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Abstract: Minimum data length is vital to guarantee accuracy in hydrological analysis. In practice, it
is sometimes determined by the experiences of hydrologists, leading the selection of the acceptable
minimum data length to an arguable issue among hydrologists. Therefore, this study aims to
investigate the impact of data length on parameter estimation and hydrological model performance,
especially for data-scarce regions. Using four primary datasets from river basins in Japan and USA,
subsets were generated from a 28-year dataset and used to estimate data adjustment parameters
based on the aridity index approach to improve the parameter estimation. The influence of their
length on hydrological analysis is evaluated using the Xinanjiang (XAJ) model; also, the effectiveness
of outlier removal on the parameter estimation is checked using regression analysis. Here, we present
the estimation of the most acceptable minimum data length in parameter estimation for assessing
the XAJ model and the effectiveness of parameter adjustment by removing the outliers in observed
datasets. The results show that between 10-year to 13-year datasets are generally sufficient for the
robust estimate of the most acceptable minimum data length in the XAJ model. Moreover, removing
outliers can improve parameter estimation in all study basins.

Keywords: minimum data length; Xinanjiang (XAJ) model; parameters; calibration; effectiveness;
aridity index

1. Introduction

Flood disasters are the most common threats to people and socio-economic growth [1–4].
Therefore, flood forecasting plays a vital role in disaster management [5]. Furthermore,
to implement an effective mitigation program and management of flood damages and
operation and the proper evacuation management, flood forecasting is an essential tool in
the predetermination stage of flood events by using hydrological models and GIS tools [6].

The flood forecasting models can enable a more accurate and efficient method by
evaluating the hydrological and hydrodynamic operations in the chosen watershed re-
gion [7]. The data-driven models (black-box models), conceptual rainfall-runoff models,
and physically-based fully distributed models are the main hydrological models [8–10].
Throughout the history of hydrological modeling, parameters of conceptual rainfall-runoff
models have a distinct physical meaning and better efficiency of applicability than some
hydrological models [11]. In recent years, hydrological experts have accomplished con-
ceptual rainfall-runoff models [12,13], and the research on the calibration of the model has
increased [14].

However, very little research has been done to provide recommendations and guide-
lines on how long a hydrological record should be to calibrate the hydrological model
and parameter values [13]. Numerous challenges and problems are involved with the
data input, parameters, structures, and scaling for the essential forecast while validating
a model for flood prediction [15]. The absence of the necessary input data for modeling
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has emerged as one of these critical concerns in hydrological investigation, especially in
developing countries [16–19]. Several years of continuous discharge measurements have
been used in hydrological model calibration to forecast floods effectively and efficiently for
many decades [20,21].

Most researchers generally prefer to run the model calibration with the longest avail-
able datasets to obtain a more ideal and representative model calibration [22,23]. Though
the length of the available datasets is essential, the information and its efficiency are the
main perspectives of model calibration [24,25]. Besides the scarcity of the data, a quantita-
tive understanding of model accuracy is also essential. In actual studies, hydrologists deal
with the problems of data scarcity and accuracy [26,27]. Obtaining enough data in devel-
oping nations can be challenging. Many basins lack continuous observations to calibrate
hydrological models worldwide [28,29]. Therefore, there is an issue with the calibration of
the models when the basins are poorly gauged or ungauged [30,31]. The estimation of a
record length which is not long enough but still acceptable is important in the hydrological
analysis of these regions. Some researchers have considered that model calibration can be
performed with different data lengths starting from three months to ten years, depending
on different models and study areas [32–37]. To achieve good performance in calibrating
the Sacramento Soil Moisture Accounting model (SAC-SMA), eight years of daily stream
data are recommended for the Leaf River basin in the USA, where the NWSRFS-SMA model
was studied [33]. In the case of the HBV model, Lidén [2] indicates that improvement in
the model’s performance was limited with over two years of data, and the progress was
not significant beyond six years.

Therefore, this study attempted to illustrate how parameter estimation of the hydro-
logical model changes in performance and accuracy depending on the shortage or lack
of required data length. Moreover, this study aimed to provide the practical and neces-
sary information in determining the minimum necessary data length, which can later be
extremely useful in forecasting and performing modeling for floods in poorly gauged or
ungauged areas. Though the basic concept of this research applies to models with data ad-
justment, the XAJ is selected for the case study. The XAJ model, categorized as a probability
distributed model by Beven [38], is China’s de facto standard model and has been applied
to a considerable number of basins ranging from humid to semi-arid regions in China. A
recent review [39] shows that the XAJ model is widely studied and used worldwide. The
effect of data length is investigated using the XAJ model driven by datasets with different
record lengths.

