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Abstract: A shortage of water resources is a global issue of common concern. The contribution of the
article mainly includes the following two parts. First is the study of water resources’ green utilization
efficiency (WRGUE) in 30 provincial administrative units of China from 2009 to 2019 by adopting
the epsilon-based measure (EBM) model with undesirable outputs, which can yield a more accurate
and reasonable assessment result. In addition, the spatial Durbin model was applied to analyze the
driving factors of the WRGUE, which considers the spatial effects. The results are as follows: (1) The
discrepancy of the WRGUE in different regions of China is conspicuous, with the highest in East
China, followed by the central and the western region, while the Northeast is the lowest. A general
decrease trend from China’s southeast coastal area to the northwest inland is presented. (2) Global
spatial autocorrelation analysis shows a significant positive spatial autocorrelation in the WRGUE of
the 30 sample provinces. However, the local spatial autocorrelation analysis shows that the WRGUE
in China presents stronger spatial homogeneity than heterogeneity. (3) The levels of technology
advancement, economic development, and the Opening-up policy implementation serve as positive
factors influencing the WRGUE in China. On the contrary, the urbanization level has a significant
negative impact on the WRGUE. The results of this paper may have great value for sustainable water
resource utilization.

Keywords: water resources green utilization efficiency; spatial autocorrelation analysis; spatial
Durbin model

1. Introduction

Over the past 40 years since the reform and opening-up, China has made outstanding
achievements in its economic growth, urbanization, and industrialization, which, however,
have consumed vast quantities of water and caused severe environmental pollution [1].
According to the most recently released statistics by the National Bureau of Statistics of
China (NBSC) [2], over the 17 years between 2004 and 2020, the discharge quantity of
Chemical oxygen demand (COD) of wastewater has grown from 13.39 million tons to
25.65 million tons. Although China boasts rich water resources, its quantity per capita is
rather limited [3,4]. If water resources are exploited without sound planning, the fact of
water exhaustion will be exacerbated [5]. To tackle the water scarcity problem, one potential
solution is to improve the utilization efficiency of water resource system [6]. Therefore, an
in-depth discussion of the utilization efficiency of China’s water system is practical and
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of urgent need; it can provide a theoretical basis for future development strategies and
policies for the optimal allocation of water resources.

At present, many scholars pay more attention to the water resource system efficiency.
They mainly apply data envelopment analysis (DEA) [7–16] and stochastic frontier analysis
(SFA) [15–17] to estimate the efficiency of water resource system, but these studies mainly
have some defects. Firstly, the SFA method is a parameter estimation method that requires
the evaluated parameters to be independent, but this requirement is very difficult to meet
in reality [18,19]. Conventional DEA methods such as CCR, BCC, and SBM cannot take
into account radial and non-radial characteristics simultaneously, which may lead to bias
in the evaluation results [20–25]. Referring to the efficiency evaluation model, the paper
adds water pollutant emission index to the evaluation systems and bring ups the concept
of the water resources’ green utilization efficiency (WRGUE), which considers the unity of
socioeconomic benefit and environmental benefit of water resources system, allowing for a
more objective, accurate, and reasonable evaluation. Secondly, this paper is the first to use
an epsilon-based measure (EBM) model with undesirable outputs to measure WRSGU in
China, which has the following principal advantages: Considering both radial and non-
radial characteristics at the same time when evaluating technical efficiency, considering
undesirable outputs [26]. This evaluation method can yield a more accurate and reasonable
assessment result.

The contributions of this paper lie in two aspects, as follows: (1) Measuring the
WRGUEs of 30 provincial administrative units in China from 2009 to 2019 by means of
an EBM model with undesirable outputs, thus revealing its sustainable utilization level.
(2) Performing regression analysis of WSGUE by applying a spatial Dubin model (SDM)
that takes the spatial autocorrelation into account, which can reveal the influencing factors
of WSGUE more accurate, yielding government decision-making policy recommendations.

The body of the paper is organized as follows: Section 2 presents the methodology.
Analogously, Section 3 introduces the data source and indicator selection. Results and
discussions of WSGUE in China are in Section 4. Finally, Section 5 contains the main
conclusions, policy recommendations, and future research directions.

2. Data and Methods
2.1. Research Area

This study selected relevant data of 30 provincial administrative units in China be-
tween 2009 and 2019 (Tibet Hong Kong, Macau and Taiwan are not estimated due to data
limitation), as research material, which were divided into the Eastern, Central, Western, and
Northeastern regions according to their socioeconomic development levels and geograph-
ical locations designated by NBSC (Figure 1). The Eastern and the Northeastern regions
have abundant water resources due to the large rainfall amounts. By contrast, the inland
provinces in the Western region, where water vapor is scarce, have little precipitation owing
to the topography. On top of that, water resources in coastal areas are more abundant than
in inland areas.

