and
PM for the growing season that had a u2 of 3.50 m s−1 (Figure 6a,e). In this case, there was
a 37.1% difference in the daily LAI and a 13.4% difference in the daily Ta/TP results.
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Figure 5. The association between the deviation in actual transpiration to potential transpiration
(∆Ta/TP) and yield (∆Y) simulated based on the Priestley-Taylor/Ritchie and the Penman-Monteith
DSSAT under rain-fed scenarios.
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Figure 6. The daily Leaf Area Index (LAI) and actual transpiration to potential transpiration (Ta/TP)
ratio simulated by the Priestley-Taylor/Ritchie (PT) and the Penman-Monteith DSSAT (PM) during
the 1999–2000 growing season with near-surface wind speeds (u2) of 3.50 m s−1 at Ardebil site under
the water-nitrogen stress scenarios.

The statistically significant difference in distribution of PM- and PT-estimated ETP at
89% for the study sites is shown in Table 4. The distribution of PT-estimated Ta/TP differed
significantly from the PM-estimated Ta/TP for only four windy cases under “rain-fed, low-
nitrogen stress”. Moreover, the difference in ETP distribution led to a significant difference
in LAIm distribution for three windy sites, i.e., Aligodarz, Bijar, and Sahand, based on the
Kolmogorov-Smirnov test under “rain-fed, low-nitrogen stress” scenario. However, wheat
yield was significantly different (p < 0.05) based on PM and PT only for one windy case
(Bijar) under the no-irrigation and low-nitrogen stress condition.

The Wilcoxon signed-rank test detected a significant difference (p < 0.05) between PT-
and PM-simulated yield means for 89% of surveyed locations for the scenario of “rain-
fed, low-nitrogen stress” (Figure 7a). The average PM-simulated yield of 1812 kg ha−1

and PT-simulated yield of 2034 kg ha−1 were found under “rain-fed, low-nitrogen stress”
condition. This difference can be ascribed to the fact that PM considers wind speed impacts,
resulting in a higher atmospheric evaporative power and water stress, and consequently
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a lower rain-fed yield particularly for windy areas. The average deviations in minimum,
25th percentile (or first quartile, q1), median (or second quartile, q2), 75th percentile (or
third quartile, q3), and maximum of yield modeled by employing PM and PT were 108,
207, 313, 346, and 372 kg ha−1, respectively, under “rain-fed, low-nitrogen stress” scenario
(Figure 7a). The difference between the minimum, q1, q2 (median), q3, and maximum
of PT- and PM-simulated yield was 97, 286, 515, 617, and 952 kg ha−1, respectively, on
average for the four windy cases under “rain-fed, low-nitrogen stress” condition. Thus, the
difference in ETP estimates resulted in a larger difference for simulated yield that was above
the median yield for the windy cases under “rain-fed, low-nitrogen stress”. Therefore, it
seems that the difference in rain-fed yield as a result of deviation in ETP estimates is more
pronounced for wetter years when a higher yield is expected under rain-fed conditions.

Table 4. The Kolmogorov-Smirnov D statistic obtained for yield, maximum Leaf Area Index (LAIm),
actual transpiration to potential transpiration ratio (Ta/TP), and potential evapotranspiration (ETP)
under water-nitrogen stress scenarios.

Site
Rain-Fed,

Low-Nitrogen Stress
Rain-Fed,

High Nitrogen Stress
Full Irrigation,

Low Nitrogen Stress
Full Irrigation, High

Nitrogen Stress ETP
Yield Ta/TP LAIm Yield Ta/TP LAIm Yield Ta/TP LAIm Yield Ta/TP LAIm

Ahar 0.25 0.25 0.35 0.20 0.35 0.35 0.10 0.20 0.10 0.20 0.25 0.20 1.00
Aligodarz 0.30 0.45 0.40 0.20 0.35 0.10 0.15 0.55 0.10 0.20 0.15 0.20 1.00

Arak 0.20 0.20 0.10 0.15 0.20 0.15 0.10 0.30 0.05 0.15 0.35 0.10 0.15
Ardebil 0.25 0.45 0.30 0.25 0.35 0.25 0.10 0.35 0.10 0.20 0.15 0.15 0.90