1.1. Objectives
1.1.1. General Objective

This study clarifies how errors in observed datasets have noticeable impacts on the
parameter estimation and XAJ model performance using the aridity index. It then estimates
the acceptable minimum data length for poorly gauged or ungagged basins.

1.1.2. Specific Objectives

1. To introduce the parameter estimation method for model calibration considering the
aridity index;

2. To identify the variation of the model outputs over different data lengths and to decide
the acceptable minimum data length using hypothesis analysis;

3. To analyze the effectiveness of parameter estimation by removing the outliers in
observed datasets with regression analysis.

2. Materials and Methods
2.1. Selection of Study Basins

Four river basins with different drainage areas were selected based on available data
to estimate the minimum data length (one basin from Japan and three from the U.S.).
Firstly, Doki River Basin from Japan was targeted as one of the study basins having
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106.8 square kilometers of area in Kagawa Prefecture. Hopefully, estimating the results
regarding this area in this research will provide valuable information for hydrologists.
Furthermore, the field data collected was used to prove the effectiveness of hydrological
datasets from the hydrological point of view.

Secondly, for an analysis of XAJ model performance, three different U.S. basins (the
Nantahala River, MOPEX ID: 03504000; the Oostanaula River, MOPEX ID: 02387500; and the
Noxubee River, ID: 02448000) with, ideally, a large number of undisturbed data-intensive
river basins arranged in various zones and shapes, but with the same data length as
shown in Table 1. Since this research does not consider snow, the river basins without
snow impacts were chosen from NOAA’s National Climatic Data Centre (NCDC), accessi-
ble at http://www.ncdc.noaa.gov/oa/climate/normals/usnormals.html (accessed on 13
November 2013).

Table 1. Studied basins, locations, and basic characteristics.

MOPEX ID
Location Drainage Area

(km2)
Data Length

(Year)
Mean Precipitation

(mm/Year)
Mean Potential

Evaporation (mm/Year)Long. Lat. State

Doki 34.29 133.81 Kagawa,
Japan 106.8 28 1200 1700

03504000 −83.62 35.13 NC 135 28 1893 762
02387500 −84.94 34.58 GA 4144 28 1480 901
02448000 −88.56 33.10 MS 1989 28 1421 1057

2.2. Data Description
2.2.1. Doki River Basin

In this basin, observed 28-year hourly data of precipitation, rainfall-runoff, and evapo-
ration were manipulated from the Doki River Basin from January 1978 to December 2005, as
in Table 2. The data was gathered through 16 stations of two primary sources: the data from
the Ministry of Land, Infrastructure, Transport, and Tourism Japan as well as t AMeDAS
rainfall data from the Japan Meteorological Agency [40].

Table 2. Descriptive statistics of studied basins.

MOPEX ID
Mean

Precipitation
(mm/Year)

Median
Precipitation

(mm/Year)

Minimum
Precipitation

(mm/Year)

Maximum
Precipitation

(mm/Year)

Standard
Deviation

Doki 1200 1344 821 2290 358
03504000 1893 2052 1427 4425 571
02387500 1480 1481 1047 1931 228
02448000 1421 1345 979 2102 290

2.2.2. Data of U.S. Basins

This study was performed based on the basin-scale daily precipitation, daily mean
areal precipitation, potential evapotranspiration, and the runoff data from the U.S. Model
Parameter Estimation Project (MOPEX) data sets [41]. 28-year continuous data length was
simulated from available 54-year continuous data to consider the same data length with
the Doki River Basin. The datasets from January 1974 to December 2001 were used for the
Nantahala River, MOPEX ID: 03504000, and the Oostanaula River, MOPEX ID: 02387500, as
shown in Table 2. However, for the Noxubee River, ID: 02448000, the datasets from January
1962 to December 1989 were selected. In this research, only continuous data was applied
for the effectiveness of the performance of the XAJ model.

2.3. Assessment of Performance of Model and Parameter Estimation for Data Analysis
2.3.1. The Functional Form of Aridity Index

Aridity must be defined and assessed in a complex manner for numerous climatologi-
cal or meteorological investigations. To determine aridity, it is crucial to use an appropriate

http://www.ncdc.noaa.gov/oa/climate/normals/usnormals.html
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aridity index or aridity-defining approach [42,43]. According to Li and Lu [44], this re-
search was built on the idea of aridity and assumed that the relationship between runoff
coefficient and pan aridity would help to reduce the parameter space of Cp and Cep instead
of estimating separately. In the practical study, accessing the information about Cp and Cep
is complicated. The broad optimization spaces should be considered to include the true
value within the parameter spaces and be examined.