2.2. Index Selection and Data Sources
WSGUE Assessment Indicators

The required indicators were divided into three categories: the input indicators, the
desirable output indicator, and the undesirable output indicators (Table 1). The specific
categories are as follows:

(1) Input indicators. We selected the total water consumption, employee index, and
capital stock as input indicators. The total water consumption, including agricul-
tural, industrial, domestic, and ecological water, referred to the data from NBSC [2].
The employee data came from the statistical yearbook of the Chinese provinces
(2010–2020) [27].

(2) The capital stock was estimated through the perpetual inventory method in this paper.
According to Zhang et al. [28], the depreciation rate registered at 9.6%, and the capital
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stock in 2009 was equal to the investment in fixed assets divided by 10%. The price
indices of the investment in fixed assets were converted to 2009 prices based in ac-
cordance with China Fixed Capital Investment Yearbook (2010–2013, 2015–2018) [29],
China Investment Statistical Bulletin (2014) [30], China Investment Statistical Yearbook
(2019–2020) [31], and NBSC [2].

(3) The desirable output indicator. Gross regional product (GDP) was selected as the desir-
able output indicator in this paper. The provincial GDP was converted to 2009 prices
based on GDP deflator. Relevant data were obtained from NBSC [2].

(4) The undesirable output indicators. COD and nitrogen emissions from wastewater
were selected, which have been the key monitored objects by the related department
of environmental management in China for a long time, which are selected as two
undesirable output indicators.
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Table 1. WSGUE assessment indicators.

Primary Indicators Specific Indicators Mean Min Max

Input indicators
The total water consumption (108 tons) 201.1952 22.5 619.1

The capital stock (RMB 108 Yuan) 130,946.5 7982.3 530,575
The social employee (104 person) 2719.8 303.26 7150.25

Desirable output indicator GDP (RMB 108 Yuan) 19,083.8 939.7 87,731.7

Undesirable output indicator
The COD of wastewater (104 tons) 50.62 1.97 198.3

The nitrogen of wastewater (104 tons) 5.06 0.1 23.09
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2.3. Driving Factors of WRGUE

The WRGUE is affected by many factors. On the basis of referring to previous studies,
this paper selected the economic development level [4,32–34], water resources utilization
structure [35], technical progress level [9,34,36], opening-up level [9,33,34], urbanization
level [9,33,34], and population density [4,32] as the variables that affects the WRGUE. The
data of this study was got mainly from NBSC [2]. The definitions of each variable are
shown in Table 2.

Table 2. WSGUE assessment indicators.

Explanatory Variable Variables’ Definition and Unit Pre-Judgment

Economic development level Per capita GDP (RMB 104 Yuan) Positive
Water resources use structure Proportion of agricultural water to the total water consumption (%) Negative
Technical progress level Proportion of R& D expenditure to GDP (%) Positive
Opening-up level Proportion of the foreign trade to GDP (%) Positive
Urbanization level Proportion of the urban population to the total resident (%) Unknown
Population density Resident population per square kilometer (person/sq.km) Unknown

2.3.1. Economic Development Level

In general, the higher the level of regional economic development, the higher the level
of industrial agglomeration, production management, and technology. More resources can
be applied to green technology innovation and water environment pollution control [36],
which is good for WRGUE. Based on previous studies by Li et al. [4], Bao and Chen [32],
Zheng et al. [33], and Zhang et al. [34], the economic development level was added to the
regression model in this research.

2.3.2. Water Resources Utilization Structure

Agriculture is the key sector for water consumption and environmental protection.
It was noted that agricultural water consisted of 70% of total water consumption, 62.1%
of total COD discharged, 25.8% of total Ammonia Nitrogen discharged, and 7.3% of the
country’s GDP in 2021 [2]. Therefore, agricultural water is the selected as the importance
variables [35].

2.3.3. Technical Progress

Technological progress is the motive force of the upgrading of industrial structure,
reducing the water input and increasing the output, and reducing water pollution emissions
per unit of waste [36]. Therefore, we should assume that technical progress level has a
positive effect on WRGUE. Learning from the previous studies by Zhou and Tong [9] and
Zhang et al. [34], the motorization level was added to the regression model in this research.