Bijar 0.45 0.50 0.45 0.30 0.45 0.30 0.15 0.45 0.10 0.20 0.15 0.15 1.00
Borojerd 0.35 0.30 0.30 0.15 0.35 0.20 0.10 0.35 0.10 0.15 0.35 0.15 1.00

Hamedan 0.15 0.25 0.25 0.15 0.25 0.10 0.15 0.20 0.15 0.15 0.35 0.20 0.50
Kermanshah 0.25 0.35 0.20 0.25 0.15 0.15 0.10 0.15 0.10 0.10 0.20 0.05 0.80

Khorramabad 0.15 0.35 0.15 0.15 0.25 0.15 0.10 0.25 0.05 0.15 0.15 0.15 0.50
Khoy 0.10 0.10 0.10 0.15 0.10 0.10 0.15 0.20 0.15 0.10 0.30 0.20 0.20

Nozheh 0.10 0.35 0.25 0.20 0.30 0.20 0.15 0.15 0.05 0.25 0.30 0.10 0.75
Qorveh 0.20 0.20 0.25 0.25 0.25 0.10 0.10 0.20 0.10 0.20 0.35 0.25 0.95
Saghez 0.15 0.25 0.20 0.15 0.25 0.10 0.05 0.20 0.10 0.10 0.20 0.10 0.50
Sahand 0.30 0.45 0.55 0.35 0.50 0.45 0.10 0.35 0.10 0.10 0.35 0.10 0.95

Shemiran 0.15 0.15 0.10 0.10 0.25 0.20 0.15 0.20 0.10 0.15 0.35 0.15 0.85
Urmia 0.15 0.20 0.20 0.15 0.25 0.10 0.10 0.25 0.15 0.10 0.25 0.05 0.60
Zanjan 0.25 0.35 0.30 0.20 0.20 0.15 0.10 0.20 0.10 0.20 0.15 0.15 0.70

Zarghan 0.25 0.15 0.25 0.25 0.30 0.25 0.10 0.15 0.10 0.10 0.35 0.15 0.90

Notes: The values in bold indicate significant differences at the level of 95%.

The difference in magnitude, averaged over all study sites, dropped from 17.7% to
8.7% for grain yield, from 11.7% to 10.5% for Ta/TP, and from 20.5% to 8.4% for LAIm
by decreasing the applied urea from 310 (low-nitrogen stress) to 20 (high nitrogen stress)
kg ha−1 under rain-fed condition (Figure 4d–f). Compared to “rain-fed, low-nitrogen
stress” condition, there was a smaller difference between PT- and PM-simulated yields due
to a smaller difference in the estimates for LAI and Ta/TP under “rain-fed, high nitrogen
stress”. There was a 14.3% and 4.2% decrease in the difference of PT-simulated daily LAI
and Ta/TP from PM-simulated daily LAI and Ta/TP, respectively, by reducing the nitrogen
application rate from 310 (low-nitrogen stress) to 20 (high nitrogen stress) kg urea ha−1

under no-irrigation condition for the given windy growing season (Figure 6a,c,e,g). The
difference in ETP did not significantly change the distribution of Ta/TP, LAIm and yield
under “rain-fed-high nitrogen stress” scenario for majority of the cases (Table 4). The
difference in mean crop yield was statistically significant (p < 0.05) for two-third of the
cases based on the Wilcoxon signed-rank test for “rain-fed, high nitrogen stress” scenario
(Figure 7b). On average, a deviation of 50, 42, 50, 50, and 41 kg ha−1 was obtained for
minimum, q1, q2 (median), q3, and maximum of the simulated yield based on PM and
PT, respectively, under “rain-fed, high nitrogen stress” condition (Figure 7b). For the four
windy cases, the difference of minimum, q1, q2 (median), q3, and maximum was 60, 77, 91,
25, and 26 kg ha−1, respectively, under “rain-fed, high nitrogen stress” scenario. Therefore,
the difference in below-median simulated yield was larger for the windy areas under severe
water-nitrogen stress.
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Figure 7. Distribution of crop yield (kg ha−1) simulated by applying the Priestley-Taylor/Ritchie (PT)
and the Penman-Monteith DSSAT (PM) for four different management scenarios of all studied sites.
The asterisks (*) indicate significant differences at the level of 95%. The “ns” indicates statistically
insignificant differences. The boxes boundaries indicate the 25th and 75th percentiles, the lines within
the boxes mark the median and the inner and outer fences represent the minimum and maximum
values, respectively.