The correlation between the runoff coefficient and the pan aridity index could be
added to the parameter estimation method to minimize this error and increase parameter
estimation effectiveness. The modified Schreiber [45]’s functional forms were used in
equation 1. The adjustment coefficient α is used in Schreiber [45]’s functional form to
synthesize the benefits of the function as in the form according to Li and Lu [44];

E/
P = 1 − e−aζ (1)

The values of α will be around 1.15 if using the curve by Budyko’s [44] functional
reference.

2.3.2. Assessment of the Performance of the Model

The annual water balance equation can be defined as

R = P − E (2)

where P and E are basin-wide areal mean rainfall and actual evaporation, and R is the annual
runoff depth. By introducing the aridity index with modified Schreiber’s functional form,

R/
P = e−aζ (3)

Considering data adjustment,

R/
CpPg

= e
−αE
/
P = e

−αCepEpan
/

CpPg (4)

where Pg is an actual rainfall calculated from a ground-based rain gauge, and Epan is
annual pan evaporation. By Budyko [46]’s definition, the ratio of annual pan evaporation
to precipitation Epan/Pg is defined as the pan aridity index ζg,pan. Furthermore, the ratio of
annual runoff to precipitation R/Pg is known as the runoff coefficient. Therefore,

R/
Pg

= Cp exp
(
−α

(
Cep
/

Cp

)
ζg,pan

)
(5)

Cp and Cep could be estimated within the annual runoff coefficient and pan aridity
index range.

By taking the logarithm form,

ln
(

R/
Pg

)
= −α

(
Cep
/

Cp

)
ζg,pan + ln Cp (6)

2.4. XAJ Model Description
2.4.1. XAJ Model

XAJ [47] is a conceptual rainfall-runoff model with distributed parameters to predict
runoff output within a watershed or basin. Since 1980, it has become extensively used
in humid and semi-humid areas in China, primarily for real-time flood risk assessment
and water resource management by the saturation excess runoff generation mechanism. It
was proposed in 1973 to forecast XAJ reservoir inflow in China. An easy-to-use web user
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interface [48] and a deep understanding of parameter sensitivity [14] make it suitable for
fulfilling research works in this study.

The XAJ model determines evapotranspiration, runoff discharge, and flow concen-
tration. The generated runoff is divided into surface runoff, interflow, and groundwater
runoff. It uses the observed areal rainfall depth and pan evapotranspiration to calibrate the
simulated discharge and evapotranspiration values.

2.4.2. Parameters of XAJ Model

The modified XAJ model in this study has fifteen parameters, as shown in Table 3 [12,47,49].
Needing many parameters for calibration and the complicated relationship and interaction
among parameters, the difficulties can be reduced by the dimension of parameter estimation.

Table 3. Parameters in the XAJ model.

Parameter Physical Meaning Range Pre-Optimized Values

Group I Doki River
Basin

MOPEX ID:
3504000

MOPEX ID:
2387500

MOPEX ID:
2448000

Cp

The ratio of measured
precipitation to actual

precipitation
0.8–1.2 1 1 1 1

Cep

The ratio of potential
evapotranspiration to pan

evaporation
0.8–1.2 0.4436 0.7908 1.25 1.2016

Group II

S.M.
Areal mean free water

capacity of the surface soil
layer (mm)

1–50 20 40 30 50

EX
The areal mean of the free

water capacity of the surface
soil layer (mm)

0.5–2.5 1.5 1.2 0.5 0.5

KI
Outflow coefficients of the

free water storage to
interflow

0–0.7;
KI + KG = 0.7 0.4 0.1 0.3 0.55

KG
Outflow coefficients of the

free water storage to
groundwater

0–0.7;
KI + KG = 0.7 0.3 0.6 0.4 0.15

Cs Recession constant of the
lower interflow storage 0.5–0.9 0.0098 0.6 0.85 0.758

Ci Recession constant for the
lower interflow storage 0.5–0.9 0.5 0.9 0.75 0.8

Cg Daily recession constant of
groundwater storage 0.9835–0.998 0.99 0.982 0.989 0.984

Group III

b Exponent of the tension
water capacity curve 0.1–0.3 0.25 0.3 0.15 0.15

imp Ratio of the impervious to
the total area of the basin 0–0.005 0.02 0.02 0.01 0.01