2.3.4. Opening-Up Policy

Further implementation of China’s opening-up policy will speed up the spread and
transfer of new technologies, boost products’ popularity, and reduce the water supply
cost of production and living, thus alleviating the tension between the supply and the
demand of water resources. According to Zhou and Tong [9], Zheng et al. [33], and
Zhang et al. [34], the implementation level of the opening-up policy was selected as an
important dependent variable.

2.3.5. Urbanization

The rapid urbanization in China can bring in a lot of agglomeration effects, such as
communication cost reduction, the application of advanced technologies, etc. However,
the development of urbanization in the short term may risk increasing the pressure on
water resources [4], leading to the devastating result of water pollution. Overall, this paper
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selected the opening-up level as the important dependent variable [9,33,34], while the
relationship between urbanization and WRGUE needs further empirical testing.

2.3.6. Population Density

Population density represents the degree of population concentration in urban. Gen-
erally speaking, the pressure on water resources in areas with high population densities
will be considerable. Nonetheless, from another perspective, population growth can
also bring agglomeration effects. Consulting the previous research of Li et al. [4] and
Bao and Chen [32], this paper selected population density as an important variable for
regression analysis.

2.4. Methods
2.4.1. The EBM Model with Undesirable Outputs

Data envelopment analysis (DEA) was first put forward by Charnes, Cooper, and
Rhodes in 1978 [37]. Therefore, the original DEA model also was called the Charnes–
Cooper–Rhodes (CCR) model. It has two advantages: It does not need to build up a function
on the frontier and can deal with multi-input and multi-output efficiency assessment. In
order to achieve the separation of technical and scale efficiencies, Banker, Charnes, and
Cooper [38] achieved improvements to the CCR model that the separation of technical and
scale efficiencies, so it is regarded as Banker–Charnes–Cooper (BCC) model. However, the
inputs and outputs were assumed to proportionally increase or decrease when both of
them were applied to calculating the technical efficiency, and therefore could not consider
the slacks and were basically radial DEA model. Subsequently, Tone [39] proposed the
slacks-based measure (SBM), which aims at obtaining maximum rates of reduction in
inputs, relaxing the proportionality, and allowing independent changes to associated slacks
when calculating the technical efficiency [40–42], but it neglects the radial factors and
belongs to a non-radial DEA model. To resolve the shortcomings of radial and non-radial
DEA models, in 2010, Tone and Tsutsui [20] proposed the epsilon-based measure (EBM) to
combine both radial and non-radial factors. However, standard EBM model can neither
consider undesirable outputs nor further compare multiple DUMs on the efficiency frontier
simultaneously. To solve this problem, this paper applies the EBM model with undesirable
outputs to calculate WSGUE, which has three advantages: Firstly, combining both radial
and non-radial factors; secondly, considering undesirable outputs. The EBM DEA model
with undesirable outputs can be represented as follows [26]:

θ∗ = min

 κ−εx∑m
i=1

ωb
i sb

i
xro

β+εy∑s
r=1

ω
g
r sb

r
yro +εb∑

q
p=1

ωb
psb

p
bpk



s.t



∑n
j=1 xijλj + sb

i = κxio i = 1, 2, . . . , m

∑n
j=1 yrjλj − sg

r = βyro r = 1, 2, . . . , s

∑
q
j=1 bpjλj + sb

pλ = βbpo p = 1, 2, . . . , q

λj ≥ 0, sb
i ≥ 0, sg

r ≥ 0, sb
p ≥ 0

(1)

where θ∗, κ, and β are the technical efficiency of the EBM DEA model with undesirable
outputs, the radial DEA model, and non-radial DEA model, respectively. The range of
values of them is [0,1]; n, s, m, and q represent the number of DUMs, the outputs, the
inputs, and the undesirable outputs, respectively. sg

r and sb
p are the slacks of desired output

r and undesired output p, respectively. ω
g
r and ωb

p denote the desired output weight
and the undesired output weight, respectively. bpk is the pth undesirable output of the
DUMk; parameters εy and εb can combine the radial and non-radial slack. λ represents the
intensity vector.
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2.4.2. Spatial Autocorrelation Analysis

All things are interconnected, and the closer the proximity, the stronger the link
becomes for them [43]. To examine the existence of spatial autocorrelation of WSGUE in
the sample regions, we applied the spatial autocorrelation analysis method in this study,
which can describe the spatial relationship of the attributes. There are plenty of methods
for analyzing spatial correlation, among which the global Moran’s I and local Moran’s I are
commonly employed. The global Moran’s I identifies the spatial correlation of observed
objects from a global perspective, which is represented in Formula (2):

GlobalMoran′ I =
∑N

i=1 ∑N
j=1 Wi,j

(
WRGUEi,t −WRGUEt

)(
WRGUEj,t −WRGUEt

)[
1
N ∑N

i=1
(
WRGUEi,t −WRGUEt

)2
]
∑N

i=1 ∑N
j=1 Wi,j

(2)

where i and j are province i and province j, respectively; n stands for the number of
provinces researched; and the spatial weight matrix is represented by Wij. If province i
is adjacent to province j, Wij = 1, otherwise Wij = 0. WRGUEt is the average value of the
WRGUE in the year t. The value range of Gloval Moran’s I ranges from –1 to 1. If the value
is larger than 0, it indicates that there is a positive spatial dependence for WRGUE, while
the value less than 0 represents a negative spatial autocorrelation.