The yield, Ta/TP and LAIm based on PT deviated from the PM-simulated by less than
6.0% (average across all sites) for the full irrigation scenarios (Figure 4g–l). Despite the high
deviation for transpiration (<20%), the difference between PT- and PM-simulated LAIm
and Ta/TP ranged from 0.75% to 5.8% under full irrigation for the windy environments
(Figure 4h,i,k,l) where the performance of PT differed noticeably from PM (Figure 2).
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The average difference between yield obtained by using PM and PT was statistically
insignificant (p > 0.05) for the majority of cases for the full irrigation scenarios (Figure 7c,d).
Moreover, the difference in the distribution of Ta/TP, LAIm and yield was insignificant
under low water stress (Table 4). When there is sufficient soil moisture for root water
uptake, transpiration approaches potential transpiration and Ta/TP is close to its maximum
value of 1. A small difference in the estimates for LAI and Ta/TP resulted in a small
difference in yield when there was sufficient water available for root water uptake. In
other words, despite quite a large difference (above 17.0%) obtained for PT-estimated
ETP and transpiration for the high wind speed areas (Figures 2 and 3), there was a low
difference (below 6.0%) in wheat yield and Ta/TP under full irrigation scenarios. For the
windy growth period (Figure 6), the PT-simulated daily LAI and Ta/TP differed from the
PM-simulated daily LAI and Ta/TP by less than 1.8% under full irrigation (Figure 6b,d,f,h).
Hence, different ETP modeling methods do not seem to result in notable differences in
yield when the available water is not restricted. It also seems that nitrogen limitation
does not appear to make a significant contribution to yield deviation when water is not
severely limited.

Overall, the simulated yield does not appear to be notably sensitive to the difference
in the estimated ETP when soil moisture is replenished adequately. For locations where
irrigation and/or precipitation meet crop demand, the difference of the estimates for ETP is
unlikely to cause notable differences in predicted yield. The deviation in the estimates for
ETP is, however, of major importance for the prediction of yield when the soil moisture
availability (as the only limiting factor) is severely limited. Hence, when u2 surpasses
3 m s−1 and a drought occurs, resembling the condition of dry farming for windy semi-
arid/arid sites, and other requirements such as nitrogen are met, simulating crop growth,
development and yield based on the ETP method that does not consider wind dynamics
such as PT is expected to be associated with large uncertainties. This is mainly due to the
fact that a large difference in the estimates for ETP results in a high deviation for LAI, the
water stress index (Ta/TP) and yield predictions for water-stressed windy environments. A
limitation in nitrogen can reduce the sensitivity of simulating yield to the difference in ETP
estimates for windy fields that experience a severe soil moisture shortage.

As stated previously, we applied the Angstrom equation to approximate solar radia-
tion, as it is not directly measured in our study area. This might add some uncertainties
to the results, linked to the coefficient of the formula. In this study, DSSAT was forced by
the solar radiation estimated by the Angstrom equation for both cases of using PT and
PM. As a result, comparing the results produced by PM and PT is likely to eliminate the
uncertainties related to the solar radiation estimates.

The most recent source code for the Cropping System Model (CSM) of DSSAT includes
five ETP modeling frameworks namely the Penman-Monteith DSSAT (dynamic and de-
fault formats) [19], the standardized ASCE Penman-Monteith (ASCE-PM, for short and
tall reference crop) [27], the standard reference evaporation calculation for inland south
eastern Australia [73], Penman FAO 24 [74], and Priestley-Taylor/Ritchie [28]. Except for
the Priestley-Taylor/Ritchie equation, the other alternatives require at least four sets of
data including vapor pressure deficit (VPD), wind speed, temperature (minimum and
maximum), and solar radiation (or sunshine hour). Therefore, there is only one method for
estimating ETP in DSSAT that does not require wind speed as input. Including additional
ETP equations in CSM such as Hargreaves-Samani [29] may decrease the uncertainty linked
to the model structure under data scarcity. Consequently, there is a need for further studies
to address the performance of additional ETP equations in simulating crop yield by using
incomplete datasets under extreme climatic conditions.