WUM Water capacity in the upper
soil layer (mm) 5–20 20 20 20 20

WLM Water capacity in the lower
soil layer (mm) 60–90 90 80 80 80

WDM Water capacity in the deeper
soil layer (mm) 10–100 80 60 160 160

C Coefficient of deep
evapotranspiration 0.1–0.3 0.1 0.15 0.15 0.15
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Li and Lu [14] examined the XAJ model parameter sensitivity at different time scales.
These 15 parameters can be categorized as follows by Li and Lu [14]:

Group 1: The data adjustment parameters are sensitive on an annual scale.
Group 2: The parameters controlling runoff component separation and routing, which

are sensitive on a daily scale.
Group 3: The runoff generation-controlling parameters are sensitive at the annual

scale, while Group 1 parameters are kept constants.

2.4.3. Calibration of the XAJ Model

In the XAJ model, the runoff generation is built on the repletion of storage concept,
in which the runoff begins to form when the soil moisture content in the unsaturated
zone reaches its field capacity. Eventually, runoff meets the rainfall excess with no further
loss [47,50]. The calibration of the XAJ model was performed with the help of the web-based
application, which was developed using the PHP (Hypertext Preprocessor) programming
language (5.4.36 version created by Rasmus Lerdorf at http://www.php.net, accessed on
25 December 2019) and open access on a Debian GNU/Linux 3.2-based Intel Xeon E5410 @
2.33 GHz server using the web-based user interface accessible at https://xaj.nagaokaut.ac.jp
(accessed on 25 December 2019) [50]. This web-based model is user-friendly and easy to
run the model calibration by providing valuable suggestions in parameter values using Li
and Lu, visualized hydrograph, and NASH efficiency [50,51].

2.5. Evaluation of Model Performance by Efficiency Criteria

The performance and behavior of the hydrological model can be evaluated by compar-
ing simulated and observed data. According to Beven and Freer [52], efficiency criteria help
measure the degree of model simulations that fit the available observations mathematically.
Annual Nash-Sutcliffe efficiency was the efficiency criterion chosen in this research to
examine simulation effectiveness. These findings can be applied to assess the model’s
performance, making it possible to compare the validation values and results directly. By
using this method, it is possible to demonstrate how the Nash efficiency varies with dataset
length. The model’s performance improves as Nash efficiency values increase [53].

Additionally, it will be possible to calculate the minimum acceptable data length
from the behavior of the Nash efficiency results. To generate runoff, the simulation must
incorporate the observed time series information of rainfall and potential evaporation. The
popular Nash-Sutcliffe efficiency [54] is applied to calculate simulated runoff data.

Nash-Sutcliffe efficiency can be defined as;

NASH = 1 −

n
∑

t=1
(Qobs(t)− Qsim(t))

2

n
∑

t=1

(
Qobs(t)− Qobs

)2
(7)

where Qsim is the simulated discharge Qobs, is the observed discharge; and Qobs is the mean
value of observed discharge.

2.6. Application of Statistical Analysis

In this study, two statistical analyses were considered to estimate the influences of
data quality on parameter estimation, inspect how much data are necessary to gain good
performance in model calibration, and find possible solutions to avoid uncertainty in
observed datasets in data-scarce areas.

2.6.1. Hypothesis Analysis

Hydrologists used hypothesis testing in their research to strengthen the scientific basis
of hydrology [55]. The hypothesis test is typically used to conclude whether the results are
consistent or significantly different. In this study, the hypothesis method was used to prove

http://www.php.net
https://xaj.nagaokaut.ac.jp
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the results of the minimum data length which are scientifically significant. Based on the
nature of limited existing datasets, a two-sample unpaired t-test was selected to perform
with the aid of the statistical software (JMP 16 version).

Here, the “null hypothesis” (H0) is that there is no difference in annual Nash values
between two subsets with different data lengths. An “alternative hypothesis” (H1) is that
there are differences in annual Nash values between two subsets with varying lengths of
data. Depending upon the analyzed results, the difference between subsets and the signif-
icance level was decided hypothetically. According to this analysis, the most acceptable
minimum data length in four study basins was statistically selected.

2.6.2. Regression Analysis Approach

As its framework and solid theoretical foundation, regression analysis has been widely
applied in different studies, such as physics, economics, engineering, and hydrology [56].
The purpose of using regression analysis in this study was to analyze the effectiveness of
parameter estimation (Cep) due to the abnormal behavior of observed datasets by removing
outliers for data stabilization. Regression modeling was employed in this analysis in
accordance with the concept of Cep parameter estimation using the relationship between
the logarithmic form of runoff coefficient ln

(
R/Pg

)
and pan aridity index

(
Epan/Pg

)
. The

objective of the regression model is to find a slope and intercepts so that the straight line
with that slope and intercepts fits the points in the scatter diagram as closely as possible [57].