LocalMoran′ I =
N
(
WRGUEi,t −WRGUEt

)
∑N

j=1 Wi,j
(
WRGUEj,t −WRGUEt

)
∑N

i=1
(
WRGUEi,t −WRGUEt

)2 (3)

The Moran scatter plot (MSP) map and local indicators of spatial association (LISA)
map are commonly used to represent the results of local Moran’s I. The MSP and LISA maps
are divided into four quadrants. The first quadrant means that the high WRGUE value of
province is surrounded by high value, which is the high–high (HH) agglomeration area.
The second quadrant indicates that the low WRGUE value of the province is surrounded
by high value, which is the low–high (L–H) agglomeration area. The third quadrant is the
low-low (L–L) agglomeration area, indicating that the low WRGUE value of the province is
surrounded by low value. The fourth quadrant is the high–low (H–L) agglomeration area,
which implies that high WRGUE value of province is surrounded by low value.

2.4.3. Spatial Durbin Model

There are three main spatial measurement methods, which correspond with different
settings of spatial interaction. The first model is the spatial Lag model (SLM), which con-
siders the endogenous interaction effect and assumes that part of the dependent variables
in an area is affected by the dependent variables of its adjacent area. The second model
is the spatial error model (SEM), which reflects the interaction effect between error terms.
The SEM assumes that part of the error term in an area is affected by the error term of
its neighboring areas. The third model is the Spatial Durbin model (SDM), which reveals
the exogenous interaction effect and indicates that if the dependent variable in an area is
affected by the dependent variable and independent variables of the neighboring area, the
interpretation force of the SDM will also be stronger than those of the SLM and SEM [44–49].
Therefore, this paper chose the SDM to analyze the affected factors of WSGUE. The basic
equation of the SDM can be expressed as:

Y = ρWY + βX + θWX + ε (4)

where Y and X is the dependent and dependent variables; W stands for the spatial matrix; ρ
represents the spatial lag autoregressive coefficient; β indicates the estimated coefficient of
the independent variable; WX stands for the spatial lag term of independent, δ represents
the corresponding spatial coefficient; and ε denotes a random perturbation term.

Before the spatial econometric analysis, firstly, the LR test and Wald test were con-
ducted to examine whether the SDM could be reduced to the SAR and SEM. As shown in
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Table 3, all statistics of the spatial lag and spatial error were significant at the 1% levels; thus,
with reference to Elhorst [50], the SDM should be selected. Next, the Hausman test proved
random effects were rejected (chi2(6) = 109.49 ***), showing that fixed effect models were
appropriate specifications in this paper. The SDM with fixed effects is therefore specified
as follows:

Table 3. The regression results of Likelihood ratio test and Wald test.

Fixed Effects Random Effects

Wald test spatial lag 46.56 *** 112.08 ***
LR test spatial lag 42.80 *** 80.20 ***

Wald test spatial error 27.99 *** 53.92 ***
LR test spatial error 34.12 *** 77.79 ***

Note: *** represents p < 0.01.

Where DEL, WSUS, TDL, OPL, UL, and PD express Economic development level,
Water resource utilization structure, Technological advancement level, Opening-up level,
Urbanization level, and Population density, respectively. To avoid the problem of multi-
collinearity among variables, a VIF test was needed. As shown in Table 4, all values of VIF
are less than 6; therefore, the multicollinearity concern is eased.

Table 4. The VIF test.

InDEL InWSUS InTDL InOPL InUL InPD Mean VIF

VIF 5.44 1.74 3.32 2.76 5.81 3.47 3.76
1/VIF 0.184 0.575 0.301 0.362 0.172 0.288

3. Results

Based on the EBM model with undesirable outputs, the MaxDEA Ultra 8 software
was used to evaluate the WRGUE values across the 30 provincial administrative units from
2009 to 2019. The specific calculation results are shown in Table 5. With the application
of arcgis10.2 software, the spatial distribution map of the annual average WRGUE value
during the studied years was made. As for Figure 2, the situation of WRGUE presents
a general decrease trend from the southeast coastal area to the northwest inland. The
WRGUE classifications were based on the Jenks Natural Breaks Classification Method [51].
The WRGUE was divided into four grades (from high to low).