The uncertainty related to the parameters can be also reduced by fitting the empirical
coefficients of ETP equations against PM-modeled ETP values for windy conditions [69,75].
However, updating the coefficients needs complete weather data to determine ETP based on
PM which are not often available for data-scarce locations [46,75]. In addition, recalibration
of empirical coefficients is highly spatially dependent. Ravazzani, et al. [76] stated that the
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readjustment of ETP formulae’s coefficients may even depreciate the goodness of fit for
other geographic or climatic conditions. Additionally, this technique depends on the time
period used, particularly under current climate change and variability [46]. Consequently,
adjusting coefficients to reduce the parameter-related uncertainties may not sufficiently
be reliable for application to other locations and time periods. The other approaches such
as updating the empirical coefficients based on the u2 observations [77], and application
of constant or local average u2 values [78–80] have also been adopted in windy data-poor
areas. However, the accuracy of such approaches is questionable in windy areas with high
u2 variance, particularly in daily resolution required by crop models [78].

In this study, we focused only on the influence of ETP sub-models’ selection on
final yield predictions across a wide range of wind speed conditions. However, as two
different soil evaporation sub-models, Ritchie-Ceres and Suleiman-Ritchie, are included in
DSSAT, selecting different ETP-soil evaporation sub-model combinations may affect yield
modeling [14]. Hence, the sensitivity of different combinations of soil evaporation-ETP
sub-models to climatic data limitation has to be evaluated in future studies.

The radiation-based ETP alternatives, e.g., PT have been commonly used for projecting
crop response to future climate changes [81–84] as especially the temperature products of
GCMs (General Climate models) are more reliable with respect to wind speed and relative
humidity outputs required to calculate ETP based on more physically-based approaches
such as PM [85–87]. For windy conditions, however, there are significant uncertainties
when temperature- or radiation-based models are used for projecting the future climate
change-induced changes in the soil-plant-atmosphere systems. Special care must be taken
to select the most appropriate ETP model for climate change impact assessments at windy
sites so as to provide reasonable projections needed by policy-makers.

4. Conclusions

In this study we determined the importance of potential evapotranspiration (ETP)
estimation for crop modeling accuracy under data limitation across a wide range of wind
speeds. Therefore, the difference between wheat yield predicted by the CSM-CERES-Wheat
run based on the Priestley-Taylor/Ritchie (PT) and the Penman-Monteith DSSAT (PM) was
determined. We found that the difference between yield simulated based on PT and PM
was larger than 26% and statistically significant (p < 0.05) at the studied areas with u2 (wind
speeds at 2 m height) above 3 m s−1 under “rain-fed, low-nitrogen stress” condition. This is
explainable by large differences for LAI and actual transpiration to potential transpiration
ratio or water stress index (Ta/TP) estimates leading to a large difference in predicted yield
by employing different ETP equations at windy sites for this condition. The difference
in estimated ETP resulted in a significant difference in distribution of maximum LAI and
Ta/TP at windy cases under “rain-fed, low-nitrogen stress” condition. However, only one
case with high wind speed displayed a significant deviation in distribution of yield as a
consequence of deviation in ETP estimates under “rain-fed, low-nitrogen stress”. When soil
moisture is considerably constrained, nitrogen deficiency decreases the deviation in LAIm,
Ta/TP and yield simulated by use of different ETP equations. The yield deviation was below
6% and statistically insignificant (p > 0.05) for full irrigation scenarios. This can be attributed
to low difference in LAI and Ta/TP estimates. The distribution of LAIm, Ta/TP and yield
simulations deviated insignificantly under full irrigation condition. Nitrogen availability is
unlikely to affect the yield results accuracy under full irrigation condition. Overall, the ETP
estimation using datasets lacking u2 would lead to erroneous crop yield predictions under
dry farming across windy environments. The difference in ETP estimation seems, however,
not to notably affect the accuracy of predicted yield when the soil moisture is adequate.
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