The regression analysis was carried out to remove outliers for data stability in both
28-year observed datasets and different subsets due to the significant unusual fluctuation of
the Nash outcomes, especially in the shorter subsets. In both 28-year datasets and subsets,
simulated Cep was prepared to contrast the values of Cep over the observed data values
prior to and after the exclusion of outliers.

3. Results and Discussion

To demonstrate the model’s efficiency, the XAJ model was calibrated using 28-year
datasets and subsets from each basin, considering the data shortage and restrictions in
practical modeling research. However, in dividing 28-year, how long the shortest stream-
flow record for a subset should be divided for model calibration arises. Yapo, Gupta, and
Sorooshian [33] concluded that the Sacramento Soil Moisture Accounting model required
8-year daily streamflow data to calibrate adequately (SAC-SMA). In this study, 6-year
observed data are initially assumed to be suitable for use as the appropriate shortest length
of subsets to run the XAJ model [58]. Therefore, the length from each study basin was
divided into different subsets, starting from 6-year recorded length subsets to 28-year
recorded length subsets. However, these shortest subsets are still to be analyzed to prove
the acceptable minimum data length with good model results. In this section, the efficiency
criteria chosen to analyze simulation quality is annual Nash efficiency.

3.1. Estimation of Adjustment Parameter (Cep) Using Aridity Index

Among the fifteen parameters in the XAJ model, the data adjustment parameters (Cp
and Cep) are the most sensitive parameters at all time scales [58] and the only parameters
sensitive at the annual scale [44]. Therefore, calculating Cp and Cep, which are sensitive at
the annual scale, will avoid large impacts from other parameters, which are sensitive at
daily and monthly time scales.

Li and Lu [44] showed that Cp and Cep are highly interrelated and proposed an
equation, Equation (6) in this paper, to link these two parameters and the aridity index.
This implies that the parameter with smaller variability can be fixed.

In this research, the value of Cp can be assumed as unity to calibrate the model with ro-
bustness and stability. In addition, the pre-optimized values of the other 13 parameters [50]
were also used for the model calibration, as shown in Table 3.

Before the model simulation was accomplished, the results of Cep values for four
different river basins, which have been sensitive on the annual scale using the aridity index,
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were described in Figure 1. Accordingly, the Cep values calculated from the longer data
length showed less variation than the shorter data length.
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and (d) MOPEX ID 2448000.

3.1.1. Annual Nash Results for the 28-Year Dataset

Using the estimated Cep values mentioned in Section 3.1, corresponding with the
optimized parameters for four river basins; (Doki River Basin, the Nantahala River basin,
MOPEX ID: 03504000; the Oostanaula River basin, MOPEX ID: 02387500; and the Noxubee
River basin, ID: 02448000), the Nash values in daily, monthly, and annual scale were
executed by running the XAJ model with 28-year datasets as in Figure 2. In addition,
annual Nash values considering 28-year datasets were considered as it helps determine the
minimum data length with the comparison of annual Nash values of subsets, as shown in
Figure 2.

The values of the average and standard deviation Nash efficiency values were plotted
to better understand the behaviors of the results, as in Figure 3. According to Figure 3, the
standard deviation values by calibrating the model using a 28-dataset in four river basins
did not show much fluctuation in the model results. These results suggested that using
longer datasets in model calibration in all four river basins has good results.
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3.1.2. Annual Nash Results for Subsets

As mentioned in the previous section, the 28-year datasets from each of the four river
basins were divided into different subsets with consecutive years in Table 4. The model’s
performance was evaluated by calibrating the model using those different subsets from
6-year to 28-year data length, and the annual Nash values are shown in Figure 4. There was
a steep variation between 6-year and 9-year subsets in all four river basins after calculating
the average and standard deviation values over the model results. Apart from the model
calibration with 28-year datasets, the difference in standard deviation values occurred
while calibrating the model with a shorter data length.
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Table 4. The numbers of subsets with n-year data length in 28-year datasets for all four River Basins
(a) Doki River Basin, (b) MOPEX ID 3504000, (c) MOPEX ID 2387500, and (d) MOPEX ID 2448000.