Beijing and Shanghai are in the second class, and their WRGUE has reached the
efficiency frontier during the studied years [52]. Beijing and Shanghai are two large cities
and centers of technology in China. With the implementation of the policy to relieve
Beijing’s non-essential functions as China’s capital and the upgrading of the secondary
industry in Shanghai, many industries with high water consumption and pollution have
moved to other regions, putting the WRGUEs of Beijing and Shanghai in the lead.

The second tier included Guangdong, Tianjin, Zhejiang, Jiangsu, and Fujian, and their
values of the annual average WRGUE registered between 0.525 and 0.740. These provinces
are mainly located in the eastern and southern coastal areas, where they maintain continued
economic, technological, and management vitality. In recent years, with the upgrading of
the industrial structure, the provinces have paid attention to environmental governance
and rational utilization of resources; thus, the WRGUEs have been at a high level.

The third tier contained 13 provinces (Shandong, Chongqing, Hubei, Hunan, Henan,
Inner Mongolia, Shaanxi, Shanxi, Liaoning, Hainan, Yunnan, Sichuan, and Guizhou), and
their WRGUEs were located between 0.381 and 0.481. These provinces, enjoying relatively
fast economic growth and urbanization, are mainly located in Central, Southwest, and
North China, where water-saving technologies have reached a comparatively high degree
of development and application.
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The remaining ten provinces (Hebei, Anhui, Xinjiang, Heilongjiang, Gansu, Jiangxi,
Guangxi, Qinghai, Ningxia, and Jilin) were in the fourth tier. Compared with the eastern
provinces, the economic and technological development of these provinces is disappoint-
ing. To promote economic growth, many local governments in these provinces sacrifice
water environmental protection by introducing water-consuming and energy-consuming
industries, leading to heavy pollution; thus, they have a low level of WRGUE.

Table 5. The values of WRGUE for 30 provincial administrative units in China from 2009 to 2019.

Regions 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Mean

Beijing 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Tianjing 0.581 0.595 0.629 0.584 0.656 0.666 0.610 1.004 0.555 0.627 0.595 0.646
Hebei 0.387 0.381 0.384 0.352 0.382 0.368 0.355 0.368 0.332 0.336 0.331 0.362

Shanghai 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Jiangsu 0.558 0.567 0.575 0.539 0.605 0.620 0.607 0.681 0.561 0.580 0.548 0.586

Zhejiang 0.635 0.641 0.639 0.571 0.636 0.623 0.598 0.632 0.548 0.571 0.558 0.605
Fujian 0.571 0.579 0.562 0.507 0.562 0.541 0.509 0.550 0.473 0.470 0.456 0.525

Shandong 0.495 0.490 0.486 0.454 0.496 0.495 0.474 0.501 0.454 0.469 0.472 0.481
Guangdong 0.819 0.823 0.792 0.692 0.794 0.775 0.722 0.802 0.661 0.648 0.610 0.740

Hainan 0.447 0.459 0.445 0.386 0.422 0.400 0.367 0.385 0.329 0.319 0.305 0.388
Eastern region 0.649 0.653 0.651 0.609 0.655 0.649 0.624 0.692 0.591 0.602 0.588 0.633

Shanxi 0.443 0.436 0.441 0.402 0.436 0.415 0.379 0.375 0.355 0.368 0.362 0.401
Anhui 0.352 0.361 0.359 0.335 0.363 0.355 0.336 0.382 0.324 0.315 0.306 0.344
Jiangxi 0.336 0.339 0.334 0.314 0.340 0.335 0.321 0.331 0.301 0.297 0.287 0.321
Henan 0.417 0.422 0.433 0.392 0.440 0.438 0.415 0.443 0.383 0.390 0.376 0.414
Hubei 0.467 0.475 0.474 0.428 0.471 0.457 0.427 0.467 0.400 0.390 0.378 0.439
Hunan 0.444 0.453 0.452 0.404 0.451 0.439 0.408 0.435 0.382 0.371 0.355 0.418

Central region 0.410 0.414 0.415 0.379 0.417 0.406 0.381 0.405 0.358 0.355 0.344 0.390

Inner Mongolia 0.393 0.397 0.398 0.374 0.419 0.410 0.402 0.476 0.403 0.441 0.432 0.413
Guangxi 0.357 0.352 0.354 0.314 0.348 0.336 0.310 0.330 0.275 0.264 0.246 0.317