Recorded Year (n)
(i = 1, 2, 3, . . . , 28)

Numbers of Subsets [(28 − n) + 1]
Year Start Year End

6

Yi Yn+(i−1)

23
7 22
8 21
...

...
26 3
27 2
28 1

However, with the data length of the subsets increasing from 10-year, the variation of
standard deviation values became less fluctuated without a dramatic difference, according
to Figure 5.
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3.1.3. Comparative Evaluation of Nash Results between 28-Year Datasets and Subsets

This section compares the model calibration results between 28-year datasets and
subsets to provide robust information in considering the minimum length of datasets
depending on the efficiency measures utilized to evaluate the simulation performance. The
model’s performance increases as Nash efficiency values increase [59]. Additionally, it will
be feasible to presume the behavior of the Nash efficiency results across the minimum
acceptable data length.

Relying on Nash results, the performance of the model can be assessed. Therefore, it
is possible to explicitly demonstrate how the Nash efficiency varies with dataset length by
comparing the Nash values of the model calibrated with 28-year datasets and subsets.

The calibration with 28-year datasets shows good annual Nash values. However,
while calibrating the model with subsets, the results in shorter data lengths are unstable
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and show data fluctuation between 6-year and 10-year datasets. However, starting from
10-year datasets, the model results show a similar pattern running with the 28-year dataset.
Therefore, in this research, estimating the parameter values and calibrating annual Nash
efficiency values over the shorter datasets shows less information than the longer ones.
This way can be possible to show how the Nash varies according to how long the length
of the datasets is. According to this comparison between 28-year datasets and sub-sets,
starting from 10-year datasets, the standard deviation values are consistent and show no
significant variations in all river basins. Hence, it can be assumed that starting from 10-year
subsets is best suited to run the XAJ model to obtain adequate information to improve the
performance of the XAJ model. However, this study continued to prove these findings
using theoretical-based analysis in Section 3.1.4.

3.1.4. Hypothesis Analysis over Subsets

This section aims to help to estimate the most acceptable minimum data lengths in
all study basins. The central part of this analysis consists of testing 19 different datasets
comparisons with varying lengths and observation periods in each study river basin.
Two subsets of different data lengths were selected and statistically analyzed each time
to hypothetically prove the significant difference between the Nash results. Two samples
unpaired t-test was applied using a 5% confidence interval using the statistical software
(JMP 16). The two-sided test results were selected and compared to decide the acceptable
minimum data length theoretically. According to the test results with a significant level
shown in Figure 6, it can be hypothetically proved that starting from 10-year data length for
Doki River Basin, 11-year data length for ID 03504000, 12-year data length for ID 02387500,
and 13-year data length for ID 02448000 were hypothetically significant during the tests.
Hence, it can be proven as the most acceptable minimum data length.
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3.2. Analysis of the Impacts of Datasets Using Regression Analysis

The regression analysis based on the coefficient of evapotranspiration Cep was per-
formed according to the results of the previous session about how the errors in observed
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datasets can affect the impacts on the parameter estimation and model performance. The in-
strumental error may bias the interpretation of Nash efficiency values in observed datasets,
the length and number of data, outliers, and repeated data. Hence, detecting outliers in
observed datasets usually plays an essential role in data monitoring. The observation
departs from other observations to create doubt that a different mechanism caused it can
be called an outlier [60], or data designs deviate from a well-defined concept of typical
behavior [61]. The amount of change in a parameter associated with Nash efficiency val-
ues can be summarized using regression analysis to examine statistical significance with
Equation (6). This method developed by [44] proved the easy and effective calculation of
complex parameter estimation. However, it will rely on the size of the datasets and whether
the annual runoff coefficient, as well as the pan aridity index, are correlated. Regression
equations can help find the many predictive or relation equations in the literature and
hydrological parameters. Regression analysis is often used as a simple x-y graph.

However, in practical conditions with distributions of actual data, it is not easy to find
that all the data points fit precisely through them. Therefore, the two-variable regression
model defines one variable as independent and the other as a dependent variable. Accord-
ing to [44], Cep was calculated in this study using the logarithmic form of Equation (6).
According to Equation (6), the annual runoff coefficient was used as the dependent variable
and the pan aridity index as the independent variable. Here, the coefficients, m and n, can
be calculated using curve fitting.

The purpose of outlier detection in this study is to compare the performance of Cep
before and after removing outliers compared with the simulated Cep value.