Chongqing 0.396 0.414 0.440 0.423 0.471 0.474 0.467 0.640 0.478 0.535 0.516 0.478
Sichuan 0.370 0.383 0.404 0.370 0.415 0.404 0.380 0.407 0.366 0.364 0.355 0.383
Guizhou 0.431 0.431 0.433 0.383 0.425 0.403 0.371 0.382 0.325 0.310 0.292 0.381
Yunnan 0.413 0.414 0.412 0.374 0.419 0.401 0.376 0.415 0.354 0.344 0.328 0.386
Shaanxi 0.397 0.405 0.419 0.396 0.429 0.424 0.406 0.423 0.390 0.404 0.401 0.408
Gansu 0.369 0.365 0.361 0.319 0.354 0.336 0.307 0.353 0.287 0.286 0.278 0.329

Qinghai 0.333 0.331 0.334 0.311 0.325 0.308 0.288 0.293 0.278 0.276 0.270 0.304
Ningxia 0.326 0.321 0.322 0.293 0.317 0.309 0.295 0.315 0.278 0.276 0.264 0.301
Xinjiang 0.409 0.400 0.394 0.337 0.377 0.362 0.327 0.343 0.284 0.279 0.262 0.343

Western region 0.381 0.383 0.388 0.354 0.391 0.379 0.357 0.398 0.338 0.344 0.331 0.368

Liaoning 0.385 0.388 0.398 0.373 0.408 0.403 0.398 0.453 0.389 0.404 0.402 0.400
Jilin 0.289 0.291 0.290 0.283 0.309 0.306 0.291 0.328 0.289 0.291 0.283 0.296

Heilongjiang 0.388 0.384 0.373 0.324 0.356 0.344 0.321 0.355 0.302 0.296 0.286 0.339
Northeast 0.354 0.354 0.354 0.327 0.358 0.351 0.337 0.379 0.327 0.330 0.324 0.345

China 0.474 0.477 0.478 0.441 0.481 0.472 0.449 0.496 0.425 0.431 0.418 0.458
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4. Discussions
4.1. Spatial Autocorrelation Analysis of WRGUE

The relationship between things is usually affected by the distance between them,
and regional WRGUE belongs to regional variables according to the First Law of Geogra-
phy. Therefore, before using the spatial panel measurement model to analyze the impact
factors of WRGUE, the research should answer if the regional WRGUE has spatial auto-
correlation. In this study, the spatial autocorrelation intensity of WRGUE of 30 provincial
administrative units in China from 2009 to 2019 was analyzed by both the Global and Local
Moran’s I index.

As observed in Table 6, all of the Global Moran’s I are positive, which passes cor-
responding significance level tests in the studied years. The figures show that WRGUE
distribution has a strong spatial autocorrelation. The Global Moran’s I witnesses a fluc-
tuating upward from 2009 to 2016, suggesting that the positive spatial autocorrelation of
WRGUE is constantly strong. But the Global Moran’s I drops from 0.297 to 0.225 between
2016 and 2019, meaning that the positive spatial autocorrelation of WRGUE was weak.

Table 6. Value of Global Moran’s I of provincial WRGUE in China (2009–2019).

Year Global Moran’s I Z-Score p-Value

2009 0.224 ** 2.249 0.025
2010 0.237 ** 2.355 0.019
2011 0.247 ** 2.446 0.014
2012 0.231 ** 2.375 0.018
2013 0.251 ** 2.465 0.014
2014 0.263 *** 2.567 0.010
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Table 6. Cont.

Year Global Moran’s I Z-Score p-Value

2015 0.254 ** 2.522 0.012
2016 0.297 *** 2.775 0.006
2017 0.208 ** 2.158 0.031
2018 0.236 ** 2.362 0.018
2019 0.225 *** 2.294 0.022

Note: *** represents p < 0.01, ** represents p < 0.05.

We used software Stata14 to calculate the local Moran’s I index of WRGUE in China
based on Equation (4). Then, we drew the Moran scatter map between 2009 and 2019. In
Figures 3 and 4, the first quadrant comprises Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang,
and Fujian, all located in the eastern region, accounting for 20% of the total. The figures
mean that major provinces in the eastern region have a higher level of WRGUE, showing
a high degree of concentration. There are 17 provinces in the third quadrant, namely
Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Anhui, Henan, Hubei, Chongqing,
Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, accounting for
almost 56.7% the total. The second quadrant contains Hebei, Jiangxi, Hunan, Guangxi, and
Hainan, and the spatial characteristic of the WRGUE shows a low–high association. The
fourth quadrant only includes Shandong and Guangdong, with a spatial characteristic of
WRGUE showing a high–low association (their WRGUE levels are higher, but those of the
surrounding provinces are lower).

Compared with the data in 2009, the first quadrant remains unchanged, while the
third quadrant has lost two provinces (Inner Mongolia and Chongqing) and added one
province (Guangxi), accounting for approximately 53.3%. The second quadrant has changed
significantly by adding Anhui, covering Hebei, Jiangxi, and Hainan, and losing Hunan and
Guangxi. As for the fourth quadrant, it has added Inner Mongolia and Chongqing, which
were from the third quadrant (Figures 5 and 6).
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Overall, although the provinces in different quadrants have changed in recent years,
more than 70% of the provinces have been in the first and the third quadrants, suggesting
the WRGUE in China presents stronger spatial homogeneity than heterogeneity.
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4.2. Discussion on Influencing Factors for of WRGUE

Table 7 displays the estimation results of spatial fixed-effects, time fixed-effects, and
spatial and time fixed-effects. Based on the LR test, the assumption that spatial fixed effects
are jointly insignificant is rejected (LR chi2(16) = 98.47 ***), and the assumption that the
time fixed effects are jointly insignificant is also rejected (LR chi2(16) = 562.68 ***). From
the value of Log-likelihood in Table 7, the spatial and time fixed-effects (521.8122) are
more appropriate than the other two effects (472.5766 and 240.4700). Therefore, it is most
reasonable to apply the SDM with spatial and time fixed-effects to empirical analysis.

Table 7. The regression results of SDM.

Spatial Fixed-Effects Time Fixed-Effects Spatial and Time Fixed-Effects

InDEL 0.8086419 *** 0.7220803 *** 0.6974106 ***
InWSUS 0.0004369 −0.0032236 −0.0004647
InTDL 0.0937041 *** 0.0039324 0.0824482 **
InOPL 0.0625741 *** 0.0125481 0.0717951 ***
InUL −0.9996273 *** −0.2393367 *** −0.9468609 ***
InPD −0.0295799 0.1158211 *** −0.1191172

W*InDEL −0.8510972 *** −0.4911258 *** −1.53070 ***
W*InWSUS −0.0068093 −0.0752403 *** 0.0045217
W*InTDL −0.0155968 −0.1458118 ** 0.014417
W*InOPL −0.0166994 0.1628485 *** 0.0597447 *
W*InUL 0.9070408 *** −0.0868307 1.122323 ***
W*InPD −0.3018763 −0.0216836 −0.9419549 ***

Variance sigma2_e 0.0030164 *** 0.0136224 *** 0.0024756 ***
R-squared 0.3562 0.0010 0.2760

Log-likelihood 472.5766 240.4700 521.8122

Note: ***, **, and * indicate significance at the 1%, 5% and 10% levels, respectively.
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The level of economic development and WRGUE show a positive relationship, which
is in accord with the expectation. In 2019, the GDP per capita in China first broke the
milestone of $10,000, which is over 66 times of the number in 1978 [2]. As Chinese economic
development level rises, which provides a guarantee for the improvement of WRGUE.
However, there is uneven development in various regions, which leads to the regional
inequality of WRGUE to a certain extent. In the study period, the high level of WRGUE
is mainly located in the eastern coastal region, which bursts with continued economic
vitality in China. Due to the high level of opening-up, advanced technological progress
and application, and effective management models, the WRGUE in the region registers
high. In contrast, in regions with slow economic growth, such as Northwest China, it is
necessary to continuously optimize the water resources’ utilization mode and draw the
experience and technologies from eastern coastal regions.

It is found that water resource use structures have a minor influence on WRGUE, which
is not evident. In recent years, the Chinese government has attached great importance
to agricultural water conservation and formulated and promulgated the Outline of the
National Agricultural Water Saving (2012–2020). The development and application of
water-saving technologies in agriculture have been remarkable in China, which has offset
the negative effects of the low efficiency of agricultural water. Technological advancement
has positive correlations to WRGUE in a significant way, which is consistent with the
expectation. With the economic growth remaining robust, China is ramping up its spending
on research and development in many aspects. The R& D expenditure has increased from
the 1.05% of the GDP in 2002 to 2.4% in 2021 [2]. These measures have provided a guarantee
for the development of water-saving technologies in industry and agriculture. Hence,
the reuse of industrial and agricultural wastewater has achieved great improvement in
recent years.