3.2.1. Calculation of Simulated (Optimized Cep) in Four River Basins

The simulated Cep values in four river basins were initially calculated based on the
annual Nash values of 28-year datasets by the polynomial regression analysis using Equa-
tion (6), as shown in Figure 7. The purpose of calculating the simulated Cep was to compare
the simulated values with the changes in parameter Cep values before and after removing
outliers in both the 28-year dataset and subsets in all basins. The values of simulated values
are shown in Figure 7.
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3.2.2. Regression Analysis in the 28-year Dataset

Figure 8 shows the regression analysis results performed in each basin with 95 percent
confidence intervals. According to Figure 8, the small interval is the confidence interval,
and the large interval is the prediction interval. Firstly, the regression analysis over the
28-year dataset for four river basins, Doki River Basin (from 1978 to 2005); ID 3504000
(from 1974 to 2001), ID 2387500 (from 1974 to 2001), and ID 2448000 (from 1962 to 1989)
was performed to find the outliers in each 28-year datasets. As the data length of 28-year
was sufficient to perform the regression analysis three times, the Cep values before and after
removing outliers can be discussed clearly in this section. According to the first regression
analysis, the outlier year in each basin (for Doki River Basin, ID 3504000, ID 2387500, and
ID 2448000) was 1987, 2000, 1988, and 1963, as those years were observed outside of the
prediction interval as shown in Figure 8. Removing these outlier years from each dataset
improved the parameter optimization, and the second regression analysis was calculated
again with the 27-year datasets. After removing outliers, the Cep values became closer to
the simulated Cep (the Cep calculated from using the best performance Nash values with
28-year datasets). Therefore, it can be said that removing outliers can contribute to the
remarkable effectiveness of parameter estimation. In this case, regression analysis was
performed for the third time to highlight its effectiveness in removing outliers among the
datasets. Similar to the previous calculations, it can be proved that removing the unstable
years as outliers from observed datasets can attain the Cep values closer to the simulated
Cep values and improve the performance of parameter estimation, as shown in Table 5.
Therefore, removing outliers can contribute to better parameter optimization, which can
impact model performance apart from data scarcity.

Table 5. Comparison of Cep values before and after the removal of outliers.

Cep

Regression
Analysis

Doki River
Basin

Basin ID
3504000

Basin ID
2387500

Basin ID
2448000

Cep in First Stage 0.444 0.828 2.074 1.978
Cep in Second Stage 0.436 0.813 2.018 1.911
Cep in Third Stage 0.425 0.800 1.987 1.854

3.2.3. Regression Analysis in Subsets

For shorter datasets, performing the repeated regression analysis to remove the out-
liers is difficult due to data scarcity. Therefore, the outlier removal using regression anal-
ysis was performed only once for each different data length of subsets (from 6-year to
27-year data length subsets) in all four study basins. Figure 9 shows average and standard
deviation values of Cep for all different subsets from each river basin before and after
removing outliers.

According to the comparison results with the simulated Cep, after removing outliers in
each subset, Cep was becoming more similar to the simulated values in all study basins, as
shown in Figure 9. Therefore, as a result, it can be assumed that the removal of outliers
by applying regression analysis across the subsets can also be effective for parameter
estimation and model calibration.



Water 2022, 14, 3012 15 of 19

Water 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

(from 1974 to 2001), ID 2387500 (from 1974 to 2001), and ID 2448000 (from 1962 to 1989) 
was performed to find the outliers in each 28-year datasets. As the data length of 28-year 
was sufficient to perform the regression analysis three times, the Cep values before and 
after removing outliers can be discussed clearly in this section. According to the first re-
gression analysis, the outlier year in each basin (for Doki River Basin, ID 3504000, ID 
2387500, and ID 2448000) was 1987, 2000, 1988, and 1963, as those years were observed 
outside of the prediction interval as shown in Figure 8. Removing these outlier years from 
each dataset improved the parameter optimization, and the second regression analysis 
was calculated again with the 27-year datasets. After removing outliers, the Cep values 
became closer to the simulated Cep (the Cep calculated from using the best performance 
Nash values with 28-year datasets). Therefore, it can be said that removing outliers can 
contribute to the remarkable effectiveness of parameter estimation. In this case, regression 
analysis was performed for the third time to highlight its effectiveness in removing outli-
ers among the datasets. Similar to the previous calculations, it can be proved that remov-
ing the unstable years as outliers from observed datasets can attain the Cep values closer 
to the simulated Cep values and improve the performance of parameter estimation, as 
shown in Table 5. Therefore, removing outliers can contribute to better parameter optimi-
zation, which can impact model performance apart from data scarcity. 