The opening-up level serves as a significant positive factor to WRGUE, which agrees to
expectation. Since joining World Trade Organization in 2001, China’s reform and opening
drive has entered a new historic era. Currently, China has already become the largest
trading nation in the world. China is the biggest trading partner for 163 countries in 2020.
As China continues to deepen the reform and opening-up, many foreign advanced water
use technologies have been introduced into China, which has strongly promoted WRGUE.

The level of urbanization has a remarkably negative effect on WRGUE, which indicates
that rapid urbanization cannot bring the agglomeration effect of water resource utilization
in China. Cities are the physical carrier for human beings to exist and live in, where a
great amount of water is consumed. Recently, China’s urbanization rate has risen rapidly
from 19.4% in 1978 to 60.6% in 2019 [2,53,54]. With the increase of urban population, the
continuous growth of water demand, the severity of water pollution, and the shortage of
water resources in some regions in China have become increasingly serious, restricting
China’s sustainable development.

Population density has a not-so-significant negative relationship with WRGUE. The
sewage discharge in areas with a dense population is commonly large. However, China
has unremittingly given high priority to the education of water conservation and environ-
mental protection in compulsory education; the idea of saving water resources has gained
publicity in China in various ways. On the other hand, in recent years, with the level of
economic development increasing, Chinese citizens’ expectations of the high-quality living
environment are also increasing, and their water environmental protection awareness has
increased. These background conditions may offset the negative impact of high population
density to a certain extent.

5. Conclusions

Scientific and accurate evaluation of WRGUE is essential for promoting the sustainable
water resources’ utilization and realizing the 2030 sustainable development goal of the
United Nations [55]. This paper empirically examined the WRGUE in China, aiming to
provide an objective assessment and support the sustainable utilization of water resources
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in China. The article first evaluated the WRGUE in 30 provincial administrative units of
China using the EBM model with undesirable outputs, which found conspicuous regional
differences of the WRGUE in different regions of China. Specifically, the efficiency is higher
in the eastern region, followed by the central and the western region, while Northeast China
is the lowest. The WRGUE presents a general decrease trend from the southeast coastal
area to the northwest inland. Based on the spatial autocorrelation analysis, a significant
positive spatial autocorrelation in the WRGUE of the 30 sample provinces is shown, and
the WRGUE in China presents stronger spatial homogeneity than heterogeneity. In the end,
the paper empirically analyzed the driving factors of WRGUE using the SDM method. It is
found that the levels of economic development, technological advancement and opening-
up are the significant positive influencing factors of the WRGUE in China. On the contrary,
the level of urbanization has an obvious negative impact on the WRGUE.

Based on the results, this paper proposes some relevant policy recommendations:
(1) Considering the existence of spatial effect of WRGUE, it is necessary to create more
spillover channels to realize the coordinated development of regional WRGUE. High-
efficiency provinces should enlarge communication and cooperation with low-efficiency
provinces by sharing the advanced technology and administration methods. On the
other hand, importing advanced water resource systems from other regions and getting
rid of outdated and high water-consuming technologies are necessary for low-efficiency
provinces. (2) Promoting technical innovation of the economic and infrastructure industries
is critical to improve water resources usage efficiency. For instance, key industries such
as mining and dyeing are required to transform and apply nitrogen processor and clean
production procedures. In addition, more attention should be paid to industrial structure
optimization, scientific and educational development, and transportation infrastructure
enhancement. (3) The disparity in irrigational water use efficiency among areas should
be made fully aware of. The government should attach greater importance to developing
advanced agricultural technology and push forward effective water-saving and water
conservation policies in low-efficiency regions. (4) Suitable water utilization regulations and
a well-regulated water credits exchange market should be established. Meanwhile, market
access and contamination restrictions should be imposed on the foreign-funded enterprises
with the potential of high waste emission. (5) The government subsidies should be increased
in water-saving projects, such as advancing water-recycling equipment, maximizing the
utilization of rainwater, and building edge-cutting sewage treatment facilities.

With regard to the limitations of the study, there still exist many practical problems that
deserve researchers’ attention and endeavor for further research. First, as the paper only
focused on the WRGUE of administrative spaces, future work should focus on the WRGUE
of specific industries and sectors, such as agriculture, mining, manufacturing, construction,
power generation, transport, and so forth. Moreover, the ultimate goal of WRGUE research
is to achieve the sustainable utilization of water resources. Therefore, further research
should dive into the application and practice of an intelligent water resources system,
which can maximize the use of water resources. Thirdly, there are obvious differences in
the regional distribution of water resources in China; hence, it is of significant meaning in
studying the regional balance of WRGUE. Therefore, further research should focus on the
convergence of regional WRGUE in China, which can provide a theoretical basis for the
regional balance and harmonious development of water resource utilization.
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