 
Figure 8. Stages of regression analysis in 28-year datasets for Cep values before and after removing
outliers in (a) Doki River Basin, (b) MOPEX ID 3504000, (c) MOPEX ID 2387500, and (d) MOPEX
ID 2448000.



Water 2022, 14, 3012 16 of 19

Water 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

Figure 8. Stages of regression analysis in 28-year datasets for Cep values before and after removing 
outliers in (a) Doki River Basin, (b) MOPEX ID 3504000, (c) MOPEX ID 2387500, and (d) MOPEX ID 
2448000. 

Table 5. Comparison of Cep values before and after the removal of outliers. 

 Cep 

Regression Analysis Doki River  
Basin 

Basin ID 
3504000 

Basin ID 
2387500 

Basin ID 
2448000 

Cep in First Stage 0.444 0.828 2.074 1.978 
Cep in Second Stage 0.436 0.813 2.018 1.911 
Cep in Third Stage 0.425 0.800 1.987 1.854 

3.2.3. Regression Analysis in Subsets 
For shorter datasets, performing the repeated regression analysis to remove the out-

liers is difficult due to data scarcity. Therefore, the outlier removal using regression anal-
ysis was performed only once for each different data length of subsets (from 6-year to 27-
year data length subsets) in all four study basins. Figure 9 shows average and standard 
deviation values of Cep for all different subsets from each river basin before and after re-
moving outliers.  

 
Figure 9. Comparison of Cep values in subsets before and after the removal of outliers in (a) Doki 
River Basin, (b) MOPEX ID 3504000, (c) MOPEX ID 2387500, and (d) MOPEX ID 2448000. 

According to the comparison results with the simulated Cep, after removing outliers 
in each subset, Cep was becoming more similar to the simulated values in all study basins, 
as shown in Figure 9. Therefore, as a result, it can be assumed that the removal of outliers 
by applying regression analysis across the subsets can also be effective for parameter es-
timation and model calibration. 

4. Conclusions 
Firstly, this research analyses the most acceptable minimum data length using the 28-

year datasets from four river basins of different locations and characteristics using the XAJ 

Figure 9. Comparison of Cep values in subsets before and after the removal of outliers in (a) Doki
River Basin, (b) MOPEX ID 3504000, (c) MOPEX ID 2387500, and (d) MOPEX ID 2448000.

4. Conclusions

Firstly, this research analyses the most acceptable minimum data length using the
28-year datasets from four river basins of different locations and characteristics using the
XAJ model. In this case, the aridity index method is applied for parameter optimization
to narrow the parameter space between the most sensitive parameters, Cp and Cep. For
the estimation of the model performance, the annual Nash efficiency approach is used to
compare the results between the 28-year dataset and subsets using a statistical approach.
Therefore, the application of hypothesis analysis over the annual Nash results of the XAJ
model in four different river basins from Japan and U.S. basins is applied to help prove the
acceptable minimum data length between 6-year to 28-year datasets statistically significant.
It is possible to observe that using longer datasets can improve the model performance.

According to the hypothesis analysis, the test results for Doki River Basin, ID 3504000,
ID 2387500, and ID 2448000 are 10-, 11-,12-, and 13-year, respectively, hypothetically
significant at a 5% confidence level. Therefore, it can be proved that datasets between
10- and 13-year data length can be used as the acceptable minimum data length in the
studied catchments for model calibration and flood forecasting in data-scarce basins.

Based on the previous results, it can be observed clearly that there are some abnormal
behaviors in the annual Nash results of shorter subsets. Therefore, based on the error or
abnormal behaviors of the observed datasets, this study tried to prove that these behaviors
can affect parameter estimation, leading to the model’s performance using regression
analysis. According to regression analysis, removing outliers from the original datasets can
improve the parameter estimation in both the 28-year dataset and subsets in all study basins.
Therefore, removing outliers in datasets can improve parameter calculation, affecting the
model performance and the selection of the minimum data length.

This study has some limitations with the basin characteristics and geology of the study
basins. Apart from the limitations (groundwater, vegetation cover, and aridity index in
deciding the acceptable minimum data length) and the assumptions (the coefficient of
evaporation value, the selection of basins without considering the snow, and the considera-
tion of the statistical significance in the hypothesis analysis), this study will be helpful to
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decide the most acceptable minimum data length in the data-scarce regions, especially in
developing countries which plays the controversial role among hydrologists.

We intend to explore the relationship between the minimum data length and aridity
index (soil moisture memory) as a further study for estimating data length, which can
impact the estimation of minimum data length.
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